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5d gauge theories are naively non-renormalizable 

For SUSY th. one can compute the exact effective 
action on the Coulomb branch 

In view of it, surprisingly sometimes one can send the 
bare coupling to infinity and have a sensible theory with 
no scale (other than the Coulomb branch modulus, of 
course)



Therefore it is natural to think of 5d theories starting from a 
fixed point and considering the flows emanating from its 
deformations 

In general such fixed point theory can be something very 
complicated (non-lagrangian) 

Since                       one such mass deformation is in 
particular turning on a Maxwell kinetic term (leading to a 
gauge theory)

For instance: take the rank 1 fixed point theory with 
global SU(2) symmetry known as the E1 theory 

Upon (positive) mass deformation it flows to a 
conventional SU(2) gauge theory 

* what are their properties? where can we define them?



Upon deformation to a gauge theory we have a lagrangian 
description (easy). However not always possible! 

In the gauge th. there is a topological       current                
whose electrically charged objects are instantons (particles!) 

This current is many times enhanced in the fixed point 
theory

j ⇠ ?F ^ F

Turning it the other way around: the fixed point theory 
has a certain symmetry broken by the mass 
deformation

* when can we do it?

* can one understand properties of these “exotic 
symmetries” from the gauge theory deformation?
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Putting fixed point theories 
on arbitrary backgrounds
It is interesting to consider fixed point theories on 
arbitrary backgrounds 

A natural way to do this is to couple the theory to (off-
shell) SUGRA, find the SUSY backgrounds and then 
freeze out gravity dynamics

             and the index 

     and the partition function 

relations to other dimensions, AGT-
like…

Spoiler alert: see Johannes’ talk!



Since we are after 5d SCFT’s it is natural to use 5d 
superconformal gravity 

The system to consider is then SUGRA+SCFT off-shell. 
Then the SUGRA sector can be considered alone 
providing, after freezing, SUSY backgrounds for the 
SCFT sector 

The 5d Weyl multiplet contains



The vanishing of the relevant SUSY variations leads to 
(we already substituded the superconformal spinor) 

In order to find all SUSY backgrounds we need to find all 
solutions to these equations 

Note that with the spinor we can form 

of R × S4 relevant for the index computation of [5] and the S5 relevant for the partition
function computation of [2, 3]. We finish with some conclusions in section 7.

Note added: While this work was in its final stages we received [22], which has a
substantial overlap with our results.

2 Five-dimensional conformal supergravity

Let us begin by reviewing the five-dimensional, N = 2 conformal supergravity of [15, 16]2.
The theory has SU(2)R R-symmetry. The Weyl multiplet contains the vielbein eaµ, the

SU(2)R connection V (ij)
µ , an antisymmetric tensor Tµν , a scalar D, the gravitino ψi

µ and
the dilatino χi. Our conventions are summarised in appendix A.

The supersymmetry variations of the gravitino and dilatino are

δψi
µ = Dµε

i + ıγ · Tγµεi − ıγµη
i, (1)

δχi =
1

4
εiD − 1

64
γ · R̂ij(V )εj +

ı

8
γµν /∇Tµνε

i − ı

8
γµ∇νTµνε

i − 1

4
γκλµνTκλTµνε

i

+
1

6
T 2εi +

1

4
γ · Tηi. (2)

Up to terms O(ψµ,χi),

Dµε
i = ∂µε

i +
1

4
ωab
µ γabε

i +
1

2
bµε

i − V ij
µ εj , (3)

R̂ij
µν(V ) = dV ij

µν − 2V k(i
[µ V j)

ν]k . (4)

In what follows we will set bµ to zero.
As usual, taking the γ-trace of the gravitino equation allows to solve for the supercon-

formal parameters as ηi = − ı
5
/Dεi + 1

5T · γεi. Hence, we can rewrite the equations arising
from the gravitino and dilatino as

0 = Dµε
i − 1

4
γµνDνεi + ıγµκλT

κλεi − 3ıTµνγ
νεi, (5)

0 =
1

128
εi(32D +R) +

1

15
TµνT

µνεi +
1

8
DµDµε

i +
3ı

40
γκλµT

κλDµεi +
11ı

40
γµTµνDνεi

+
ı

4
γµκλ∇µT κλεi +

ı

2
γµ∇νTµνε

i − 1

5
γκλµνTκλTµνε

i. (6)

Here, R is the Ricci scalar and the rewriting of the dilatino equation uses the gravitino
equation. One could also rewrite the latter using /D2

as in [24], yet we found the above
formulation to be more economical in this case.

2A word on notation is in order here. We stress that we are discussing minimal supersymmetry in five
dimensions.
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It will be useful to parametrize the covariant derivatives with 
intrinsic torsions 

One can see that the gravitino eq. is solved by (cf. Johannes’ 
talk!) 

In addition 

This implies the parametrization

One can see this by considering the transformation v !→ −v. In addition, we define
the operator Πµ

ν = δµν − s−2vµvν which projects onto the horizontal space. A number of
additional useful identities involving Θij are given in appendix A.

Next, we parametrize the covariant derivative of the supersymmetry spinor using in-
trinsic torsions as in [19],

∇µε
i ≡ Pµνγ

νεi +Qij
µ εj . (10)

Here, Pµν is a two-tensor while Qij
µ is symmetric in its SU(2)R indices. Rewriting the

torsions in terms of the supersymmetry spinor one finds

sPµν = εiγν∇µεi =
1

2
∇µvν , sQij

µ = 2ε(i∇µε
j). (11)

3.1 The gravitino equation

We now turn to the study of generic solutions of (5) and (6) using the intrinsic torsions.
The reader interested in intermediate results and some technical details might want to
consult appendix B. To begin, substituting (10) and contracting with εiγκ as well as εj and
symmetrizing in i, j one finds that (5) is equivalent to

0 =
5

4
s

(

P(µν) −
1

5
gµνP

λ
λ

)

+
3

4
s
(

P[µν] − 4ıTµν

)

+
1

4
εµνκλρ(P

[κλ] − 4ıT κλ)vρ

+
1

8
εµνρστ (Q− V )ρijΘστ

ij , (12)

0 =
1

2
s(Q− V )ijµ +

1

4
(Q− V )ν(jkΘ

i)k
µν +

1

8
εµκλστ (P − 4ıT )κλΘijστ . (13)

Clearly, the symmetric part in (12) has to vanish independently; so we find

P(µν) =
1

5
gµνP

λ
λ. (14)

This implies that v is a conformal Killing vector as can be seen using (11).
By contracting the two remaining equations with vµ, one finds

0 = 3svµ(P − 4ıT )[µν] − sΘij
νµ(Q− V )µij, (15)

0 = 2svµ(Q− V )ijµ − sΘij
µν(P − 4ıT )µν . (16)

Projecting (12) on the horizontal space, we find that Π(P − 4ıT ) is anti self-dual.

0 = (P − 4ıT )+. (17)

Contracting (16) with Θijκλ and using (66) gives us the horizontal, self-dual part.

(P − 4ıT )− = s−2Θijıv(Q− V )ij . (18)
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By now we have equations for the self-dual, anti self-dual and vertical components of
(P − 4ıT )[µν], which means that all components of this two-form are determined. Putting
everything together, we find

s2(P − 4ıT )[µν] =
1

3

[

(v ∧Θij)µνρ + 2Θij
µνvρ

]

(Q− V )ρij. (19)

The only equation we have not considered so far is the horizontal projection of (13).
After using (67), (15) and (16) this simplifies to

sΠ ν
µ (Q− V ) i

ν j = −1

2
[(Q− V )ν ,Θµν ]

i
j . (20)

In summary, the gravitino is solved by (19) and (20).
Note that one can solve (20) by brute force after picking explicit Dirac matrices. One

finds that the equation leaves seven components of (Q− V ) unconstrained. Three of these
have to be parallel to v as they do not enter in (20). This suggests that it is possible
to package the seven missing components into a triplet ∆ij (three components) and a
horizontal vector W µ (four) and parametrize a generic solution of the gravitino equation
as

(Q− V )ijµ = s−1
(

vµ∆
ij +W λΘij

λµ

)

s.t. v(W ) = 0,∆ij = ∆ji. (21)

Using (67) one can verify that (21) satisfies (20). The above implies that

Tµν =
ı

4

(

s−1Θij
µν∆

ij + s−1v[µWν] − P[µν]

)

. (22)

3.2 The dilatino equation

We finally turn to the dilatino equation (6). To begin, we note that between ∆ij ,Wµ, D
there are eight unconstrained functions remaining while the dilatino equation provides
eight constraints. We can thus expect that there will be no further constraints on the
geometry. In this respect, similarly to [24], supersymmetry is preserved as long as the
manifold supports a conformal Killing vector v.

In what follows we will need to deal with terms involving derivatives of the spinor
bilinears (7). To do so we use the identities

∇µs = 2Pµνv
ν, (23)

∇µvν = 2sPµν , (24)

∇µΘ
ij
κλ = 3!s−1Θij

[κλvρ]P
ρ

µ − 2Θk(i
κλQ

j)
µk, (25)

∇[λPµν] = −s−1P[µν∇λ]s. (26)

Contracting (6) with εj and symmetrizing over the SU(2)R indices i, j one finds

0 =
1

8
ε(iDµDµε

j) +
3ı

40
ε(iγκλµT

κλDµεj) +
11ı

40
ε(iγµTµνDνεj)

+
ı

4
ε(iγκλµε

j)∇µT κλ. (27)
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It follows that v must in general be a confor-

mal Killing vector. Only if the TrP = 0 v
becomes actual Killing.



In turn, the dilatino eq. (much harder) is, at the end of the 
day, solved by (cf. Johannes’ talk!) 

At least locally this can be solved by going to a frame where 
the vector is Killing (and not only conformal Killing) where 

These equations completely characterize a generic solution 
to 5d conformal SUGRA: characterize a generic 
background where to put a 5d SCFT

Substituting (21) and (22) one finds after a lengthy calculation4

£v∆
i
j = −2

5
sP µ

µ∆
i
j − [ιvQ + P [µν]Θµν ,∆]ij. (28)

Contracting (6) with −εiγµ one obtains

0 = vµ

(

32D +R

128
+

1

15
TµνT

µν

)

+
1

8
εiγµDνDνεi +

3ı

40
εiγµγκλνT

κλDνεi

+
11ı

40
εiγµγ

κTκλDλεi +
ı

4
ε νκλσ
µ vσ∇νTκλ +

ıs

2
∇νTµν −

s

5
ε κλστ
µ TκλTστ . (29)

The vertical component of this fixes the scalar D.

0 = 480sD + 15sR + 48s(P µ
µ)

2 − 130sW 2 + 60εκλµνρP
[κλ]P [µν]vρ − 160s∆ij∆ij

+100P[µν](sP
[µν] − 2vµW ν)− 200P [µν]Θij

µν∆ij + 48vµ∇µP
ρ
ρ − 120s∇µWµ. (30)

The horizontal part of (29) yields a differential equation for W

£vWκ =
1

50
Π λ

κ (3s2P µ
µWλ − 34P ρ

ρP[λµ]v
µ − 20s∇λP

ρ
ρ). (31)

Note that the left hand side is horizontal since ιv£vW = ιvιvdW = 0.
Similar to the discussion in [24], we note that one can always solve (28) and (31) locally.

Moreover, after a Weyl transformation to a frame where v is not only conformal Killing
yet actually Killing, that is, setting P µ

µ = 0, both equations simplify considerably. All the
source terms in the latter vanish which is now solved by W = 0 while the former becomes
purely algebraic,

0 = [ιvQ+ P [µν]Θµν ,∆]ij , (32)

and is solved by ∆ = s−1f(ιvQ + P [µν]Θµν) for a generic, possibly vanishing, function f
as long as £vf = 0. The factor s−1 is simply included here to render ∆ invariant under
εi → λεi for λ ∈ C.

4 Yang-Mills theories from conformal supergravity

The solutions described above provide the most general backgrounds admitting a five-
dimensional, supersymmetric quantum field theory. Of course, since our starting point
is conformal supergravity, only conformal multiplets can be consistently coupled to the
theory. While the hypermultiplet is conformally invariant per se, the vector multiplet with
the standard Maxwell kinetic term breaks conformal invariance as the Yang-Mills coupling
has negative mass dimensions. Therefore the action for the conformally coupled vector
multiplet is a non-standard cubic action which can be thought as the supersymmetric

4We found the Mathematica package xAct [27, 28] very useful.
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1
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ı
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Example: 

With zero background fields we can have 2 types of 
spinors 

For the Poincare SUSY the intrinsic torsions are zero, 
while for the superconformal ones

R5

Moreover, our general solutions (28) and (31) are solved byW = 0; while this solution is not
unique, it makes the connection to [23] very eveident as it follows now that Π(Q)ij = Π(V )ij

and so the horizontal part of (43) reproduces the second condition from [23]:

∀X ∈ T 1,0 DXH
i
j = Xµ(∂µH

i
j + [Vµ, H ]ij) = 0. (46)

6 Examples

Let us now discuss some specific examples illustrating the general results from the previous
sections.

6.1 Flat R5

Flat space admits constant spinors generating the Poincaré supersymmetries. In addition,
we can consider the spinor generating superconformal supersymmetries εi = xµγµεi0, where
εi0 is constant. Let us see how these fit into our general set-up. For the Poincaré super-
symmetries, it is clear that we just have Q = P = V = T = 0. For the superconformal
spinors on the other hand, the gravitino and dilatino equations are solved by

ηi = −ıεi0, Tµν = V ij
µ = D = 0. (47)

The intrinsic torsions are

Qij
µ = − 2

sx2
xκΘ

ijκ
µ, P[µν] =

1

sx2
(x ∧ v)µν , P(µν) = s−1xκv

κδµν . (48)

Note that Θij
νρQ

ρ
ij = − 3s

x2Πσ
νxσ and thus

2

3
2v[µΘ

ij
ν]ρQ

ρ
ij =

s

x2
(Πρ

µvν −Πρ
νvµ)xρ =

s

x2
(x ∧ v)µν = s2P[µν]. (49)

We don’t only see that (19) is satisfied, yet also that the only contribution to the right hand
side of that equation comes from 2

32v[µΘ
ij
ν]ρQ

ρ
ij while it is exactly the term that vanishes,

Θij
µνvρQ

ρ
ij , that contributes in the in the Sasaki-Einstein case to be discussed below.

Note that the superconformal supersymmetries involve non-zero trace of P . Hence,
these supersymmetries are broken by the background scalar VEV corresponding to g−2

YM .
This just reflects the general wisdom that the 5d YM coupling, being dimensionful, breaks
conformal invariance.

6.2 R× S4

Consider now R×S4, with R parametrized by x5 = τ and v not along ∂
∂τ . As described in

[5] – where the explicit spinor solutions are written as well, the spinors satisfy

∇µε
q = −1

2
γµ γ5ε

q , ∇µε
s =

1

2
γµ γ5ε

s. (50)
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symmetries, it is clear that we just have Q = P = V = T = 0. For the superconformal
spinors on the other hand, the gravitino and dilatino equations are solved by

ηi = −ıεi0, Tµν = V ij
µ = D = 0. (47)

The intrinsic torsions are

Qij
µ = − 2

sx2
xκΘ

ijκ
µ, P[µν] =

1

sx2
(x ∧ v)µν , P(µν) = s−1xκv

κδµν . (48)

Note that Θij
νρQ

ρ
ij = − 3s

x2Πσ
νxσ and thus

2

3
2v[µΘ

ij
ν]ρQ

ρ
ij =

s

x2
(Πρ

µvν −Πρ
νvµ)xρ =

s

x2
(x ∧ v)µν = s2P[µν]. (49)

We don’t only see that (19) is satisfied, yet also that the only contribution to the right hand
side of that equation comes from 2

32v[µΘ
ij
ν]ρQ

ρ
ij while it is exactly the term that vanishes,

Θij
µνvρQ

ρ
ij , that contributes in the in the Sasaki-Einstein case to be discussed below.

Note that the superconformal supersymmetries involve non-zero trace of P . Hence,
these supersymmetries are broken by the background scalar VEV corresponding to g−2

YM .
This just reflects the general wisdom that the 5d YM coupling, being dimensionful, breaks
conformal invariance.

6.2 R× S4

Consider now R×S4, with R parametrized by x5 = τ and v not along ∂
∂τ . As described in

[5] – where the explicit spinor solutions are written as well, the spinors satisfy

∇µε
q = −1

2
γµ γ5ε

q , ∇µε
s =

1

2
γµ γ5ε

s. (50)

12

Moreover, our general solutions (28) and (31) are solved byW = 0; while this solution is not
unique, it makes the connection to [23] very eveident as it follows now that Π(Q)ij = Π(V )ij

and so the horizontal part of (43) reproduces the second condition from [23]:

∀X ∈ T 1,0 DXH
i
j = Xµ(∂µH

i
j + [Vµ, H ]ij) = 0. (46)

6 Examples

Let us now discuss some specific examples illustrating the general results from the previous
sections.

6.1 Flat R5

Flat space admits constant spinors generating the Poincaré supersymmetries. In addition,
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Moreover, our general solutions (28) and (31) are solved byW = 0; while this solution is not
unique, it makes the connection to [23] very eveident as it follows now that Π(Q)ij = Π(V )ij
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The trace of P is not zero and hence v is only conformal Killing!
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Here εq, s generate Poincaré and superconformal supersymmetries respectively. It is straight-
forward to see that these solutions fit in our general scheme with

Qij
µ = ± 1

2s
wκΘ

ijκ
µ, P[µν] = ∓ 1

2s
(w ∧ v)µν , P(µν) = ∓ 1

2s
wκv

κ gµν , (51)

where upper signs correspond to the εq while lower signs correspond to the εs. In addition
we have defined w = dτ . Note that the trace of P does not vanish, implying that v is
conformal Killing. Thus this is a genuine solution of superconformal supergravity that
cannot be embedded in N = 1 Poincaré supergravity. Moreover, as discussed above, this
implies that no (constant) Yang-Mills coupling can be turned on on this background (see
[32] for a further discussion in the maximally supersymmetric case).

6.3 Topological twist on R×M4

Manifolds of the form R × M4 can be regarded as supersymmetric backgrounds at the
expense of turning on a non-zero V such that the spinors are gauge-covariantly constant

Dµε
i = 0. (52)

To show that we consider v = ∂τ , being τ the coordinate parametrizing R. Then, from
(11), it follows that Pµν = 0. Furthermore, by choosing V = Q – which translates into
Wµ = 0, ∆ij = 0 and implies Tµν = 0 – all the remaining constraints are automatically
solved. This is nothing but the topological twist discussed in [12] (see also [33] for the
maximally supersymmetric case; twisted theories on five manifolds were also considered in
[34]). Note that since P = 0, in these backgrounds the Yang-Mills coupling can indeed be
turned on.

6.4 SU(2)R twist on M5

If M5 is not a direct product, one can still perform an SU(2)R twist. For v Killing, the
details of this can be found in [23]. One can perform an identical calculation for the
conformal supergravity in question. In the case of a R or U(1) bundle over some M4 for
example, one finds T to be the curvature of fibration.

6.5 Sasaki-Einstein manifolds

For a generic Sasaki-Einstein manifold the spinor satisfies

∇µεi = − ı

2
γµ(σ

3) j
i εj . (53)

It follows that
Pµν = − ı

2
s−1(σ3

ijΘ
ij)µν , Qij

µ = − ı

2
s−1vµ(σ

3)ij. (54)

13

• v is conformal Killing (not along R)

• w = d⌧ –⌧ is the R direction–

Upper (lower) sign to ✏q (✏s)
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Clearly

s2P[µν] = − ı

2
s(σ3

ijΘ
ij)µν = Θij

µνQ
ρ
ijvρ. (55)

Hence, upon taking V ij
µ = 0 = Tµν , we indeed have a solution of (19) and (20).

Note that the trace of P is vanishing, and hence in these backgrounds the Yang-Mills
coupling can be turned on. This holds also for Sasakian manifolds. Super Yang-Mills
theories on these were considered in e.g. [4].

6.6 S5

The S5 case is paticularly interesting as well, as it leads to the supersymmetric partition
function [2, 3]. Not surprisingly, since S5 can be conformally mapped into R5, the solution
fits into our general discussion including two sets of spinors, one corresponding to the
Poincaré supercharges and the other corresponding to the superconformal supercharges.
Writing the S5 metric as that of conformally S5 as

ds2 =
4

(1 + "x2)2
d"x2, (56)

we find for the Poincare supersymmetries

Qij
µ =

1

2s
xκΘ

ijκ
µ, P[µν] = − 1

2s
(x ∧ v)µν , P(µν) = − 1

2s
xκv

κ gµν . (57)

For the superconformal supercharges on the other hand, we find

Qij
µ = − 1

2sx2
xκΘ

ijκ
µ, P[µν] =

1

2sx2
(x ∧ v)µν , P(µν) =

1

2sx2
xκv

κ gµν . (58)

Note that in both these cases the trace of P is non-zero, so neither of these spinors are
preserved if we deform the theory with a Yang-Mills coupling. Nevertheless it is possible to
find a combination of supercharges which does allow for that. This can be easily understood
by looking at the explicit form of the spinors, which in these coordinates is simply

εiq =
1√

1 + "x2
εi0, εis =

1√
1 + "x2

/xηi0, (59)

being εi0 and ηi0 constant spinors. Considering for instance /∇εiq ⊃ P[µν]γµγνεiq + P µ
µε

i
q, we

see that the term with P[µν] involves a contraction /xεiq which is basically εis. This suggests
that one might consider a certain combination of εq and εs for which the effective P -trace
is a combination of P[µν] and P µ

µ which might vanish. Indeed one can check that this is
the case. Choosing for instance the Majorana doublet ξi constructed as

ξ1 = ε1q + ε2s, ξ2 = ε2q − ε1s, (60)

it is easy to see that it satisfies

∇µεi = − ı

2
γµ(σ

2) j
i εj ; (61)
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µε

i
q, we

see that the term with P[µν] involves a contraction /xεiq which is basically εis. This suggests
that one might consider a certain combination of εq and εs for which the effective P -trace
is a combination of P[µν] and P µ

µ which might vanish. Indeed one can check that this is
the case. Choosing for instance the Majorana doublet ξi constructed as

ξ1 = ε1q + ε2s, ξ2 = ε2q − ε1s, (60)

it is easy to see that it satisfies

∇µεi = − ı

2
γµ(σ

2) j
i εj ; (61)
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Clearly

s2P[µν] = − ı

2
s(σ3

ijΘ
ij)µν = Θij

µνQ
ρ
ijvρ. (55)

Hence, upon taking V ij
µ = 0 = Tµν , we indeed have a solution of (19) and (20).

Note that the trace of P is vanishing, and hence in these backgrounds the Yang-Mills
coupling can be turned on. This holds also for Sasakian manifolds. Super Yang-Mills
theories on these were considered in e.g. [4].

6.6 S5

The S5 case is paticularly interesting as well, as it leads to the supersymmetric partition
function [2, 3]. Not surprisingly, since S5 can be conformally mapped into R5, the solution
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Poincaré supercharges and the other corresponding to the superconformal supercharges.
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2s
xκΘ

ijκ
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2s
(x ∧ v)µν , P(µν) = − 1

2s
xκv

κ gµν . (57)
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2sx2
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µ, P[µν] =
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2sx2
(x ∧ v)µν , P(µν) =

1

2sx2
xκv

κ gµν . (58)
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Example: topological twist on 

Relevant for partition function computations on arbitrary 
manifolds. Perhaps more applications? 

In general we need background SUGRA fields. Note 
that being the space a direct product, we can have a 
notion of chirality inherited from 4d 

The “minimal” set-up is to turn on the SU(2) R-
symmetry gauge field cancelling the spin connection 
acting on left (right) spinors 

The spinors are constant and covariantly constant and 
trivially fit our discussion

R⇥M4

cf. Qiu & Zabzine



Mass deformations to gauge 
theory
Sometimes the fixed point theory can be deformed into a 
gauge theory…it is natural to wonder when can that happen 

To gain some insight, consider e.g. an SU(2) theory on the 
Coulomb branch. The effective action looks 

We have a cubic theory with the effective YM coupling given 
by the inverse of the Coulomb branch scalar

S ⇠
Z

Tr
h
� 1

4
�F ^ ?F + · · ·

i
⇠

Z
Tr

h
�LYM

i



However one can imagine adding a background vector 
multiplet with the coupling 

Thus the VEV of the scalar for this background multiplet 
turns on a YM coupling for the fixed point theory, mass-
deforming it into a gauge theory 

Of course, this must be done in a way compatible with 
supersymmetry!

S ⇠
Z

Tr
h
� 1

4
�BFD ^ ?FD + · · ·

i

h�Bi ⇠
1

g2YM



The relevant (background) vector multiplet SUSY 
variation is 

Substituting the data of the background one finds the 
condition

completion of 5d Chern-Simons. Such action contains in particular a coupling of the form
CIJK σI F J FK , where F I is the field strength of the I-th vector multiplet, σI its corre-
sponding real scalar and CIJK a suitable matrix encoding the couplings among all vector
multiplets (we refer to [15, 16] for further explanations). Thus we can imagine constructing
a standard gauge theory by starting with a conformal theory and giving suitable VEVs
to scalars in background abelian vector multiplets. Of course, such VEVs must preserve
supersymmetry. To that end, let us consider the SUSY variation of a background vector
multiplet. As usual, only the gaugino variation is relevant, which, in the conventions of
[16], reads

δΩi
B = − ı

2
/∇σB εi + Y i

B j ε
j + σB γ · T εi + σB η

i , (33)

where we have set to zero the background gauge field. Contracting with εi it is straight-
forward to see that, in order to have a supersymmetric VEV, we must have

£vσB +
2 s

5
P µ

µσB = 0 , (34)

while the other contractions fix the value of Y i
j. The VEV of σB is g−2

YM , and as such
one would like it to be a constant. Therefore, equation (34) gives us an obstruction for
the existence of a Maxwell kinetic term; namely, that v is Killing and not only conformal
Killing. It then follows that all backgrounds admitting standard – i.e. quadratic – super-
symmetric Yang-Mills theories, involve a v which is a genuine Killing vector. They are
thus solutions of the N = 1 Poincaré supergravity – see e.g. [18, 19, 21, 23]. In particu-
lar, the case of R × S4 is of special interest as the partition function on this space in the
absence of additional background fields gives the superconformal index [5]. The relevant
supersymmetry spinors appearing in the calculation define a vector v which is conformal
Killing; and therefore the background is only a solution of conformal supergravity. As
we will explicitly see below, it is easy to check that such a solution, which can be easily
obtained by a simple change of coordinates in the spinors in [12], nicely fits in our general
discussion above. If, on the other hand, one studies supersymmetric backgrounds on S5

without additional background fields, one finds v to be Killing (see below as well). Thus
such backgrounds can be regarded as a solution to conformal supergravity that are not
obstructed by (34) and do thus admit a constant σB. In fact, it is easy to check this nicely
reproduces the results of [2].

Eq. (34) shows that backgrounds admitting only a conformal Killing vector cannot
support a standard gauge theory with a constant Maxwell kinetic term. As anticipated
above, and explicitly described below, this is precisely the case of R × S4, relevant for
the computation of the index. Of course it is possible to solve (34) if one accepts that the
Yang-Mills coupling is now position dependent. This way we can still think of the standard
Yang-Mills action as a regulator to the index computation.5 While this goes beyond the
scope of this paper, one might imagine starting with the Yang-Mills theory on R5 where (34)

5One might wonder that the cubic lagrangian theory is enough. However, in some cases such as e.g.
Sp gauge theories, such cubic lagrangian is identically zero.
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We set to zero all fields in the background vec-

tor multiplet other than the scalar

(constant) YM coupling can be turned on iff the 
vector is Killing and not only conformal Killing



Going back to the examples

The superconformal spinors involve a conformal 
Killing vector: the YM coupling breaks those SUSY’s

5d gauge theories are nor conformal because the 
coupling is dimensionful

R5    case    

Topological twist 
The spinors are constant, the intrinsic torsions 
are zero and hence the vector is Killing

One can turn on (for free) the YM coupling



   case 

          case

Naively no way to have a YM coupling (both Poincare 
and superconformal involve non-traceless P). 

However one can consider a combination such that 
the effective P trace vanishes

S5

Clearly

s2P[µν] = − ı

2
s(σ3

ijΘ
ij)µν = Θij

µνQ
ρ
ijvρ. (55)

Hence, upon taking V ij
µ = 0 = Tµν , we indeed have a solution of (19) and (20).

Note that the trace of P is vanishing, and hence in these backgrounds the Yang-Mills
coupling can be turned on. This holds also for Sasakian manifolds. Super Yang-Mills
theories on these were considered in e.g. [4].

6.6 S5

The S5 case is paticularly interesting as well, as it leads to the supersymmetric partition
function [2, 3]. Not surprisingly, since S5 can be conformally mapped into R5, the solution
fits into our general discussion including two sets of spinors, one corresponding to the
Poincaré supercharges and the other corresponding to the superconformal supercharges.
Writing the S5 metric as that of conformally S5 as

ds2 =
4

(1 + "x2)2
d"x2, (56)

we find for the Poincare supersymmetries

Qij
µ =

1

2s
xκΘ

ijκ
µ, P[µν] = − 1

2s
(x ∧ v)µν , P(µν) = − 1

2s
xκv

κ gµν . (57)

For the superconformal supercharges on the other hand, we find

Qij
µ = − 1

2sx2
xκΘ

ijκ
µ, P[µν] =

1

2sx2
(x ∧ v)µν , P(µν) =

1

2sx2
xκv

κ gµν . (58)

Note that in both these cases the trace of P is non-zero, so neither of these spinors are
preserved if we deform the theory with a Yang-Mills coupling. Nevertheless it is possible to
find a combination of supercharges which does allow for that. This can be easily understood
by looking at the explicit form of the spinors, which in these coordinates is simply

εiq =
1√

1 + "x2
εi0, εis =

1√
1 + "x2

/xηi0, (59)

being εi0 and ηi0 constant spinors. Considering for instance /∇εiq ⊃ P[µν]γµγνεiq + P µ
µε

i
q, we

see that the term with P[µν] involves a contraction /xεiq which is basically εis. This suggests
that one might consider a certain combination of εq and εs for which the effective P -trace
is a combination of P[µν] and P µ

µ which might vanish. Indeed one can check that this is
the case. Choosing for instance the Majorana doublet ξi constructed as

ξ1 = ε1q + ε2s, ξ2 = ε2q − ε1s, (60)

it is easy to see that it satisfies

∇µεi = − ı

2
γµ(σ

2) j
i εj ; (61)
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rµ⇠
i = � ı

2
�µ(�

2)ji ⇠j

Hosomichi, Seong & Terashima

No way to combine spinors such that  the 
effective P trace is zero

No YM coupling can be turned on!!!!
c.f. Kim, Kim, Lee & Park

However one can turn on a position-dependent coupling

�B = g�2
YM e⌧

The localization etc. would be pretty much the same, so 
naively the localization computation would go pretty much 
unchanged.



Instanton operators and 
gauge theories

5d gauge theories admit an automatically conserved 
topological current 

The electrically charged particles are instanton particles 
(the wv. is a line) 

The mass of those instanton particles is 

j ⇠ Tr ? F ^ F

m ⇠ g2YM

Become massless at infinite coupling: signals enhanced 
symmetries in the fixed point theory



Indeed, instantonic “objects” contribute crucially to the 
index 

It is natural to introduce “instanton operators”: an 
operator inserting one unit of instanton flux on a sphere 
surrounding it

Localization admits locii where instantons sit at N/S poles of the 
sphere 

Each contributes a copy of the (K-th) Nekrasov instanton 
partition function 

Crucial to show symmetry enhancement (e.g. E-series) Kim, Kim & Lee
Bergman, D.R-G. & Zafrir
Bergman & Zafrir
Zafrir

Lambert, Papageorgakis & Schmidt-Sommerfeld

ds2 = dr2 + r2d⌦2
4 I =

1

8⇡2

Z

S4

F ^ F

Basically the so-called Yang monopole



Order zero question: is this SUSY? To that matter, let’s 
consider the vector multiplet SUSY variation 

These ops. will be SUSY only if the theory is on a 
background admitting 4d chiral spinors 

Unfortunately, this is not the case on 

�⌦i = �1

4
Fµ⌫�

µ⌫✏i, Frµ = 0, F = ± ?4 F  �5✏
i = ±✏i

Asume no background T (actually it wouldn’t help…)

R5

Instanton operators are not SUSY
Lambert, Papageorgakis & Schmidt-Sommerfeld

Schmude & D.R-G



They can be nevertheless supersymmetrized 

Then the background Killing spinors are constant, 
covariantly constant and “chiral”! 

Now there is a background SU(2) R-symmetry gauge 
field. For its field strength

Consider the topologically twisted theory
Schmude & D.R-Gthink of this behaviour in terms of a conformal transformation to R×S4. The spinors (13)

define the conformal Killing vector r ∂r. A conformal transformation and the coordinate
change r = eτ maps R5 into R × S4. Then, the conformal Killing vector r ∂r becomes
the actual Killing vector ∂τ . In turn, on R × S4, it is easy to check that, upon turning
on the topological twist SU(2)R gauge field, constant (and covariantly constant, hence a

priori perfectly well defined) Killing spinors, chiral on the S4, can be found. From this
perspective, the r-dependence of the spinors on R5 is set to

√
r by the conformal mapping.

Morover, the SU(2)R bundle has a non-vanishing second Chern class. I.e., in polar
coordinates R j

i ∧ R i
j = 3 sin3 θ1 sin

2 θ2 sin θ3dθ1 ∧ dθ2 ∧ dθ3 ∧ dθ4 and for any four-sphere
surrounding the origin,

∫

S4

R j
i ∧R i

j = 8π2. (14)

R j
i ∧R i

j is closed and by Poincaré’s lemma exact when considered on R5, which is clearly

in contradiction with the non-trivial Chern class. By inspection one finds R j
i to be singular

at r = 0, yet not ill-defined — intuitively one can see this in the trivial r-dependence of
the connection. The behavior is actually that of the Yang monopole — see [16] — and
we find that our SU(2)R connection is a Yang monopole in itself. As in the case of the
Yang (and Dirac) monopole, one can deal with this behavior by either admitting singular
connections or considering the theory on R5 \ {0}, which might be regarded as quantizing
the theory in the background Yang monopole for the SU(2)R gauge field.
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A The SU(2) 5d Yang monopole

Let us review the construction of [8]. To that matter, it is more convenient to write the
S4 metric in the R5 in polar coordinates in (1) as an S3 fibration over a disc parametrized
by the polar angle θ ∈ [0, π] as

dΩ2
4 = dθ2 + sin2 θ dΩ2

3 . (15)

By using the stereographic projection for the S3, we write the metric of flat R5 as

5

It is itself a Yang monopole! (for R-symm.)



The Yang monopole configuration satisfies 

For any non-zero     this is a regular configuration and 
the previous discussion applies. But for zero     this 
becomes a delta function supported at N/S. There we 
only need to solve the SUSY condition at N/S 

One can see that the spinors are chiral at N/S!

In the rest of this note we will support explicitly our claims. To that matter we will
focus, for simplicity, on the simplest example of an SU(2) gauge theory with N = 1 five
dimensional supersymmetry. Upon sending the Yang-Mills coupling, which plays the role
of UV cut-o↵, to infinity, we find, depending on the ✓ angle, either the E1 [1] exhibiting an
enhanced SU(2) global symmetry or the e

E1 theory [10, 11] (see [12] for a recent discussion)
with no enhanced global symmetry.

2 Instanton operators

Let us start by considering the local operators In inserting n units of flux on any sphere
enclosing the point x = 0 in R5. More explicitly, using polar coordinates ds2 = dr

2+r

2
d⌦2

4,
the operator In creates a flux such that

1

8⇡2

Z

S4

F ^ F = n . (2)

We can easily construct classical configurations satisfying this. Consider a configuration
such that

F = ± ?4 F , Frµ = 0 ; (3)

where ?4 is the Hodge-dual operator with respect to the unit S4 metric. Note that given
these properties ?F = dr ^ F , and so d ? F = 0, that is, this configuration automatically
solves the 5d equations of motion. Hence, all in all, the classical configurations are easy:
a standard BPST instanton on the S

4 regarded as a 5d field.
In order to explicitly construct it, let us start with the BPST instanton on R4 and

conformally map it to S

4 [13]. Recall that the SU(2) BPST instanton (which we choose
to place at the origin) satisfies

Tr(FR4 ^ F

R4
) = �96

µ

4

(~x2 + µ

2)4
dx

1 ^ · · · dx4
. (4)

Here µ is a scale determining the size of the instanton core. Using now the explicit form
of the conformal mapping in [13], we can map R4 into S

4 with metric

d⌦2
4 = R

2
h
d↵

2
1 + sin2

↵2(d↵
2
3 + sin2

↵3d↵
2
4

⌘i
, (5)

we find that the configuration on S

4 satisfies

Tr(F ^ F ) = 96
⇢

4

⇣
(1 + ⇢

2) + (1� ⇢

2) cos↵1

⌘4 dr ^ !4 ; (6)

where !4 is the volume form of the unit S4. In addition, we have introduced the dimen-
sionless quantity

3

      is the polar angle of the sphere↵1

      controls the isotropy of the configuration⇢

⇢
⇢

“Collimated” instanton operators are SUSY
Bergman & D.R-G.

Moreover they live at N/S, just as expected from the index



Instanton operators insert flux at a point, but in order to 
study time-evolution we would like to change to 
cartesian coordinates 

Then 

This is just like a standard BPST instanton only that 
with a time-dependent size

ds

2 = dr

2 + d⌦2
4 ! ds

2 = dt

2 + d~x

2

r

2
= t

2
+ ~x

2
t = �r cos↵1

⇢ =
⇢

R

. (7)

Let us now analyze the supersymmetry of this configuration. The SUSY variation of
the gaugino reads (we will follow the conventions in [14])

�⌦i = �/

F ( l1 ⌥ �5)✏i ; (8)

where F is the instanton field strength satisfying F = ± ?4 F . We stress the correlation of
signs in these equations. In addition, �5 is the Dirac matrix along the 5 direction, which we
align with r, which coincides with the chirality matrix from the point of view of the S4. The
supercharges preserved by this configuration will be those for which �5

✏

i = ±✏

i. In turn, the
✏

i are the background Killing spinors for R5. With hindsight, let us momentarily consider
the undeformed theory, that is, the conformal fixed point theory. Then the background
spinors arise as solutions to five-dimensional conformal supergravity [2, 3, 4]. In polar
coordinates these explicitly read3

✏

i
q = e

↵1
2 �51

e

↵2
2 �12

e

↵3
2 �23

e

↵4
2 �34

✏

i
0, ✏

i
s = r �5 e

↵1
2 �51

e

↵2
2 �12

e

↵3
2 �23

e

↵4
2 �34

⌘

i
0 (9)

The ✏

i
q are the generators of the Poincary supersymmetries, while the ✏

i
s are the genera-

tors of the superconformal supersymmetries. Of course, upon turning on a constant g�2
YM

deformation the gauge theory only preserves the ✏

i
q supersymmetries. It is now easy to

check that there is no spinor among those in (9) satisfying the desired condition �5
✏

i = ±✏

i

everywhere. Therefore all supersymmetries are broken by this configuration [5, 9].
The polar coordinates we used are very useful in order to write down the instanton

configuration, but certainly cumbersome to study time evolution. To that matter we would
like to consider the R5 written in cartesian coordinates ds2 = dt

2 + d~x

2. Nevertheless, the
change of coordinates is easy, and in particular involves4

r

2 = t

2 + ~x

2
, t = �r cos↵1 . (10)

Therefore it follows that (6) becomes

Tr(F ^ F ) = �96
µ

4
eff

(~x2 + µ

2
eff )

4
dt ^ d

4
~x, µeff = ⇢ (

p
t

2 + ~x

2 + t) (11)

Note that this is formally the same expression as (4) only that the scale parameter µeff is a
spacetime dependent quantity. This shows that the instanton operator inserts a standard
BPST instanton whose size grows in time. From this point of view it is natural that the
configuration breaks supersymmetry, as it is a time-dependent configuration.

3
Spinors with subscript zero will denote in the following constant spinors. We impose on them a

symplectic Majorana condition (✏i)? = ✏ijC✏j , being C the charge conjugation matrix.

4
Note that he sign of t is correlated with the relative orientation of the S4

, as ↵1 ! ↵1 � ⇡ reverses it.

We can think of it as a choice of N/S poles.

4



“Collimated” instantons are not time-dependent (and SUSY) 

One can now study and quantize their zero modes 

Let’s concentrate on the SU(2) example: one can see that 
there are 8 zero modes 

Suppose we were in the fixed point theory: then 16/2=8 as 
expected. Quantization of these zero modes gives a current 
multiplet 

The theory remembers the fixed point: mapping into the 
sphere leads to a position-dependent coupling, which 
assymptotically leads to the fixed point theory

How come 8 zero modes?? This naively seems to 
suggest that all SUSY’s are broken (8 broken SUSY’s+ 
Goldstone th.= 8 zm.)

Tachikawa

Zafrir

Yonekura



Conclusions
5d gauge theories are to be understood as deformations of a 
fixed point theory 

By coupling to 5d conformal gravity we can study where such 
fixed point theories can be supersymmetrically construced 

We constructed the generic backgrounds (see Johannes’ talk 
for a more complete account) . They require that the Killing 
spinors define a conformal Killing vector. 

We studied when the mass-deformation to a gauge theory is 
allowed: geometries whose spinors define a Killing (and not 
only conformally Killing) vector.



On conformally Killing vectors we can still have a gauge 
theory, yet with a position-dependent coupling: 
interesting implications for e.g. the index 

We studied instanton operators: generically non-SUSY 

There are two exceptions

Turn on the topological twist 

Consider collimated instantons

Applications/implications yet to be understood!

Relevant for zero-mode construction



Many thanks!!!


