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Conformal field theories in 5 and 6 dimensions cannot be formulated
directly in terms of a Lagrangian, and must be studied indirectly by other

means. In both cases the theories are defined as UV limits of five-
dimensional (non-conformal) gauge theories. Non-perturbative tools

* | will not be considering 5 dimensional gauge theories
* Therefore no formulations of CFTs in 5 and 6 dimensions

* Instead | will (mainly) discuss 6 and 7 dimensional maximally
supersymmetric gauge theories that have nonconformal UV completions
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» Supersymmetric gauge theories can exist on Eucl. spheres. Why?
» Short answer: There exists a corresponding supergroup
» Examples:

N =2in4d: OSp(2|4)

N =1in5d: SU(4|1)

N =2in5d: SU(4|1,1) (noncompact R-symmetry group)
» Not coincidentally this is related to the existence of a

superconformal theory in one less dimension
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N =2in 4d: SU(2,2|2)



Introduction

» Supersymmetric gauge theories can exist on Eucl. spheres. Why?
» Short answer: There exists a corresponding supergroup

» Examples:
N =2in4d: OSp(2|4)
N =1in5d: SU(4|1)
N =2in5d: SU(4|1,1) (noncompact R-symmetry group)
» Not coincidentally this is related to the existence of a
superconformal theory in one less dimension
N =2in 3d: OSp(2/4,R)
N =1in4d: SU(2,2[1)
N =2in 4d: SU(2,2|2)
» Why not spheres in higher dimensions?
» Superconformal N'=1in 5d: F(4) D SO(2,5) x SU(2)
— SUSY M =1 on S% F(4) D SO(7) x SU(1,1)
> Superconformal A" =1 in 6d :05p(2, 6/2)
= SUSY A/ =1on S": OSp(8|1,1)



Introduction (continued)

We can study SYM on S® and S7 using localization —

>

Used for 4 and 5 dim SYM — We will give a more unified approach
in order to generalize to other dimensions (different approach than
Festuccia & Seiberg)

Use Pestun’s method by dimensionally reducing 10d SYM to the
desired dimension and modify the Lagrangian accordingly.

The theories naturally have 16 supersymmetries, but these can be
straightforwardly reduced for d < 5.

In doing this we will reduce to matrix models for 7d and 6d

They are surprisingly similar to the matrix models for 5d and 4d with
only a vector multiplet.

The 7d and 6d models also have interesting instanton structures.
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SUSY gauge theory in flat space
» 10-dimensional flat-space Lagrangian: Brink, Scherk & Schwarz
1
L==Tr (3FunF"N —wpv) .
&io
» Action is invariant under the supersymmetry transformations
6 A = “TuapV?, M=0,...9
oV = %F’V”V“ﬁFMN Gﬁ,
» Dimensionally reduce to d-dimensional Euclidean gauge theory.

A, p=1....d ¢ =A, 1=0,d+1,...9.

o

» Derivatives along compactified directions are zero,

Fur = [Dy, ¢1] Fiy = [¢1, 0]

» Scalars transform under vector rep. of SO(1,9 — d) R-symmetry in
flat Euclidean space. ¢g has wrong-sign kinetic term.

» d-dimensional coupling: g2, = g%/ Vi0—d-



The theory on spheres Biau 00

S with radius r.

v

v

d = 4: gauge theory is superconformal, = conformal mass term

5¢¢:g2i d*xv/—g ( Tr¢,¢’>

YM

v

d # 4: not conformal, but we include a similar term:

Spp = gf d9x\/— ( Tr¢7 0] ) , [I is summed over]

YM

A is the analog of the dimension for ¢;.

v

Need further terms to preserve the supersymmetry.



Conformal Killing spinors
» Supersymmetries defined by conformal Killing spinors (CKS)

Ve =T0Peg, V0 = Mg’ Tu=ep "

a2

v

Sphere metric:

1
dS2 = 7)(22CIX27
(1+37)

General solution

v

_ 1
L+ 27

€s and &; are arbitrary constant spinors =—> 32 independent CKS's.
Reduce to 16 spinors by imposing

€ = /8/\6, 6:% rH/\:_i\r,u /N\/\:]_
d+#4alsoneed NT = —A — A=T8r°
= gc - B/\ES

€ (es+x-Té),

v

» This construction can be used for spheres up to d = 7.



Modified SUSY Transformations

» SUSY transfs. need to be modified

(SeAM = GFM\U
«
SV = %FMNFMN+7’F“'¢/VH6

Split I into two groups

4(d — 4
aA:%, A=89.0, o=, i=d+1..7
» — Lagrangian transformation under SUSY:
g2 0L = T&r{ —(d — 8)FMET W — (d(2 — o) — 4)FVeT ), v
Cd (1o A pugr - (9o, drerv]
2 r2\ 4

» d =4: then oy = A; =1 = L is invariant.
» d # 4: Need further modifications for L.



Modifying the Lagrangian

» Add term:

1
Loy = gT(d — 4)BTrWAW  nonzero if AT = —A

YM
» Under SUSY:
g2y 0L = Tt [ —(d — &) FMET W — (d(2 — ay) — 4)Fer v
) d
- —d (1 — (o + ay)) FYer v — = (3das = A)) gl

godLlwy  +  —(d — 8)FP el AV — 2(d — 4)BFV el AW
—(d — 4)BF el AV + (d — 4)B%ad qs,e/\r'/\w} _

v

Using Killing spinor eq. first terms cancel

v

Using Killing spinor eqs. and ansatz for a; second terms cancel.

v

Third terms cancel for i j and i A combos. AB leftover piece:

—4(d — 4)BFBef 4g NV = 4(d — 4)B[¢*, $Blel CWepe

v

Fourth terms cancel if Ay = aa, A; =2(d —2)/d.



Complete Lagrangian on the sphere

» Add one more term to cancel the leftover piece:

Lagc = — L (d ) Tr([¢", 6516 )eanc -
gym 3

» Complete SUSY Lagrangian:
1 d—4 2(d -3
L = TTI‘ [(%FMNFMN - W[,D\U + (27)“1/\\]/ + %TI‘QSA(bA

&ym

(d 2)T S — —(d ) Te([¢", 9®16  )ensc| -

> R-symmetry explicitly breaks (d # 4,7):

SO(1,9 — d) — SO(1,2) x SO(7 — d)



d <5, 8 supersymmetries

v

Ifd <5 W+
'l/) — +r6789w X = 7r6789X

Vector multiplet: A,, 1, ¢', I =0,d +1...5
Hypermultiplet: x, ¢', 1 =6...9
e = +I%78¢ — reduces no. of SUSYs to 8.

Can relax the conditions on the additional terms in L.

vV v v Y



d <5, 8 supersymmetries

> U —
g oL = —(d—4)FMer, v —(d2—a)) — 4)F’”€I',,,¢
+ —d (1 3oy +ay)) Fer o — = ( day — Dp) ¢rel'sp

gLy +  —(d —4)F Bl Np —2(d — 4)ﬁF’”eI—M,/\w
—(d = 8)BFYel N + (d — 4)B%cd ¢reNT' Ay

> Vector scalars in last three terms = «; unchanged.
» Hypermultiplet scalars in third terms = modify with a; + ay
unchanged for certain /, J.
2(d—2) | 4iocymr

o = p + P |=6...9

+1(-1) 1=6,7(8,9)

» Extra terms canceled by adding to £
= (2 aim) oot o - (242 - i) i1t )
&vm r

» d =5, Maximal SUSY at m = i/(2r), matching Kim & Kim result

gl




d <5, 8 supersymmetries
>V, (d—4)58—im

1
Ly = ——imTrx\x

Eym
g%M oL = —(d- 4)F*“’/ZFWX —(d(2—ay) — 4)F'”€FIVX
N d
+ —d (1= 3(ay + ay)) FYerx — P (Yday — A)) el

gymOLyy  + imF’“’eﬁy/\X — 2imF el Ay
—imF el Ay + imBayd ¢reNT Ay .

» Previous «; cancel second and third terms.

» To cancel fourth terms

A,:f!(mr(mr—l—io,)—i—d(d;z)) /| =6,7,8,9.



Off-shell formulation

see also Fujitsuka et. al. '12

> Does not exist for all 16 SUSYs simultaneously
» Choose an € to pick a convenient vector field v™ = e Me.
» 7 bosonic pure-spinors v, and auxilliary fields K™, m=1...7.
™y, =0 vmT™Muy = 8pmv™ .
» Off-shell SUSY transformations:
5€AM = € FM\IJ,
o
0V = JTFune + S TGV, e+ KMo
S K™ = —v"(DPV — (d —4)BAV),

» «y are same as before. §.K™ = 0 on-shell.



Closure of algebra
» SUSY transfs. must close in the algebra

1 1 .
FA, = Ol V) = 5FM’Ver”rMNe - E50/04,¢>,er#r’/\e + K™l yvm

= = '/H+[DIMVI¢/]'

Lie derivative + gauge transf.
> Similiarly,

1 .
62¢) = —v'Dy ¢y — vy, 1] — Ealﬂd el e ¢,

Lie derivative + gauge transformation + R-symmetry
» And

1
4

1 " 1., e
=5(d = 3)B(T AT agW — S AT TA)T ;.

2V = —vDyW — S (Vv TV

Lie derivative + gauge transformation + R-symmetry
>

6§Km — —VMpyK™ — (,/[mruv#,/n])Kn +(d — 4)5(,/[m/\yn])Kn,



Off-shell Lagrangian

> Look for the Lagrangian invariant under these transformations.
1 m
Loux = 3 TrK" K
8ym

invariant under the internal SO(7) symmetry.

» Check terms linear in K™. Verify
SK(—WDV + (d — 4)BVAV) — 5. (K™Kp,) = 0.

Clearly true based on transformations, hence L¢ + L,ux is invariant.



Localization

» Localizing the off-shell action. Modify the path integral to
Z= /che*S*fQV,

Q is a fermionic symmetry generator. QV positive definite.
» Take t — oo so fields localize onto fixed points of V under Q.

» For @ choose 4., while

V= /ddx,ﬁ—gwafw.

5V = 3TN Fign e + ST §i 70V, e~ KM

Bosonic part of §.V

sV :/ddx,ﬁ—gﬂ((sewafwy

bos



Localization (continued)

» Many terms are zero. Left-over terms (assume v0 =1, v89 = Q)

1 1 Y
65‘“ 56“’ = EFMNFMN — ZFMNM’N’(GFMNM N 06)
Bdoy

4
2 42
—[K™ + 28(d — 3)do(VmNe)]? + b 4d > ()0’

J#0

+

Frun i (eN(T'TMVTO — FOr/rMN)e)

Fixed-point locus (after analytically continuing K™ and ¢):

v

K™ = —28(d — 3)po(vmhe),  dy=0 J#0.

FrynFMN has kinetic terms for ¢g, = ¢ constant on the sphere.
The rest of the fixed point conditions allow for instantons.
Substitute the fixed point into L, (zero instanton sector)

v

v

v

1 (d-1)(d-3)
Lp=—m
Eym

Tr(poco) -

r2



Localization (continued)

» Define dimensionless variable: ¢ = r¢g. Hence the action is

Stp = VaLlp = —

> Analytically continue o — io.

2
d:4 Sfp282iTr0'2

YM

1 3,2
d=6: Sp= "'

YM
d=3: S;p=0

47r2rd_45d_4

5 Tro?,
Eym
8 3
d=5: Sp= 7;rTrcr2
YMm
8 4.3
d=7: Sp= 7T2rTr02
Eym



One-loop determinants

» When restricting to the fixed point locus, need the 1-loop
fluctuations

v

1/t is an effective coupling:

Seff ~ t Q(VQV) . + Sg + ( 1-loop) + t~*(2-loop) + . ...
D
0 + Sk + ( 1-loop) + 0

v

Need to gauge fix:

Q = dc + OBrsT

v

Introduce Faddeev-Popov ghost fields ¢, €.
Odd d: Lgn = Q(cVAv'A, +EVFA,),

. Conlyto A, viA, =0.

c and v#A,, cancel each other out in the determinant.

= ¢ ghost only couples to v*A

v



Some cohomology (7d)

» Choose v/ =0, | #0 = v*v, = 1. v# gens. U(1) action G on S7.
— M = S"\G ~ CP.

> v, is a contact 1-form x, = Use to construct a two-form,

1. 1
= - rLD/\ = ——Wu,
Vit re A rw’
> viw,, =0and V[,w,\ =0

> w,, is the Kahler form in the 6 dimensional horiz. space L to v¥.

Uy =eyV, Tu = 2043 Wy, = viT,, =0.

q)p,l/)\ = %¢A(6r,u1/)\rA0€), — VNQS,U.V)\ =0
» Can show T, = ?uu + 'T‘wm,, w‘“"?‘m, =0
T . horizontal (2,0) + (0,2) forms
» &, horizontal (3,0) + (0, 3) form.



One-loop determinants: 7d
» Up to quadratic terms near the fixed point:
VU = =V, (L, + [¢po, ®])A” — %w/th(ﬁv + [¢o, '])cbl“j)\
Y [TW(2V“A” — 1v,0m) + avul\u}
» Combined SUSY and BRST transformations

QA, = V,, QV, = —(Ly + [¢o, o])A,
QP = Vo, QU= —(Ly + [0, e])Px
QT =Huw QH,, = —(Ly + [P0, o) Ty

Q¢ = b, Qb= —(Ly + [0, e])b

Qea: = efyv Qefy - »Cenz = *(»cv + [d)Ov .])eay Q= 01
T T
rarr N ©9 L0 Doo Do1 ©9 @6 Doo Do1 10 66
QLVQY) = (eg) (o 1)(010 Doo>(®’1>+(@1 Do Do J\0 2 )\ &,
Hence, determinant coming from [ Q(VQWV)

—1/2
detKerDm(ﬁv + [(150» '])
detCokeer (ﬁv + [¢Oa '])

Hz(¢o) = <



One-loop determinants: 7d (continued)
» Hence, determinant coming from f Q(VQEV)

—1/2
detKeer (‘Cv + [¢07 ']) /
detCokerD10 (ﬁv + [¢07 .])

» This can be computed using the Atiyah-Singer index theorem
» 2 fermionic (0,0) forms: w**T ., &
» 3 bosonic (1,0) and 3 (0,1) forms: A,
» 3 fermionic (2,0) and 3 (0,2) forms: T,
» 1 bosonic (3,0) and 1 (0,3) form: &,
» Index is the same as for Dolbeault complex twisted by a U(1) bundle

Hz(o) = <

Q(O’O) Dio Q (1 0)_)9(2 0) —)Q (3,0)
o) = [T 11+ (.00
BEN n#£0

» Similar to d =5 w/ vector multiplet (twisted Dolbeault on CP?)

Hsy (o H H n+ (B,0))t/2 Killén & Zabzine
BEN n#0



One-loop determinants: 6d

> Likewise, the d = 6 determinant is very similar to the d =4
determinant with a vector multiplet

Hs(o) = T[] TI(n+ (8,0))*"

BEN n#0

Hav(o) = [ TI(n+ (8.0))*" Pestun

BEN n#£0



Instantons: 6d
viy, + vi2 =1, v, = 0 at poles

S VoV =
(DH¢7 — %FAP(erM”POe))2 + EVIVIFF,
+cos? 10 (67 — 1) + Zcos? JO(FY)? + (1 - §sin? 10) FNF V)
sin? 10 (67 — §75)° + Zsin? J0(F5)? + (1 = § cos? 10) FS FS*)
+DppaDPH" + (VP Dppp + B ens)” + 3552 pa0”
+Dpp0 Do + (K™ + 6860(vmAe))? + [0, Sa]?

Dow = €l 0T = cos? 0w, +sin® 10wj,.

Closed form: Wer = COS? %0 wN_ —sin? %0 WS
_  pN+ N— | 1N N
F/LV - Fp,l/ + F/LV + Ef wuy FN,S:E — :l:*(FN,S:I:/\wN,S)

= Fob+F +i50),



Instantons: 6d

= ¢a = v"'F,, = 0 everywhere, ¢ constant K™ = —68¢po (" e).
fN = FN* = 0 except South pole, fS = F5* = 0 except North pole
— ¢7 =0 = Fy,(el,"%) =0

Allows point-like anti-instantons on north pole wrt wN
and point-like anti-instantons on south pole wrt wS.

Between poles need F = FN~ = F5— —
F=—x(FAQ), 0=FA®
where @ = 1(w" — w®). Then

tww=19o=0 = (0 spans 4d space

Bianchi identity — daxF=0

Solves YM eqgs. Extended anti-instantons transverse to 6 and v*.
Spans CP?. Contribution of little strings



Instantons: 6d

Can add the terms to the action
ia/Tr[F/\F]Aw+iﬁ/Tr[FAFAF]

Pt-like anti-instantons don't contribute to YM action nor « term (scaling)
Contribution from 3 term

iﬁ/Tr[F/\F/\F] =247%i B

» Extended anti-instantons contribute to YM action ~ r?/g2,, but
not to the o and 3 terms.

» No contribution from the a term because w is odd. Put another
way, there is no non-contractible 2-surface to wrap.



Instantons: 7d

Complete fixed point locus:

4
Km = —?¢0 (I/m/\ﬁ), DH¢0:0
Ff, = D,0,°
fr= HOun, O L
viF, =0
Vi Hopy = 0
Fro= u*(FfAw)
H = Do

» Ftis (2,0) plus (0,2) form.
» These eqs are the 7d lift of Hermitian Higgs-Yang-Mills system
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» We have given a uniform description of maximal SUSY gauge
theories on S9.

» This allows us to find the localized versions for 6d and 7d relatively
easily
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Discussion

» We have given a uniform description of maximal SUSY gauge
theories on S9.

» This allows us to find the localized versions for 6d and 7d relatively
easily

> We can use the d = 6 theory to explore little string theories, which
come from (1,1) gauge theories in six dimensions. d = 7 can explore
“little m-theory”.

» Wilson lines, etc.



Thank Youl



Other stuff



Matrix Models

v

The localized path integral reduces to

2, .d—4
/H dojexp <47Tr25d4 ZU?) H(a,- —0;)*H(o; — 0})?

2

r8ym i<j
> In the large-N limit this can be solved by saddle point
» Wick rotation, o; — io;

v

H(o; — 0j) needs to be regularized. = Redefinition of coupling



Matrix Models: 7d

» For d =7 (after regularization)

—logx* —log(H(ix)?) = Vin(x)
2
= %X3 + 2x%log(1 — e~2™) — log sinh?(mx)

11 2 . —27x 1. —2mx
| —|—;xL|2(e ) — ¥L|3(e )

» Saddle point equation:

o, = 2772 (1—(o; — aj)z) coth(mw(oi — o))

gYM JF#i

> plo) =153 68(c—0i), [plo)do =1, A=g?N/r® —

o= ][u ~ (o~ o') coth(m(o — o)) p(o")dor’



Matrix Models: 7d (continued)

> Can't solve the saddle-point equation exactly:

» Weak coupling:
Saddle point equation:

1671'40 N 2][ p(c’) do’

A o—o'

F ~ —N?log \ ‘




Matrix Models: 7d (continued)

> Can't solve the saddle-point equation exactly:

» Weak coupling:
Saddle point equation:

1671'40 ~ 2][ p(c’) do’
A o—do

F ~ —N*log A | |

» Strong coupling: Solve numerically
p(é) > As A — o0
p(c) — fixed distribution
» Free energy scales as N2
> Basically same behavior as
pure ' =1ind =5.

> At \ = oo,
“scaling” symmetry,

¢ — ¢y

50(1,2) — SO(2,3) O SO(1,1)xSO(1,2)




Cohomology: 6 dimensions

» 6d does not have a nonvanishing vector field
Sé
‘
v/ = cosb, v”vH:sin92. v
< g 2>

» Construct T, and &5
> In general

vET W #0, vE® =0



Cohomology: 6 dimensions

» 6d does not have a nonvanishing vector field

v/ = cosb, viy, = sin 62 .

» Construct T, and &5
> In general

vET W #0, vE® =0

» Except at the poles:
> Fermionic (2,0) and (0,2) forms and Kihler (1,1) on local C3
» Bosonic (3,0) and (0,3) forms
» Bosonic (1,0) and (0,1) forms from A,



Matrix Models: 6d

» Can't solve the saddle-point equation exactly, but analytic results at
strong coupling: Russo & Zarembo

» Weak coupling:
Saddle point equation:

327r30 ~ 2][ p(c’) do’
A o—o

» Strong coupling:
Pl

> As A — oo
p(c) — fixed distribution
» Free energy scales as 2.

» Basically same behavior as
/\/\ pure N =2ind =4




Negative couplings?

>

In d = 4 (Russo & Zarembo) and d = 5 (Nedelin) there can be a
negative coupling
Start with adjoint hypermultiplet with mass M:
1 1 N 1 1 N
8ot 8ym AT B 8&ym BT
Ford =5if 1/ < -1
1673
Aef

o~ —T ][(0 — o')?sign(o — o”))p(c’)do’

Taking two derivatives:

0= /: p(o)do — /z plo)do

) = 1o a)+ St a) — a2

Aeff

7r
F~—=N23
s Ve

We can do the samein d =7 and d = 6.
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