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Motivation
5d QFTs are interesting! 

Localization allows exact observables to be computed - partition 
functions and Wilson loops 

Applied to 5d theories on many curved manifolds 

Through gauge/gravity correspondence it’s natural to try to 
seek gravity duals to the field theory side 

Opens up further tests of AdS/CFT duality 

Not many explicit tests of CFT5/AdS6 correspondence 

Describe study of solutions to Euclidean 6d Romans SUGRA. 
Aim of this is to compute observables of interest in gauge/gravity 
duality
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G-structures
Classifying solutions to SUGRA studied using G-structures 

A G-structure is a reduction of the frame bundle group Gl(n) to 
a subgroup G 

Equivalent to the existence of nowhere vanishing tensors 

SUSY conditions translate into differential equations on various      
p-forms 

Differential equations easier to handle - not matrix eqns 

Provides the general form of the solution in terms of the         
G-structure data



Motivation 2
Much interest in studying rigid SUSY on Riemannian manifolds 

Finding rigid SUSY backgrounds originally an ad-hoc process 

Systematic method - “rigid limit” of SUGRA [Festuccia,Seiberg] 

Also holographic starting point - backgrounds arise as a 
conformal boundary of some bulk gauged supergravity solution 

General SUSY preserving backgrounds have been studied for 3d 
and 4d by both “rigid limit” and holographic approaches 
[Dumitrescu,Festuccia,Seiberg][Klare,Tomasiello,Zaffaroni] 

“Rigid limit” of 5d Poincare SUGRA studied [Pan][Imamura,Matsuno] 

See also talks of Diego and Johannes!

r✏+ a · �✏ = 0 , M✏ = 0
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CFT5/AdS6



5d theories with gravity duals
A class of 5d N = 1 SCFTs can be engineered from a system of 
N  D4-branes and Nf  D8s in presence of orientifold planes [Seiberg] 

Specifically, Sp(N) gauge group with Nf  matter fields in the 
fundamental and single hypermultiplet in the anti-symmetric rep 

System is expected to have large N description in massive IIA 
supergravity with near horizon geometry M6 ×w S

4    
[Ferrara,Kehagias,Partouche,Zaffaroni][Brandhuber,Oz] 

Also quiver gauge theories with dual description in massive IIA 
on M6 ×w S

4/     [Bergman,Rodriguez-Gomez]    

In order to find dual supergravity solutions it is natural to use 
6d Romans F(4) gauged SUGRA [Romans] 

This is a consistent truncation of massive IIA SUGRA on S4       
to six dimensions [Cvetic,Lu,Pope] 

Round S5/dual AdS6 tested [Jafferis,Pufu][Assel,Estes,Yamazaki]
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Romans F(4) SUGRA
Bosonic field content is 

metric 

dilaton   , but we use scalar  

2-form potential B with field strength H = dB 

1-form potential A with field strength  

SU(2) potential Ai (i = 1,2,3) with  

SUSY preserved if non-trivial SU(2) spinor doublet     satisfies
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Solutions to Romans 
SUGRA



Solutions to Romans
Consider only symplectic-Majorana spinors: 

Make life simpler: set A = 0, g = 1 and only turn on A   = A3 

When all fields are real except B, which is pure imaginary, then 
SUSY conditions for     are simply charge conjugates of  

Can form  

Then SUSY conditions give d(Xs) = −i(Xs)A.       
Integrability: F = dA = 0 unless s = 0. Choosing s = 0 allows    
[Gauntlett,Martelli,Sparks,Waldram] 

Here          are two orthonormal chiral spinors 

Note           related:   
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Solutions to Romans
        together define a canonical U(2) structure specified by    
real 1-forms K1,K2, a real 2-form J , and a complex 2-form Ω 

The 9 possible non-scalar    bilinears are related to (K1,K2,J , Ω) 

Can show K is a Killing 1-form, dual,           , is Killing vector 

Allows us to introduce a local coordinate    with           and  

Romans SUSY conditions applied to remaining bilinears imply 
differential equations on U(2) structure   

Can show SUSY conditions + EOM are equivalent to 
differential equations + iK(EB)
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Solutions to Romans
Further all U(2) and SUGRA fields are annihilated by          ,            
which generates symmetry of full solution 

Partially solve matter fields 

from which 

Can complete K1,K2 to an orthonormal frame
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Applications 
1. Squashed SE solutions



Squashed SE solutions
Can’t solve general equations so make additional assumptions 

Constant r hypersurface is a squashed Sasaki-Einstein manifold 

Comparing with general U(2) structure metric and fields gives 

and
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Squashed SE solutions
Take                          . Parametrization inv, free choice 

Substituting into U(2) equations and additional flux component 
gives 6 coupled ODEs for (X,S,     ,p, q). Still too hard! 

Remarkably all KE metric information drops out 

Take KE=      . Have constructed 2-parameter family of      
1/4-BPS solutions as series expansions around r = 1 and AdS6   
[Alday,Fluder,Matte-Gregory,PR,Sparks] 

Can compute gravity free energy for generic squashed SE using 
holographically renormalised Romans SUGRA    
[Alday,Fluder,Matte-Gregory,PR,Sparks] 

Volume is unsquashed SE, Fgravity independent of f0, s
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Squashed SE solutions
Want to compare Fgravity to large N field theory computation 

Exact perturbative partition function of arbitrary N = 1 gauge 
theories on toric SE manifolds already computed 
[Qiu,Tizzano,Winding,Zabzine]  

Uses generalization of triple sine function, helpfully asymptotics 
of this function also given by [Qiu,Tizzano,Winding,Zabzine]  

Tune to the class of Sp(N) gauge theories with AdS6 duals 

Use standard saddle point technique [Herzog,Klebanov,Pufu,Tesileanu] 

Agrees with gravity computation as GN =
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Applications 
2. Wilson loop duals



Wilson loop duals
Can compute regularised string action dual to Wilson loops for 
any Romans solution with ball topology and U(1)3 symmetry 

Fundamental string sits at north pole of internal S4 and wraps 
K1−K2 direction. Boundary Wilson loop wraps orbit of  

Regularised action is [Alday,Fluder,Matte-Gregory,PR,Sparks]      

From general Romans U(2) eqns find  

String action reduces to
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Wilson loops
For solution with ball topology and U(1)3 symmetry 

Here                          and     are     periodic coordinates 

Again this follows for U(2) structure equations 

Hence for a Wilson loop wrapping the     circle
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Applications 
3. 5d background geometry & Lagrangians



AlAdS Solutions
Asymptotically locally AdS solutions admit a radial coord r in 
which fields have a series expansion [Fefferman,Graham] 

The 6d spin connection expands as 

Non-metric expansions introduce 5d fields X2, a, b, A
(0) 

Solve r direction bulk KSE: 

6d spinor bilinears
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AlAdS Solutions
Expanding the non-r  direction bulk KSE leads to 

with f = da 

Bulk dilatino equation gives
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Setup
What constraints do 5d SUSY conditions for          place on 
(M5,g) and background fields                                

Take                   and          on M5, we can construct bilinear 
forms 

This defines a 5d global U(2)-structure 

Introduce a local orthonormal frame   

By Fierz       defines an almost contact structure on M5   
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Differential conditions
The 1-form                                is a conformal Killing 1-form 

The 5d KSEs and dilatino imply
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Solving
After a suitable gauge choice for a, find                  on 

Exception 

Convenient to impose   

Then introduce local coordinate    through 

As    is nowhere zero its orbits define a foliation of M5   

Dual Killing 1-form is    

5d metric takes the form  

4d metric is almost Hermitian with J it’s fundamental 2-form
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Solving
Two scalar differential equations give 

Whilst d(SK1) gives  

or  

d(SK2) gives no new information 

d(SJ) identifies 

Finally d(S    ) gives 

Implies the almost complex structure is integrable i.e. complex 
structure
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Solving
This defines a transversely holomorphic foliation - odd 
dimension equivalent of complex structure 

The transverse metric is Hermitian 

Can introduce local coords               so that 

Can define 

Background fields are then
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Solving
Given the differential equations hold, the SUSY conditions are 
satisfied provided  

KSE + dilatino are equivalent to the form differential conditions 

Everything determined in terms of the almost contact          
one-form   , the Hermitian metric and functions S ,
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Subclasses
Product metrics: 

Set          and S = 1:                         or 

Here metric on M4 is any Hermitian manifold 

Circle bundle over Riemann surfaces:  

Fibre over only one RS:             , where M3 is a Siefert 
manifold   

If              then transverse space is locally conformally Kahler 

When          , we get 4d Kahler metric 

For            and                      get conformally Sasakian 

Sasaki-Einstein are a further subclass (S = 1) 

Do find conformally flat S1 × S4 of [Kim,Kim,Lee] for which           
S ≠ const (cf [Pini,Rodriguez-Gomez,Schmude])

⇢ = 0 M5 = R⇥M4 M5 = S1 ⇥M4
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SUSY gauge theories
Want to build N = 1 SUSY gauge theories on our backgrounds 

Think of their Lagrangians as being the result of adding a 
relevant operator in the SCFT and flowing to the IR 

We reinstate the full SU(2) R-symmetry 

These are constructed from vector and hypermultiplets 

The 5d off-shell vector multiplet consists of                     

In 5d an off-shell hypermultiplet does not close unless there are 
an infinite number of auxiliary fields (Grassmann odd spinors) 

A collection of r on-shell hypermultiplets consists of              
with A = 1,…,2r 

They are in an arbitrary representation of the gauge group and 
are coupled to the vector multiplet
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SUSY algebra
Scaling dimensions/Lorentz covariance fix the form of the 
SUSYs transformations to be 

These SUSY transformations close onto
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HM Lagrangian
Closure on the off-shell hyper fermion gives 

We get the bosonic EOM for free by SUSY 

Integrate the EOM to find 
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VM Lagrangian
The vector multiplet action is determined by the prepotential 

To find the cubic part in our backgrounds start from known flat 
space Lagrangian and use Noether method 

A long time later find Lcubic 

Depends on dabc / Tr(T(aTbTc)) which vanishes for Sp(N) 

Lcubic is not completely useless, can use it to find LYM  

Here V(1) is a constant SUSY preserving vector superfield

F (V) = Tr
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VM Lagrangian
Choose                         then V(1) preserves SUSY iff  

Here we’ve used  

Need to find        and A(1) with F (1) = dA(1) 

Two candidate 1-forms from the geometry: A(1) = {SK1, SK2} 

We know d(SK1) and d(SK2) so can compare against    

Choosing A(1) = SK2 doesn’t work   

But A(1) = SK1 does when   
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VM Lagrangian
This leads to 

where recall            , X2 have complicated expressions in terms 
of the background geometry and 
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Summary and outlook



Summary
Shown that SUSY solutions to 6d Romans are in 1-to-1 
correspondence with differential conditions on a U(2) structure 

The differential conditions allow us to deduce generic 1/4-BPS 
squashed SE boundary solution 

Successfully compared gravity side to large N field theory 

Also Wilson loops dual for rather general solutions 

The 6d U(2) structure reduces to a U(2) structure on a 5d 
conformal boundary 

Found the general SUSY preserving 5d N = 1 backgrounds from 
holography 

The 5-manifold preserves some SUSY iff it is equipped with a 
CKV which generates a THF 

All the background fields are determined except ↵, S



 and outlook
The class of gravity solutions with                 is non-empty. 
Can we analyse this case too         

Are all 5d N = 1 backgrounds accounted for? 

Rigid limit “standard” conformal Weyl multiplet 
[Pini,Rodriguez-Gomez,Schmude] and related gauge fixed Poincare 
SUGRA [Pan][Imamura,Matsuno]   

9 a second inequivalent (off-shell) “dilaton” Weyl multiplet    
[Bergshoeff,Cucu,Derix,de Wit,Halbersma,van Proeyen] 

What can we say about background dependence of 5d partition 
functions? 

Locally all deformations of [Imamura,Matsuno] backgrounds are 
Q-exact     

Given 3d/4d results and our 5d geometry it’s natural to 
conjecture that only the THF enters

s ⌘ ✏T✏ 6= 0



Thank you


