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⇤
I will not be considering 5 dimensional gauge theories

⇤ Therefore no formulations of CFTs in 5 and 6 dimensions

⇤ Instead I will (mainly) discuss 6 and 7 dimensional maximally
supersymmetric gauge theories that have nonconformal UV completions
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Introduction

I Supersymmetric gauge theories can exist on Eucl. spheres. Why?

I Short answer: There exists a corresponding supergroup

I Examples:

N = 2 in 4d: OSp(2|4)
N = 1 in 5d: SU(4|1)
N = 2 in 5d: SU(4|1, 1) (noncompact R-symmetry group)

I Not coincidentally this is related to the existence of a
superconformal theory in one less dimension

N = 2 in 3d: OSp(2|4,R)
N = 1 in 4d: SU(2, 2|1)
N = 2 in 4d: SU(2, 2|2)

I Why not spheres in higher dimensions?
I Superconformal N = 1 in 5d: F (4) � SO(2, 5)⇥ SU(2)

=) SUSY N = 1 on S6: F (4) � SO(7)⇥ SU(1, 1)
I Superconformal N = 1 in 6d :OSp(2, 6|2)

=) SUSY N = 1 on S7: OSp(8|1, 1)
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Introduction (continued)

We can study SYM on S6 and S7 using localization –

I Used for 4 and 5 dim SYM – We will give a more unified approach
in order to generalize to other dimensions (di↵erent approach than
Festuccia & Seiberg)

I Use Pestun’s method by dimensionally reducing 10d SYM to the
desired dimension and modify the Lagrangian accordingly.

I The theories naturally have 16 supersymmetries, but these can be
straightforwardly reduced for d  5.

I In doing this we will reduce to matrix models for 7d and 6d
They are surprisingly similar to the matrix models for 5d and 4d with
only a vector multiplet.

I The 7d and 6d models also have interesting instanton structures.
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SUSY gauge theory in flat space
I 10-dimensional flat-space Lagrangian: Brink, Scherk & Schwarz

L =
1

g2

10

Tr
�
1

2

FMNF
MN � /D 

�
.

I Action is invariant under the supersymmetry transformations

�✏AM = ✏↵ �M↵� 
� , M = 0, . . . 9

�✏ 
↵ = 1

2

�MN↵
�FMN ✏

� ,

I Dimensionally reduce to d-dimensional Euclidean gauge theory.

Aµ , µ = 1 . . . , d �I ⌘ AI , I = 0, d + 1, . . . 9 .

I Derivatives along compactified directions are zero,

FµI = [Dµ,�I ] FIJ = [�I ,�J ] .

I Scalars transform under vector rep. of SO(1, 9� d) R-symmetry in
flat Euclidean space. �

0

has wrong-sign kinetic term.
I d-dimensional coupling: g2

YM = g2

10

/V
10�d .



The theory on spheres Blau ’00

I Sd with radius r .

I d = 4: gauge theory is superconformal, =) conformal mass term

S�� =
1

g2

YM

Z
d4x

p
�g

✓
2

r2
Tr�I�

I

◆

I d 6= 4: not conformal, but we include a similar term:

S�� =
1

g2

YM

Z
ddx

p
�g

✓
d �I

2 r2
Tr�I�

I

◆
, [I is summed over]

�I is the analog of the dimension for �I .

I Need further terms to preserve the supersymmetry.



Conformal Killing spinors
I Supersymmetries defined by conformal Killing spinors (CKS)

rµ✏
↵ = �̃↵�µ ✏̃� , rµ✏̃↵ = � 1

4r2
�µ↵�✏

� . �µ = eµ̂µ�
µ̂

I Sphere metric:

ds2 =
1

(1 + x2

4r2 )
2

dx2 ,

I General solution

✏ =
1

(1 + x2

4r2 )
1/2

(✏s + x · � ✏̃c) ,

✏s and ✏̃c are arbitrary constant spinors =) 32 independent CKS’s.
I Reduce to 16 spinors by imposing

✏̃ = �⇤✏ , � = 1

2r �̃µ⇤ = �⇤̃�µ ⇤̃⇤ = 1

d 6= 4 also need ⇤T = �⇤ =) ⇤ = �8�̃9�0

=) ✏̃c = �⇤✏s

I This construction can be used for spheres up to d = 7.



Modified SUSY Transformations

I SUSY transfs. need to be modified

�✏AM = ✏ �M 

�✏ = 1

2

�MNFMN +
↵I

2
�µI�Irµ ✏

Split I into two groups

↵A =
4(d � 3)

d
, A = 8, 9, 0 , ↵i =

4

d
, i = d + 1, . . . 7

I =) Lagrangian transformation under SUSY:

g2

YM �L = Tr
h
� (d � 4)Fµ⌫ ✏̃�µ⌫ � (d(2� ↵I )� 4)F I⌫ ✏̃�I⌫ 

�d

✓
1� ↵I + ↵J

2

◆
F IJ ✏̃�IJ � d

r2

✓
d↵I

4
��I

◆
�I ✏�

I 
i
.

I d = 4: then ↵I = �I = 1 ) L is invariant.

I d 6= 4: Need further modifications for L.



Modifying the Lagrangian
I Add term:

L
  

=
1

g2

YM

(d � 4)�Tr ⇤ nonzero if ⇤T = �⇤

I Under SUSY:

g2

YM �L = Tr
h
� (d � 4)Fµ⌫ ✏̃�µ⌫ � (d(2� ↵I )� 4)F I⌫ ✏̃�I⌫ 

+ �d
�
1� 1

2

(↵I + ↵J)
�
F IJ ✏̃�IJ � d

r2
�
1

4

d↵I ��I

�
�I ✏�

I 

g2

YM�L  + �(d � 4)Fµ⌫�✏�̃µ⌫⇤ � 2(d � 4)�F I⌫✏�µI⇤ 

�(d � 4)�F IJ✏�IJ⇤ + (d � 4)�2↵Id �I ✏⇤�̃
I⇤ 

i
.

I Using Killing spinor eq. first terms cancel
I Using Killing spinor eqs. and ansatz for ↵I second terms cancel.
I Third terms cancel for i j and i A combos. AB leftover piece:

�4(d � 4)�FAB✏�̃AB⇤ = 4(d � 4)�[�A,�B ]✏�C "ABC ,

I Fourth terms cancel if �A = ↵A, �i = 2(d � 2)/d .



Complete Lagrangian on the sphere

I Add one more term to cancel the leftover piece:

LABC = � 1

g2

YM

2

3r
(d � 4)Tr([�A,�B ]�C )"ABC .

I Complete SUSY Lagrangian:

Lss =
1

g2

YM

Tr
h
( 1
2

FMNF
MN � /D +

(d � 4)

2r
 ⇤ +

2(d � 3)

r2
Tr�A�A

+
(d � 2)

r2
Tr�i�i �

2

3r
(d � 4)Tr([�A,�B ]�C )"ABC

i
.

I R-symmetry explicitly breaks (d 6= 4, 7):

SO(1, 9� d) ! SO(1, 2)⇥ SO(7� d)



d  5, 8 supersymmetries

I If d  5,  !  + �

 = +�6789 � = ��6789�

I Vector multiplet: Aµ,  , �I , I = 0, d + 1 . . . 5

I Hypermultiplet: �, �I , I = 6 . . . 9

I ✏ = +�6789✏, =) reduces no. of SUSYs to 8.

I Can relax the conditions on the additional terms in L.



d  5, 8 supersymmetries
I  !  

g2

YM �L = �(d � 4)Fµ⌫ ✏̃�µ⌫ � (d(2� ↵I )� 4)F I⌫ ✏̃�I⌫ 

+ �d
�
1� 1

2

(↵I + ↵J)
�
F IJ ✏̃�IJ � d

r2
�
1

4

d↵I ��I

�
�I ✏�

I 

g2

YM�L  + �(d � 4)Fµ⌫�✏�̃µ⌫⇤ � 2(d � 4)�F I⌫✏�µI⇤ 

�(d � 4)�F IJ✏�IJ⇤ + (d � 4)�2↵Id �I ✏⇤�̃
I⇤ 

I Vector scalars in last three terms =) ↵I unchanged.
I Hypermultiplet scalars in third terms =) modify with ↵I + ↵J

unchanged for certain I , J.

↵I =
2(d � 2)

d
+

4i�I m r

d
I = 6 . . . 9

�I = +1 (�1) I = 6, 7 (8, 9)

I Extra terms canceled by adding to L
1

g 2

YM

✓✓
2(d � 4)

r
+ 4i m

◆
Tr(�0[�6,�7])�

✓
2(d � 4)

r
� 4i m

◆
Tr(�0[�8,�9])

◆

I d = 5, Maximal SUSY at m = i/(2r), matching Kim & Kim result



d  5, 8 supersymmetries
I  ! �; (d � 4)� ! i m

L�� =
1

g2

YM

i mTr�⇤�

g2

YM �L = �(d � 4)Fµ⌫ ✏̃�µ⌫�/ � (d(2� ↵I )� 4)F I⌫ ✏̃�I⌫�

+ �d
�
1� 1

2

(↵I + ↵J)
�
F IJ ✏̃�IJ�� d

r2
�
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d↵I ��I

�
�I ✏�
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g2

YM�L�� + �imFµ⌫✏�̃µ⌫⇤�/ � 2imF I⌫✏�µI⇤�

�imF IJ✏�IJ⇤�+ im�↵Id �I ✏⇤�̃
I⇤� .

I Previous ↵I cancel second and third terms.

I To cancel fourth terms

�I =
2

d

✓
mr(mr + i�I ) +

d(d � 2)

4

◆
I = 6, 7, 8, 9 .



O↵-shell formulation

blank see also Fujitsuka et. al. ’12

I Does not exist for all 16 SUSYs simultaneously

I Choose an ✏ to pick a convenient vector field vM ⌘ ✏�M✏.

I 7 bosonic pure-spinors ⌫m and auxilliary fields Km, m=1. . . 7.

✏�M⌫m = 0 ⌫m�
M⌫n = �nmv

M .

I O↵-shell SUSY transformations:

�✏AM = ✏ �M ,

�✏ = 1

2

�MNFMN✏+
↵I

2
�µI�Irµ ✏+ Km⌫m

�✏K
m = �⌫m( /D � (d � 4)�⇤ ) ,

I ↵I are same as before. �✏Km = 0 on-shell.



Closure of algebra
I SUSY transfs. must close in the algebra

�2✏Aµ = �✏(✏�µ ) =
1

2
FMN✏�µ�MN✏�

1

2
�d↵I�I ✏�µ�̃

I⇤✏+ Km✏�µ⌫m

= �v⌫F⌫µ + [Dµ, v
I�I ] .

Lie derivative + gauge transf.
I Similiarly,

�2✏�I = �v⌫D⌫�I � [v J�J ,�I ]�
1

2
↵I�d ✏�̃IJ⇤✏ �

J ,

Lie derivative + gauge transformation + R-symmetry
I And

�2✏ = �vNDN � 1

4
(r

[µv⌫])�
µ⌫ 

�1

2
(d � 3)�(✏�̃AB⇤✏)�AB � 1

2
�(✏�̃ij⇤✏)�ij .

Lie derivative + gauge transformation + R-symmetry
I

�2✏K
m = �vMDMKm � (⌫[m�µrµ⌫

n])Kn + (d � 4)�(⌫[m⇤⌫n])Kn .



O↵-shell Lagrangian

I Look for the Lagrangian invariant under these transformations.

Laux = � 1

g2

YM

TrKmKm ,

invariant under the internal SO(7) symmetry.

I Check terms linear in Km. Verify

�K✏
�
� /D + (d � 4)� ⇤ 

�
� �✏(K

mKm) = 0 .

Clearly true based on transformations, hence Lss +Laux is invariant.



Localization
I Localizing the o↵-shell action. Modify the path integral to

Z =

Z
D�e�S�tQV ,

Q is a fermionic symmetry generator. QV positive definite.

I Take t ! 1 so fields localize onto fixed points of V under Q.

I For Q choose �✏, while

V =

Z
ddx

p
�g  �✏ .

�✏ = 1

2

�MNFMN�
0✏+

↵I

2
�µI�I�

0rµ ✏�Km�0⌫m .

Bosonic part of �✏V

�✏V

�����
bos

=

Z
ddx

p
�g Tr(�✏ �✏ ) .



Localization (continued)
I Many terms are zero. Left-over terms (assume v0 = 1, v8,9 = 0)

�✏ �✏ =
1

2
FMNF

MN � 1

4
FMNM0N0(✏�MNM0N0

0✏)

+
�d↵I

4
FMN�I (✏⇤(�̃

I �̃MN�0 � �̃0�I�MN)✏)

�[Km + 2�(d � 3)�
0

(⌫m⇤✏)]
2 +

�2d2

4

X

J 6=0

(↵J)
2�J�

J .

I Fixed-point locus (after analytically continuing Km and �
0

):

Km = �2�(d � 3)�
0

(⌫m⇤✏) , �J = 0 J 6= 0 .

I FMNFMN has kinetic terms for �
0

, ) �
0

constant on the sphere.

I The rest of the fixed point conditions allow for instantons.

I Substitute the fixed point into L, (zero instanton sector)

Lfp = � 1

g2

YM

(d � 1)(d � 3)

r2
Tr(�

0

�
0

) .



Localization (continued)

I Define dimensionless variable: � = r�
0

. Hence the action is

Sfp = VdLfp = �4⇡2rd�4Sd�4

g2

YM

Tr�2 ,

I Analytically continue � ! i �.

d = 4 : Sfp =
8⇡2

g2

YM

Tr�2 d = 5 : Sfp =
8⇡3r

g2

YM

Tr�2

d = 6 : Sfp =
16⇡3r2

g2

YM

Tr�2 d = 7 : Sfp =
8⇡4r3

g2

YM

Tr�2

d = 3 : Sfp = 0



One-loop determinants

I When restricting to the fixed point locus, need the 1-loop
fluctuations

I 1/t is an e↵ective coupling:

Se↵ ⇠ t Q( Q )
���
fp
+ Sfp + ( 1-loop) + t�1(2-loop) + . . .

0 + Sfp + ( 1-loop) + 0

I Need to gauge fix:

Q = �✏ + �BRST

I Introduce Faddeev-Popov ghost fields c , c̃ .

Odd d : Lgh = Q(cr2vµAµ + c̃rµÃµ) ,

=) c ghost only couples to vµAµ, c̃ only to Ãµ, vµÃµ = 0.

I c and vµAµ cancel each other out in the determinant.



Some cohomology (7d)

I Choose v I = 0, I 6= 0 ) vµvµ = 1. vµ gens. U(1) action G on S7.
=) M = S7\G ' CP3.

I vµ is a contact 1-form µ ) Use to construct a two-form,

r
[µ⌫] = �1

r
✏�̃µ⌫⇤✏ ⌘ �1

r
!µ⌫ ,

I vµ!µ⌫ = 0 and r
[µ!⌫�] = 0

I !µ⌫ is the Kähler form in the 6 dimensional horiz. space ? to vµ.

 M = ✏�M , ⌥µ⌫ = 1

2

✏�0⌫µ + 1

2

✏��⌫µ v� =) vµ⌥µ⌫ = 0 .

�µ⌫� = 1

2

�A(✏�µ⌫��
A0✏) , =) vµ�µ⌫� = 0

I Can show ⌥µ⌫ = ⌥̂µ⌫ + ⌥̃!µ⌫ , !µ�⌥̂�⌫ = 0
⌥̂µ⌫ horizontal (2, 0) + (0, 2) forms

I �µ⌫� horizontal (3, 0) + (0, 3) form.



One-loop determinants: 7d
I Up to quadratic terms near the fixed point:

 Q = � ⌫(Lv + [�
0

, •])A⌫ � 2

15

 µ⌫�(Lv + [�
0

, •])�µ⌫�

� 1

6

⌥µ⌫H
µ⌫ +

h
⌥µ⌫(2rµA⌫ � 1

3

r��
µ⌫�) + c̃rµÃµ

i

I Combined SUSY and BRST transformations

QAµ =  µ , Q µ = �(Lv + [�
0

, •])Aµ

Q�µ⌫� =  µ⌫� , Q µ⌫� = �(Lv + [�
0

, •])�µ⌫�

Q⌥µ⌫ = Hµ⌫ QHµ⌫ = �(Lv + [�
0

, •])⌥µ⌫ ,

Qc̃ = b , Qb = �(Lv + [�
0

, •])b
Q⇥↵ = ⇥0

↵, Q⇥
0
↵ = L⇥↵ ⌘ �(Lv + [�

0

, •])⇥↵, ↵ = 0, 1

Q( Q ) =
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Hence, determinant coming from
R
Q( Q )

H
7

(�
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) ⌘
 

detKerD
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(Lv + [�
0

, •])
detCokerD

10
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, •])
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One-loop determinants: 7d (continued)
I Hence, determinant coming from

R
Q( Q )

H
7

(�
0

) ⌘
 

detKerD
10

(Lv + [�
0

, •])
detCokerD

10

(Lv + [�
0

, •])

!�1/2

I This can be computed using the Atiyah-Singer index theorem
I 2 fermionic (0,0) forms: !µ⌫⌥µ⌫ , c̃
I 3 bosonic (1,0) and 3 (0,1) forms: Ãµ

I 3 fermionic (2,0) and 3 (0,2) forms: ⌥̂µ⌫

I 1 bosonic (3,0) and 1 (0,3) form: �µ⌫�

I Index is the same as for Dolbeault complex twisted by a U(1) bundle

⌦(0,0) D
10�! ⌦(1,0)�!⌦(2,0)�!⌦(3,0)

H
7

(�) =
Y

�2⇤

Y

n 6=0

(n + h�,�i)1+n2

I Similar to d = 5 w/ vector multiplet (twisted Dolbeault on CP2)

H
5V (�) =

Y

�2⇤

Y

n 6=0

(n + h�,�i)1+n2/2
Källén & Zabzine



One-loop determinants: 6d

I Likewise, the d = 6 determinant is very similar to the d = 4
determinant with a vector multiplet

H
6

(�) =
Y

�2⇤

Y

n 6=0

(n + h�,�i)3|n|

H
4,V (�) =

Y

�2⇤

Y

n 6=0

(n + h�,�i)2|n| Pestun



Instantons: 6d
vµvµ + v

7

2 = 1, vµ = 0 at poles

�✏ �✏ =
⇣
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7�⇢0✏)

⌘
2

+ 4

9

v�v�Fµ�F
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2 + 35�2�A�
A

+Dp�0D
p�

0

+ (Km + 6��
0

(⌫m⇤✏))
2 + [�

0

,�A]
2

!̃� ⌘ ✏���
789✏ = cos2 1

2

✓ !N
� + sin2 1

2

✓ !S
�

Closed form: !� = cos2 1

2

✓ !N
� � sin2 1

2

✓ !S
�

Fµ⌫ = FN+

µ⌫ + FN�
µ⌫ + 1

6

f N!N
µ⌫

= F S+
µ⌫ + F S�

µ⌫ + 1

6

f S!S
µ⌫

FN,S± = ±⇤(FN,S±^!N,S)



Instantons: 6d

=) �A = vµFµ⌫ = 0 everywhere, �
0

constant Km = �6��
0

(⌫m⇤✏).
f N = FN+ = 0 except South pole, f S = F S+ = 0 except North pole
=) �

7

= 0 =) F�⇢(✏�µ
7�⇢0✏) = 0

Allows point-like anti-instantons on north pole wrt !N

and point-like anti-instantons on south pole wrt !S.

Between poles need F = FN� = F S� =)

F = � ⇤ (F ^ !̃) , 0 = F ^ !̄

where !̄ ⌘ 1

2

(!N � !S). Then

◆v !̄ = ◆✓ !̄ = 0 ) !̄ spans 4d space

Bianchi identity =) dA ⇤ F = 0

Solves YM eqs. Extended anti-instantons transverse to ✓ and vµ.
Spans CP2. Contribution of little strings



Instantons: 6d

Can add the terms to the action

i ↵

Z
Tr[F ^ F ] ^ ! + i �

Z
Tr[F ^ F ^ F ]

Pt-like anti-instantons don’t contribute to YM action nor ↵ term (scaling)
Contribution from � term

i �

Z
Tr[F ^ F ^ F ] = 24⇡3i � Z

I Extended anti-instantons contribute to YM action ⇠ r2/g2

YM but
not to the ↵ and � terms.

I No contribution from the ↵ term because ! is odd. Put another
way, there is no non-contractible 2-surface to wrap.



Instantons: 7d

Complete fixed point locus:

Km = �4

r
�
0

(⌫m⇤✏) , Dµ�0 = 0

F̂+

µ⌫ = D��µ⌫
�

f = 1

6

[�µ⌫�,�
µ⌫
�]!

��

vµFµ⌫ = 0

v� H�µ⌫� = 0

F̂+ = ◆v ⇤ (F̂+ ^ !)
H ⌘ D�

I F̂+ is (2,0) plus (0,2) form.

I These eqs are the 7d lift of Hermitian Higgs-Yang-Mills system



Discussion

I We have given a uniform description of maximal SUSY gauge
theories on Sd .

I This allows us to find the localized versions for 6d and 7d relatively
easily

I We can use the d = 6 theory to explore little string theories, which
come from (1,1) gauge theories in six dimensions. d = 7 can explore
“little m-theory”.

I Wilson lines, etc.
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Thank You!



Other stu↵



Matrix Models

I The localized path integral reduces to

Z Y
d�i exp

✓
4⇡2rd�4Sd�4

r2g2

YM

X
�2

i

◆Y

i<j

(�i � �j)
2H(�i � �j)

2

I In the large-N limit this can be solved by saddle point

I Wick rotation, �i ! i�i
I H(�i � �j) needs to be regularized. =) Redefinition of coupling



Matrix Models: 7d
I For d = 7 (after regularization)

� log x2 � log(H(i x)2) = Vint(x)

=
2⇡

3
x3 + 2x2 log(1� e�2⇡x)� log sinh2(⇡x)

+
2

⇡
xLi

2

(e�2⇡x)� 1

⇡3

Li
3

(e�2⇡x)

I Saddle point equation:

8⇡4r3

g2

YM

�i = 2⇡
X

j 6=i

(1� (�i � �j)
2) coth(⇡(�i � �j))

I ⇢(�) = 1

N

P
�(� � �i ),

R
⇢(�)d� = 1, � = g2N/r3 =)

16⇡4

�
� = 2⇡ �

Z
(1� (� � �0)2) coth(⇡(� � �0))⇢(�0)d�0



Matrix Models: 7d (continued)

I Can’t solve the saddle-point equation exactly:

I Weak coupling:
Saddle point equation:

16⇡4

�
� ⇡ 2 �

Z
⇢(�0) d�0

� � �0

F ⇠ �N2 log �

I Strong coupling: Solve numerically
I As � ! 1

⇢(�) ! fixed distribution
I Free energy scales as N2.
I Basically same behavior as

pure N = 1 in d = 5.
I At � = 1,

“scaling” symmetry,
�I ! e��I

SO(1, 2) ! SO(2, 3) � SO(1, 1)⇥SO(1, 2)



Matrix Models: 7d (continued)

I Can’t solve the saddle-point equation exactly:
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Saddle point equation:

16⇡4

�
� ⇡ 2 �

Z
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F ⇠ �N2 log �

I Strong coupling: Solve numerically
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⇢(�) ! fixed distribution
I Free energy scales as N2.
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“scaling” symmetry,
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SO(1, 2) ! SO(2, 3) � SO(1, 1)⇥SO(1, 2)



Cohomology: 6 dimensions
I 6d does not have a nonvanishing vector field

v7 = cos ✓ , vµvµ = sin ✓2 .

I Construct ⌥µ⌫ and �µ⌫�

I In general

vµ⌥µ⌫ 6= 0 , vµ�µ⌫� = 0

I Except at the poles:
I Fermionic (2,0) and (0,2) forms and Kähler (1,1) on local C 3

I Bosonic (3,0) and (0,3) forms
I Bosonic (1,0) and (0,1) forms from Aµ
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Matrix Models: 6d
I Can’t solve the saddle-point equation exactly, but analytic results at

strong coupling: Russo & Zarembo

I Weak coupling:
Saddle point equation:

32⇡3

�
� ⇡ 2 �

Z
⇢(�0) d�0

� � �0

I Strong coupling:

I As � ! 1
⇢(�) ! fixed distribution

I Free energy scales as N2.
I Basically same behavior as

pure N = 2 in d = 4.



Negative couplings?
I In d = 4 (Russo & Zarembo) and d = 5 (Nedelin) there can be a

negative coupling
Start with adjoint hypermultiplet with mass M:

d = 4 :
1

g2

e↵

=
1

g2

YM

� N

4⇡2

log(Mr); d = 4 :
1

g2

e↵

=
1

g2

YM

� N

8⇡2

M

I For d = 5 if 1/�e↵ ⌧ �1

16⇡3

�e↵
� ⇡ �⇡ �

Z
(� � �0)2sign(� � �0))⇢(�0)d�0

I Taking two derivatives:

0 =

Z a

�
⇢(�)d� �

Z �

�a

⇢(�)d�

=) ⇢(�) = 1

2

(�(� � a) + �(� + a)) =) a = �32⇡2

�e↵

F ⇡ �⇡
3
N2a3

I We can do the same in d = 7 and d = 6.
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