Quantum games

The Mermin-Peres magic square

J Avron

July 20, 2023

Mermin-Peres game

The House against

Two cooperating, non-communicating parties

- Alice assigned a random row j
- Fills row $a_{j k}= \pm 1, \prod_{k}\left(a_{j k}\right)=1$

Alice

- Bob assigned a random column k
- Fills column $b_{j k}= \pm 1, \prod\left(b_{j k}\right)=-1$

- Win if: $a_{j k}=b_{j k}$
-1

Classical strategy: Agree on a common table

- Fill 2×2 green square arbitrariy
- Completes the first 2 rows/columns by constraint
- Disagree on the remaining (red) square
- Win with probability: $8 / 9$

1	1	1	1
1	1	1	1
-1	-1	± 1	1
-1	-1	-1	

Alice \& Bob can't always win

Column and Row constraints can't be satisfied simultaneously

$$
1=(1)^{3}=\prod_{j k} a_{j k} \neq \prod_{j k} b_{j k}=(-1)^{3}=-1
$$

Randomness does not help

$$
P(\text { Win })=\sum_{\text {strategies }} P_{\text {strategy }} \underbrace{P(\text { Win } \mid \text { strategy })}_{\leq 8 / 9}
$$

The quantum game

Entanglement as resource

- Agree on common of observables
- Binary: $\mathbf{B}_{j k}^{2}=\mathbb{1}, \quad \operatorname{Tr} \mathbf{B}_{j k}=0$
- Commute in rows/columns

$$
\left[\mathbf{B}_{j k}, \mathbf{B}_{j m}\right]=0, \quad\left[\mathbf{B}_{j k}, \mathbf{B}_{m k}\right]=0
$$

- Satisfy constraints

$$
\prod_{j} \mathbf{B}_{j k}=-\mathbb{1}, \quad \prod_{k} \mathbf{B}_{j, k}=\mathbb{1}
$$

- A \& B share entangled pairs

\mathbf{B}_{11}	\mathbf{B}_{12}	\mathbf{B}_{13}	$\mathbb{1}$
\mathbf{B}_{21}	\mathbf{B}_{22}	\mathbf{B}_{23}	$\mathbb{1}$
\mathbf{B}_{31}	\mathbf{B}_{32}	\mathbf{B}_{33}	$\mathbb{1}$
$-\mathbb{1}$	$-\mathbb{1}$	$-\mathbb{1}$	

Such tables exist
A \& B respond by measuring the binary \mathbf{B}_{jk}
Constraints guaranteed

Filling the table

Binaries as products of Pauli

- $\sigma_{\mu}=\left\{\sigma_{0}=\mathbb{1}, \sigma_{x}, \ldots, \sigma_{z}\right\}$
- $\sigma_{\mu}^{2}=\mathbb{1},\left\{\sigma_{j}, \sigma_{k}\right\}=0, j \neq k$
- Fill green square:
- Commuting in rows \& columns
- Complete by constraints
- Consistent at red square

$\sigma_{0} \otimes \sigma_{z}$	$\sigma_{x} \otimes \sigma_{0}$	$\sigma_{x} \otimes \sigma_{z}$
$\sigma_{z} \otimes \sigma_{0}$	$\sigma_{0} \otimes \sigma_{x}$	$\sigma_{z} \otimes \sigma_{x}$
$-\sigma_{z} \otimes \sigma_{z}$	$-\sigma_{x} \otimes \sigma_{x}$	$-\sigma_{y} \otimes \sigma_{y}$

Respond by measuring two qubits
 Parity constraint is automatic

Measuring commuting observables

- First row:

A measures σ_{x} of 1-st qubit
A measure σ_{z} of 2-nd qubit

- First columns:

B measure σ_{z} of 1-st qubit
B measure σ_{z} of 2-nd qubit

$\sigma_{0} \otimes \sigma_{z}$	$\sigma_{x} \otimes \sigma_{0}$	$\sigma_{x} \otimes \sigma_{z}$
$\sigma_{z} \otimes \sigma_{0}$	$\sigma_{0} \otimes \sigma_{x}$	$\sigma_{z} \otimes \sigma_{x}$
$-\sigma_{z} \otimes \sigma_{z}$	$-\sigma_{x} \otimes \sigma_{x}$	$-\sigma_{y} \otimes \sigma_{y}$

Third row (column) looks difficult
How to measure $\sigma_{x} \otimes \sigma_{z}$ with $\sigma_{z} \otimes \sigma_{x}$?

Quantum circuits

Quantum gates

- $\sigma_{z}|0\rangle=|0\rangle, \sigma_{z}|1\rangle=-|1\rangle$
- $H \sigma_{z}=\sigma_{x} H$
- $H=\frac{\sigma_{z}+\sigma_{x}}{\sqrt{2}}$
- $\mathrm{CNOT}=|0\rangle\langle 0| \otimes \sigma_{0}+|1\rangle\langle 1| \otimes \sigma_{x}$

Recording parity product on ancilla

B binary observable

- Binary observables

$$
\mathbf{B}=\mathbf{B}_{+}-\mathbf{B}_{-}, \underbrace{\mathbf{B}_{ \pm}^{2}=\mathbf{B}_{ \pm}}_{\text {projection }}
$$

- Unitary recording joint parity on ancilla

$$
\text { Unitary }=\underbrace{\left(\mathbf{B}_{+} \otimes \mathbf{B}_{+}^{\prime}+\mathbf{B}_{-} \otimes \mathbf{B}_{-}^{\prime}\right)}_{\text {positive }} \otimes \mathbb{1}+\underbrace{\left(\mathbf{B}_{+} \otimes \mathbf{B}_{-}^{\prime}+\mathbf{B}_{-} \otimes \mathbf{B}_{+}^{\prime}\right)}_{\text {negative }} \otimes \sigma_{x}
$$

$$
\mid \text { ancilla }\rangle=|0\rangle \delta_{\text {positive }}+|1\rangle \delta_{\text {negative }}
$$

No information on individual parities

Joint parity boxes

$z \otimes z$-parity

$$
\begin{aligned}
& (\alpha|0\rangle \otimes|1\rangle+\beta|1\rangle \otimes|0\rangle) \otimes|0\rangle \mapsto(\alpha|0\rangle \otimes|1\rangle+\beta|0\rangle \otimes|1\rangle) \otimes|1\rangle \\
& (\alpha|0\rangle \otimes|0\rangle+\beta|1\rangle \otimes|1\rangle) \otimes|0\rangle \mapsto(\alpha|0\rangle \otimes|0\rangle+\beta|1\rangle \otimes|1\rangle) \otimes|0\rangle
\end{aligned}
$$

Joint parity boxes

$z \otimes x$-parity

$$
\pi\left(\sigma_{z} \otimes \sigma_{z}\right)
$$

$\pi\left(\sigma_{x} \otimes \sigma_{z}\right)$
H intertwines σ_{x} and σ_{z}

$$
H \sigma_{x}=\sigma_{z} H
$$

Measuring ancilla projects on joint parity subspace

Measuring $\sigma_{x} \otimes \sigma_{z}$ and $\sigma_{z} \otimes \sigma_{x}$

Two ancillas and two parity boxes

What about the back action on $|\Psi\rangle$?

$$
\pi\left(\sigma_{x} \otimes \sigma_{z}\right) \pi\left(\sigma_{z} \otimes \sigma_{x}\right) \stackrel{?}{=} \pi\left(\sigma_{y} \otimes \sigma_{y}\right)
$$

Commuting measurement projects on a common basis

Constraint guaranteed

- $\sigma_{x} \otimes \sigma_{z}|\phi\rangle_{a b}=(-)^{a}|\phi\rangle_{a b}$
- $\sigma_{z} \otimes \sigma_{x}|\phi\rangle_{a b}=(-)^{b}|\phi\rangle_{a b}$
- $|\phi\rangle_{a b}$ joint parity basis.

Parity measurement selects parity eigenstate

$$
\rho_{A} \mapsto\left|\phi_{a b}\right\rangle\left\langle\phi_{a b}\right|
$$

$$
\begin{gathered}
\sigma_{y} \otimes \sigma_{y}|\phi\rangle_{a b}=(-)^{a+b}|\phi\rangle_{a b} \\
\pi\left(\sigma_{x} \otimes \sigma_{z}\right) \pi\left(\sigma_{z} \otimes \sigma_{x}\right)=\pi\left(\sigma_{y} \otimes \sigma_{y}\right)
\end{gathered}
$$

Entanglement: Correlations without communication

Guarantee agreement on the intersect

- On intersect both measure M
- e.g. $M=\sigma_{z} \otimes \sigma_{x}$
- $M \otimes M\left|\psi_{A B}\right\rangle=\underbrace{+}_{\text {agree }}\left|\psi_{A B}\right\rangle$
- Green square-Independent Eq.
- 4 stabilizers determine $\left|\psi_{A B}\right\rangle \in \mathbb{C}^{2^{4}}$

The entangles shared state

$\left|\psi_{A B}\right\rangle=\left|\Phi_{A B}\right\rangle \otimes\left|\Phi_{A B}\right\rangle$

- $M_{A} \otimes M_{B}\left|\psi_{A B}\right\rangle=\left|\psi_{A B}\right\rangle, \quad M=\sigma_{\mu} \otimes \sigma_{\nu}$
- $\left(\sigma_{\mu}^{A} \otimes \sigma_{\mu}^{B}\right) \otimes\left(\sigma_{\nu}^{A} \otimes \sigma_{\nu}^{B}\right)\left|\psi_{A B}\right\rangle=\left|\psi_{A B}\right\rangle, \quad \sigma_{\mu} \in\left\{\sigma_{0}=\mathbb{1}, \sigma_{x}, \sigma_{z}\right\}$
- Solution has product structure

$$
\left|\psi_{A B}\right\rangle=\left|\Phi_{A B}\right\rangle \otimes\left|\Phi_{A B}\right\rangle
$$

$$
\begin{gathered}
\sigma_{\mu}^{A} \otimes \sigma_{\mu}^{B}\left|\Phi_{A B}\right\rangle=\left|\Phi_{A B}\right\rangle \quad \sigma_{\mu} \in\left\{\mathbb{1}, \sigma_{x}, \sigma_{z}\right\} \\
2 \text { stabilizers determine }\left|\Phi_{A B}\right\rangle
\end{gathered}
$$

Bell state

Syndrome

- $\left|\Phi_{A B}\right\rangle \in \mathbb{C}^{2^{2}}$
- Stabilizers

$$
\left|\Phi_{A B}\right\rangle=\underbrace{\sigma_{x} \otimes \sigma_{x}}_{P_{A B}}\left|\Phi_{A B}\right\rangle=\underbrace{\sigma_{z} \otimes \sigma_{z}}_{P_{A B}^{\prime}}\left|\Phi_{A B}\right\rangle
$$

- \exists ! Bell state

$$
\left|\Phi_{A B}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}} \in \mathbb{C}^{4}
$$

$$
\begin{aligned}
& \text { Alice and Bob agree } \\
& \left(M_{A} \otimes M_{B}\right)\left|\Phi_{A B}\right\rangle=\left|\Phi_{A B}\right\rangle, \quad M_{A}=M_{B}=\sigma_{\mu} \otimes \sigma_{\nu}
\end{aligned}
$$

Alice state is Fully mixed

- Alice shares with Bob Bell states
- Partial Trace of Bell states is fully mixed
- Alice measures a fully Mixed
- Good enough to ensure Allice's parity constraint
- Alice's measurment prepare a random vector $\left|e_{j k \pm}\right\rangle$

$$
M_{j k}\left|e_{j k \pm}\right\rangle= \pm\left|e_{j k \pm}\right\rangle, \quad j=\text { fixed }, k=1,2
$$

Contextuality

- Every column gives consistent values
- Every row gives different consistent values
- Values depend on context
- Hidden variables are contextual

Concluding remarks

- Mermin and Peres invented the square to give a simple proof of Kochen Specker theorem
- Multiprover, Interactive proof systems (MP/*)
- Cleve, Hoyer, Toner and Watrous (2010)

