Quantum games The Mermin-Peres magic square

J Avron

July 20, 2023

JA (Technion)

Quantum games

July 20, 2023

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mermin-Peres game

Alice assigned a random row j

• Fills row
$$a_{jk} = \pm 1$$
, $\prod_k (a_{jk}) = 1$

- Bob assigned a random column k
- Fills column $b_{jk} = \pm 1$, $(b_{jk}) = -1$

• Win if: $a_{ik} = b_{ik}$

Classical strategy: Agree on a common table

- Fill 2 × 2 green square arbitrariy
- Completes the first 2 rows/columns by constraint
- Disagree on the remaining (red) square
- Win with probability: 8/9

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Alice & Bob can't always win

Column and Row constraints can't be satisfied simultaneously

$$1 = (1)^{3} = \prod_{jk} a_{jk} \neq \prod_{jk} b_{jk} = (-1)^{3} = -1$$

$$\boxed{1}$$

$$\boxed{1}$$

$$1$$

$$\boxed{1}$$

$$1$$

$$\boxed{-1}$$

$$1$$

$$\boxed{-1}$$

The quantum game

Entanglement as resource

- Agree on common of observables
- Binary: $B_{jk}^2 = 1$, $Tr B_{jk} = 0$
- Commute in rows/columns $[\mathbf{B}_{jk}, \mathbf{B}_{jm}] = 0, \quad [\mathbf{B}_{jk}, \mathbf{B}_{mk}] = 0$
- Satisfy constraints $\prod_{j} \mathbf{B}_{jk} = -\mathbb{1}, \quad \prod_{k} \mathbf{B}_{j,k} = \mathbb{1}$
- A & B share entangled pairs

B ₁₁	B ₁₂	B ₁₃	1
B ₂₁	B ₂₂	B ₂₃	1
B ₃₁	B ₃₂	B ₃₃	1
-1	-1	-1	

Such tables exist A & B respond by measuring the binary **B**_{jk} Constraints guaranteed JA (Technion) Quantum games July 20, 2023 5/19

Filling the table

Binaries as products of Pauli

- $\sigma_{\mu} = \{\sigma_0 = \mathbb{1}, \sigma_x, \dots, \sigma_z\}$
- $\sigma_{\mu}^2 = \mathbb{1}, \ \{\sigma_j, \sigma_k\} = 0, \ j \neq k$
- Fill green square:
- Commuting in rows & columns
- Complete by constraints
- Consistent at red square

$\sigma_0\otimes\sigma_Z$	$\sigma_{\mathbf{X}}\otimes\sigma_{0}$	$\sigma_{\mathbf{X}}\otimes\sigma_{\mathbf{Z}}$
$\sigma_z \otimes \sigma_0$	$\sigma_0\otimes\sigma_x$	$\sigma_{z}\otimes\sigma_{x}$
$-\sigma_{z}\otimes\sigma_{z}$	$-\sigma_{\mathbf{X}}\otimes\sigma_{\mathbf{X}}$	$-\sigma_{y}\otimes\sigma_{y}$

Respond by measuring two qubits Parity constraint is automatic

JA (Technion)

Quantum games

July 20, 2023

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 シシシの

Measuring commuting observables

First row:
 A measures σ_x of 1-st qubit
 A measure σ_z of 2-nd qubit

• First columns:

B measure σ_z of 1-st qubit B measure σ_z of 2-nd qubit

$\sigma_0\otimes\sigma_z$	$\sigma_{x}\otimes\sigma_{0}$	$\sigma_{X}\otimes\sigma_{Z}$
$\sigma_z \otimes \sigma_0$	$\sigma_0\otimes\sigma_x$	$\sigma_{Z}\otimes\sigma_{X}$
$-\sigma_z \otimes \sigma_z$	$-\sigma_{\mathbf{X}}\otimes\sigma_{\mathbf{X}}$	$-\sigma_{y}\otimes\sigma_{y}$

Third row (column) looks difficult How to measure $\sigma_x \otimes \sigma_z$ with $\sigma_z \otimes \sigma_x$?

Quantum circuits

Quantum gates

•
$$\sigma_{z} \ket{0} = \ket{0}, \ \sigma_{z} \ket{1} = -\ket{1}$$

• $H\sigma_z = \sigma_x H$

•
$$H = \frac{\sigma_z + \sigma_x}{\sqrt{2}}$$

• CNOT= $|0\rangle\langle 0|\otimes\sigma_0+|1\rangle\langle 1|\otimes\sigma_x$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recording parity product on ancilla

B binary observable

Unitary recording joint parity on ancilla

$$Unitary = \underbrace{(\mathbf{B}_{+} \otimes \mathbf{B}'_{+} + \mathbf{B}_{-} \otimes \mathbf{B}'_{-})}_{positive} \otimes \mathbb{1} + \underbrace{(\mathbf{B}_{+} \otimes \mathbf{B}'_{-} + \mathbf{B}_{-} \otimes \mathbf{B}'_{+})}_{negative} \otimes \sigma_{x}$$

 $|ancilla\rangle = |0\rangle \,\delta_{positive} + |1\rangle \,\delta_{negative}$ No information on individual parities JA (Technion)
Quantum games
July 20, 2023
9/19

Joint parity boxes *z* ⊗ *z*-parity

 $\begin{array}{l} (\alpha |\mathbf{0}\rangle \otimes |\mathbf{1}\rangle + \beta |\mathbf{1}\rangle \otimes |\mathbf{0}\rangle) \otimes |\mathbf{0}\rangle \mapsto (\alpha |\mathbf{0}\rangle \otimes |\mathbf{1}\rangle + \beta |\mathbf{0}\rangle \otimes |\mathbf{1}\rangle) \otimes |\mathbf{1}\rangle \\ (\alpha |\mathbf{0}\rangle \otimes |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle \otimes |\mathbf{1}\rangle) \otimes |\mathbf{0}\rangle \mapsto (\alpha |\mathbf{0}\rangle \otimes |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle \otimes |\mathbf{1}\rangle) \otimes |\mathbf{0}\rangle \end{array}$

Joint parity boxes

 $z \otimes x$ -parity

H intertwines σ_x and σ_z $H\sigma_x = \sigma_z H$

Measuring ancilla projects on joint parity subspace

	· · · · ·		
		hnion	А
JA I	nec	ппоп	н
			1

Quantum games

July 20, 2023

・ロン ・雪 と ・ ヨ と ・ ヨ と

11/19

Measuring $\sigma_x \otimes \sigma_z$ and $\sigma_z \otimes \sigma_x$

Two ancillas and two parity boxes

JA (Technion)

Commuting measurement projects on a common basis

Constraint guaranteed

- $\sigma_{\mathsf{X}} \otimes \sigma_{\mathsf{Z}} \ket{\phi}_{\mathsf{ab}} = (-)^{\mathsf{a}} \ket{\phi}_{\mathsf{ab}}$
- $\sigma_{z} \otimes \sigma_{x} |\phi\rangle_{ab} = (-)^{b} |\phi\rangle_{ab}$
- $|\phi\rangle_{ab}$ joint parity basis.

Parity measurement selects parity eigenstate $\rho_{A} \mapsto |\phi_{ab}\rangle\langle\phi_{ab}|$

$$\sigma_{y} \otimes \sigma_{y} |\phi\rangle_{ab} = (-)^{a+b} |\phi\rangle_{ab}$$
$$\pi(\sigma_{x} \otimes \sigma_{z})\pi(\sigma_{z} \otimes \sigma_{x}) = \pi(\sigma_{y} \otimes \sigma_{y})$$

JA (Technion)

Quantum games

July 20, 2023

13/19

Entanglement: Correlations without communication

Guarantee agreement on the intersect

- On intersect both measure M
- e.g. $M = \sigma_z \otimes \sigma_x$
- $M \otimes M |\psi_{AB}\rangle = +_{agree} |\psi_{AB}\rangle$
- Green square–Independent Eq.
- 4 stabilizers determine $|\psi_{AB}\rangle \in \mathbb{C}^{2^4}$

The entangles shared state $|\psi_{AB}\rangle = |\Phi_{AB}\rangle \otimes |\Phi_{AB}\rangle$

- $M_A \otimes M_B |\psi_{AB}\rangle = |\psi_{AB}\rangle$, $M = \sigma_\mu \otimes \sigma_\nu$
- $(\sigma_{\mu}^{A} \otimes \sigma_{\mu}^{B}) \otimes (\sigma_{\nu}^{A} \otimes \sigma_{\nu}^{B}) |\psi_{AB}\rangle = |\psi_{AB}\rangle, \quad \sigma_{\mu} \in \{\sigma_{0} = \mathbb{1}, \sigma_{x}, \sigma_{z}\}$
- Solution has product structure

$$|\psi_{AB}
angle = |\Phi_{AB}
angle \otimes |\Phi_{AB}
angle$$

$$\sigma_{\mu}^{A} \otimes \sigma_{\mu}^{B} |\Phi_{AB}\rangle = |\Phi_{AB}\rangle \quad \sigma_{\mu} \in \{\mathbb{1}, \sigma_{X}, \sigma_{Z}\}$$

2 stabilizers determine $|\Phi_{AB}\rangle$

JA (Technion)

Quantum games

<ロ> < 同> < 同> < 三> < 三> < 三</p> July 20, 2023

Bell state

Syndrome

- $|\Phi_{AB}\rangle \in \mathbb{C}^{2^2}$
- Stabilizers

● ∃! Bell state

$$|\Phi_{AB}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}} \in \mathbb{C}^4$$

Alice and Bob agree $(M_A \otimes M_B) |\Phi_{AB}\rangle = |\Phi_{AB}\rangle, \quad M_A = M_B = \sigma_\mu \otimes \sigma_\nu$

 $\sigma_{z}\otimes\sigma_{z}$

 $\sigma_{\mathbf{X}}\otimes\sigma_{\mathbf{X}}$

Alice state is Fully mixed

- Alice shares with Bob Bell states.
- Partial Trace of Bell states is fully mixed
- Alice measures a fully Mixed
- Good enough to ensure Allice's parity constraint
- Alice's measurment prepare a random vector $|e_{ik+}\rangle$

 $M_{jk} |e_{jk\pm}\rangle = \pm |e_{jk\pm}\rangle, \quad j = \text{fixed}, k = 1, 2$

Contextuality

イロト イポト イヨト イヨト

Concluding remarks

- Mermin and Peres invented the square to give a simple proof of Kochen Specker theorem
- Multiprover, Interactive proof systems (MPI*)
- Cleve, Hoyer, Toner and Watrous (2010)

Э

イロト 不得 トイヨト イヨト