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Introduction

H�J� 7U(Fµ�)2 UHOHYDQW LQ d > 4� 6LPLODU�SUREOHP�WR
�

�gR LQ d > 2
• Harder to define.

6HYHUDO�UHDVRQV�WR�EH�LQWHUHVWHG�LQ�&)7V�LQ d > 4�

• 0RWKHUV�RI�LQWHUHVWLQJ�WKHRULHV�LQ d � 4
[Gaiotto ’09, Alday, 

Gaiotto, Tachikawa ’09…]

• They might allow us to get a handle on the 
elusive (2,0) theory living on M5-brane stacks

crucial features: 
• µFKLUDO�WHQVRUV¶� bµ� VXFK�WKDW hµ�� LV�VHOIĥGXDO

• QXPEHU�RI�GHJUHHV�RI�IUHHGRP � N3



Plan

• infinitely many; analytical

• &ODVVL¿FDWLRQ�RI�$G67 VROXWLRQV�LQ�W\SH�,,

• 7KH\�JHQHUDWH�DQDO� LQ¿QLWHO\�PDQ\ $G65 DQG $G64 VROXWLRQV
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We describe three analytic classes of infinitely many AdSd BPS solutions of massive IIA supergravity,
for d = 7, 5, 4. The three classes are related by simple universal maps. For example, the AdS7 ⇥M3

solutions (where M3 is topologically S3) are mapped to AdS5 ⇥ ⌃2 ⇥M 0
3, where ⌃2 is a Riemann

surface of genus g � 2 and the metric on M 0
3 is obtained by distorting M3 in a certain way. The

solutions can have localized D6 or O6 sources, as well as an arbitrary number of D8-branes. The
AdS7 case (previously known only numerically) is conjecturally dual to an NS5–D6–D8 system. The
field theories in three and four dimensions are not known, but their number of degrees of freedom
can be computed at leading order. The AdS4 solutions have numerical “attractor” generalizations
that might be useful for flux compactification purposes.

Recently, AdS
7

solutions in type II theories were classi-
fied [1]. In presence of the so-called Romans mass param-
eter F

0

, infinitely many new solutions were obtained nu-
merically. These were later argued [2] to be near-horizon
limits of NS5-D6-D8 brane intersections, considered long
ago in [3, 4]. This in turn gives some information about
the holographically dual (1, 0)-superconformal theories
(SCFTs) in six dimensions.

The more supersymmetric (2, 0) SCFT living on co-
incident M5s can be compactified to obtain interesting
SCFTs in four and three dimensions. This can be demon-
strated holographically by replacing AdS

7

with either
AdS

5

⇥ ⌃
2

[5] or AdS
4

⇥ ⌃
3

[6, 7], where ⌃
2

is a Rie-
mann surface and ⌃

3

is a maximally symmetric space.
It is natural to wonder whether the (1, 0) SCFTs de-

scribed above can also be compactified in this fashion. In
recent work [8, 9] we found that this can indeed be done.
In the process of doing so, we were able to find analytic
expressions for the AdS

7

solutions of [1] themselves, and
analytic maps  

5

,  
4

from those to the AdS
5

⇥ ⌃
2

and
AdS

4

⇥⌃
3

solutions. These maps are invertible and they
can of course be composed:

AdS
7

AdS
4

⇥ ⌃
3

AdS
5

⇥ ⌃
2

.

.........................................................................................................
....
............

..........
..........
..........
..........
..........
..........
..........
..........
..........
...................
............ ............................................................................................................. ........

....

..........
..........

..........
..........

..........
..........

..........
..........

..........
...............................

.................................................................................................. ............
..............................................................................................................

(1)

So in the end we have three new classes of infinitely many
new backgrounds with analytic expressions, holographi-
cally dual to SCFTs in six, four, and three dimensions,
with respectively eight, four, and two Q-supercharges.
The AdS

4

vacua also have potential applications to flux
compactifications.

The AdS
7

solutions have the following general form.
The internal space M

3

is an S2-fibration over an interval,
parameterized by a coordinate r 2 [r�, r+]:

e2Ads2
AdS7

+ dr2 + e2Av2ds2S2 . (2)

A (the “warping”) and v are functions of r; so is the dila-
ton �. We will see below how these three functions are
fixed by the equations of motion and preserved supersym-
metry. The S2 has a round metric, and its isometry group
is the SU(2) R-symmetry of the (1, 0) SCFT

6

. It shrinks
at the endpoints r± of the interval. The fluxes have all
the components compatible with the R-symmetry: F

0

,
F
2

/ volS2 , H / dr ^ volS2 .

The map  
4

takes the metric (2) to

r
5

8


5

8
e2A

✓
ds2

AdS4
+

4

5
ds2

⌃3

◆
+ dr2 +

e2Av2

1� 6v2
Ds2S2

�

(3)
with ⌃

3

a compact quotient of hyperbolic space, normal-
ized so that its scalar curvature is �6. S2 is now fibered
over ⌃

3

, in a way associated to its tangent bundle; even
though the S2 is still round, the total internal space has
no isometries. The solution has now four supercharges;
it is dual to an N = 1 SCFT

3

. The fluxes now acquire
also components along ⌃

3

. The dilaton �
7

of the AdS
7

solutions is taken to �
4

given by

e�4 =

✓
5

8

◆
1/4

e�7

p
1� 6v2

. (4)

Similarly, the map  
5

takes the metric (2) to

r
3

4


3

4
e2A

�
ds2

AdS5
+ ds2

⌃2

�
+ dr2 +

e2Av2

1� 4v2
Ds2S2

�
(5)

with ⌃
2

a Riemann surface, again normalized so that its
scalar curvature is �6. S2 is fibered over ⌃

2

via one
of its U(1) isometries; in other words, it can be written
as P(K � O), and actually K is the canonical bundle of
⌃

2

. The isometry group is now this U(1), which is the
R-symmetry of the N = 1 superalgebra of the SCFT

4

.
Again the fluxes acquire components along ⌃

2

. The dila-

• 7KHLU�&)76 GXDOV� 16�ĥ'�ĥ'��EUDQH�FRQVWUXFWLRQV

• linear quiver (away from conformal point)

• a similar classification from F-theory; “fractional M5’s” 

• ‘daughters’ of the (2,0) theory



AdS7 classification

FRQH�RYHU M4 VKRXOG�KDYH
UHGXFHG�KRORQRP\ M4 = S4/Γ���

• $G67 � M4 LQ 11G�VXJUD�

[Apruzzi, Fazzi, Rosa, AT ’13]

[Graña, Minasian, Petrini, AT ’05]

• $G67 � M3 LQ�W\SH�,,��µSXUH�VSLQRU¶�PHWKRGV
RULJLQDOO\�DSSOLHG�WR�$G64 � M6 LQ�W\SH�,,

later extended to any 10d solution in type II [AT ’11]

ZH�ZLOO�ODWHU�VHH�D�VLPLODU�FODVVL¿FDWLRQ�IRU�$G65 � M5 LQ�,,$ [Apruzzi, Fazzi, Passias, AT ’15]



•IIB: no solutions! but: see later
about F-theory

7KLV S2 UHDOL]HV
WKH 68(2) 5ĥV\PPHWU\
RI�D (1, 0) �G�WKHRU\�

[no Ansatz necessary]

LQWHUQDO M3 LV�ORFDOO\ S2ĥ¿EUDWLRQ�RYHU�LQWHUYDO•IIA:

Fluxes: F0, F2 � YROS2 , H � dr � YROS2

ds2 � e2A(r)ds2
$G6� + dr2 + v2(r)ds2

S2

solved at first numerically [Apruzzi, Fazzi, Rosa, AT ’13] 

A(r)� �(r)� v(r) GHWHUPLQHG�E\�2'(V

then analytically with the help of AdS4 and AdS5
 [Rota, AT ’15] [Apruzzi, Fazzi, Passias, AT ’15] 



• :DUPĥXS� F0 = 0

S3 VOLFHV

S4 =

+RSIĥUHGX
FH

HDFK S3 WR S2 �

D6 

'�

S2 VOLFHV

S3 �=

:H�FDQ UHGXFH
$G67 � S4 WR�,,$�



• F0 �= 0� PDQ\�QHZ�VROXWLRQV

we can make
one of the poles regular:

D6 stack

reg. point D6

ds2
M3

= n'�
F0

�
dy2

4(1�y)
�

y+2
+ 1

3
(1�y)(y+2)3/2

8�4y�y2 ds2
S2

�
.

local solutions also in [Blåbäck, Danielsson, Junghans, Van Riet, Wrase, Zagermann ’11] 
susy-breaking? in [Junghans, Schmidt, Zagermann ’14] 



more generally we can have
two unequal D6 stacks

n2 '�V

n1 '�V or also an O6 and a D6 stack

D6sO6

these solutions are also analytic, but a bit more complicated. 



• $OO�LV�GHWHUPLQHG�E\�D�VLQJOH�IXQFWLRQ �(y)

ds2 = 4
9

�
���

y

�
ds2

$G6� � 1
16

��

y� dy2 + �/4
4��y�� ds2

S2

�
ZKHUH

�
y2�
��2

��
= F0

72

[it’s easy to solve]

F0 �= 0� RQH�'��VWDFN � � (y � y0)(y + 2y0)2

• � KDV�VLQJOH�]HUR � UHJXODU�SRLQW� GRXEOH�]HUR � '��VWDFN

examples:

If you’re curious about the 
analytic expressions:

3

an O6 singularity. The second generalization will involve
D8-branes. These were described numerically in [1, 2],
but we will now be able to give analytic expressions. It
would also be possible to combine D6, D8, and O6 into
even more general solutions.

The first generalization involves finding a more general
� that solves (8) for F

0

6= 0. This can be written as

� =
y3
0

b3
2

F
0

⇣p
ŷ � 6

⌘
2

⇣
ŷ + 6

p
ŷ + 6b

2

� 72
⌘
2

, (13)

where

ŷ ⌘ 2b
2

✓
y

y
0

� 1

◆
+ 36 . (14)

The parameter b
2

is also equal to F0
y0
�
2

, where �
2

is half
the second derivative of � in y = y

0

.

• If b
2

< 12, � has two double zeros, so the so-
lution corresponds to two D6 stacks, one at ŷ =p
�3 +

p
81� 6b

2

, one at ŷ = 36.

• If b
2

> 12, the solution corresponds to a D6 stack
at one pole ŷ = 0 and an O6 singularity at ŷ = 36.

• If b
2

= 12, � simplifies to
y3
0

1728F0
ŷ(ŷ � 36)2, which

is (11) up to coordinate change; so this case corre-
sponds to a single D6 stack at ŷ = 36.

The second generalization consists in introducing D8-
branes. These manifest themselves as loci across which
F
0

(and hence (8)) can jump. Supersymmetry requires
them to wrap the round S2 in (2) at a fixed r = r

D8

;
this is indeed the only way they can preserve the SU(2)
R-symmetry. The supergravity solutions consist in glu-
ing together solutions of the type (11), (13), or (10); the
only non-trivial task is fixing the parameters of those
solutions, and the positions of the D8’s, using flux quan-
tization. We will do so for an example with one D8 and
one example with two D8’s; here (13) will not be needed,
but we expect it to become relevant for higher numbers
of D8’s.

A D8 can also have D6 charge µ smeared on its world-
volume; this is the Chern class of a gauge bundle, and
as such it is an integer. D8’s with the same µ will be
stabilized by supersymmetry on top of each other. In
such a situation, the flux integers of F

0

and F
2

before
and after the D8 stack, (n

0

, n
2

) and (n0
0

, n0
2

), are related
to the number of branes in the stack and their charge by

n
D8

= n0
0

�n
0

and µ =
n0
2�n2

n0
0�n0

. The position is then fixed

by the formula [1, 2]

q|r=rD8 =
n0
2

n
0

� n
2

n0
0

2(n0
0

� n
0

)
=

1

2
(�n

2

+µn
0

) =
1

2
(�n0

2

+µn0
0

) ,

(15)
where q was given in (8). So we see that in the y coor-
dinate the position of the D8-branes goes quadratically

with µ. In fact, q itself has a nice interpretation: from
its definition (8), and from (9), (2) we see

q =
1

4
veA�� = e��radius(S2) . (16)

The simplest possibility is to have one D8 stack, of
charge µ. This is done by gluing two copies of (7). Con-
cretely, the function � reads

� =

8
>><

>>:

8

F
0

(y � y
0

)(y + 2y
0

)2 , y
0

< y < y
D8

;

8

F 0
0

(y � y0
0

)(y + 2y0
0

)2 , y
D8

< y < y0
0

;
(17)

with y
0

< 0, y0
0

> 0. We need to impose flux quantiza-
tion, (15), and continuity of � and its derivative (which,
via (9), guarantees continuity of A, �, and of the metric).
This leads to

F 0
0

= F
0

✓
1� N

µ

◆
, y

D8

= 3F
0

⇡2(N � 2µ)(N � µ) ,

y
0

= �3

2
F
0

⇡2(N2 � µ2) , y0
0

=
3

2
F
0

⇡2(N � µ)(2N � µ) .

(18)

We see now that � has a single zero at both endpoints y
0

and y0
0

. So this solution is regular, except of course for the
e↵ect of the D8 backreaction; this causes discontinuities
in the first derivatives of A, � and the metric, as any
domain wall in general relativity should do.
The next possibility is to have two D8 stacks. As in

[1, 2], we assume for simplicity that the solution is sym-
metric under y ! �y, so that the two endpoints are at
y
0

< 0 and �y
0

, and the two D8 stacks, of D6 charge
µ and �µ, are located at y

D8

< 0 and �y
D8

. There
are three regions: i) For y

0

< y < y
D8

, F
0

> 0; � is
as in (11); ii) For y

D8

< y < �y
D8

, F
0

= 0, and �

is as in (10), namely � = 4

k2

�
y2 � ( 9

32

R3)2
�
2

; iii) For
�y

D8

< y < �y
0

, the Romans mass is F 0
0

= �F
0

< 0; �
is again as in (11), but now with y

0

! �y
0

, F
0

! �F
0

.
Again in this way we avoid singularities, except for the
discontinuities in the first derivatives induced by the two
D8 stacks. This solution, and its brane interpretation, is
showed in figure 2.
Using flux quantization and (15) we can fix the param-

eters as

y
0

= �9

4
k⇡(N � µ) , y

D8

= �9

4
k⇡(N � 2µ) ,

R6 =
64

3
k2⇡2(3N2 � 4µ2) .

(19)

This solution only exists for N � 2µ, in agreement with
a bound in [2].
All these analytic solutions now allow us to obtain

some information about the field theory duals. As we
mentioned above, the six-dimensional (1, 0) field theories
should be dual to the theories described by NS5–D6–D8

F0 �= 0� PRVW�JHQHUDO� � �
��

ŷ � 6
�2 �

ŷ + 6
�

ŷ + 6b2 � 72
�2

F0 = 0� WZR�'��VWDFNV � � (y2 � y2
0)2



stacks with opposite D6 charge

intuitively: D8’s don’t slip off 
because of electric attraction

metric: gluing of two pieces of metric in prev. slide
+ central region from two slides ago

we can also 
include D8’s: D8–D6 stack

actually, ‘magnetized’ D8’s

D8–D6 bound states

=

metric: gluing of two pieces of earlier metric



Generalization:

• QXPEHUV Ni RI�'�
V� DQG�WKHLU�'��FKDUJHV µi

• ÀX[�LQWHJHU N � 1
4�2

�
H

subject to constraints: 

F0 = 0

N5
3 � µ53

N/
1 � µ/1

N/
2 � µ/2

N5
1 � µ51 N5

2 � µ52

N

�/ µ/1

{

{�µ51
�5

• µi
SRVLWLYH�DQG�JURZLQJ�IRU F0 > 0

QHJDWLYH�DQG�JURZLQJ�IRU F0 < 0
<RXQJ�GLDJUDPV �/� �5

• N � |µ/1 | + |µ51 |

ERUGHULQJ
F0 = 0 UHJLRQ�

[Apruzzi, Fazzi, Rosa, AT ’13;
Gaiotto, AT ’14]



7d effective description.

e2Ads2
$G67 + dr2 + v2ds2

S2

To any of our solutions

5
8e2A(ds2

$G64��3
) + dr2 + v2

1�6v2 e2Ads2
S2

GXDO�WR�&)73
�= &)76/�3

[twisted compactification]

[Rota, AT ’15] 

3
4e2A(ds2

$G65��2
) + dr2 + v2

1�4v2 e2Ads2
S2

GXDO�WR�&)74
�= &)76/�2

[twisted compactification]

[Apruzzi, Fazzi Passias, AT ’15] 

we came to suspect that there was a more general story:



e2Ads2
$G67 + dr2 + v2ds2

S2

To any of our solutions

e2Ads2
7 + dr2 + v2

1+16(X5�1)v2 e2Ads2
S2

this is in fact an Ansatz for a consistent truncation!

¿HOGV� g(7)
µ� � Ai

µ� X
For any AdS7 solution in IIA

there is a consistent truncation to
‘minimal gauged 7d sugra’

[Passias, Rota, AT ’15]

One can use it to establish 
• 5* ÀRZV�IURP�$G67 WR�$G65 � �2 DQG�$G64 � �3

• $G63 WR�$G63 � �4 VROXWLRQV

• QRQĥVXV\�$G67 VROXWLRQ



Often one finds a CFT dual using a brane configuration.

near-horizon

N 16�
V

reduction
to IIA

near-horizon
k '�
V{

$G67 � S4/Zk

reduction
to IIA

$G67 � S3

k '�
V

)RU�WKH F0 = 0 VROXWLRQ�WKLV�FDQ�EH�GRQH�

[Gaiotto, AT ’14]

R � R4/Zk VLQJ�

N 0�
V

• (1, 0) VXSHUV\PPHWU\

• N3k2 GHJUHHV�RI�IUHHGRP

• 68(k) � 68(k) ÀDYRU�V\PPHWU\

TN
k � &)76 ZLWK

&)7� GXDOV



7R�LQFOXGH F0 �= 0� ZH�VKRXOG�LQWURGXFH '�ĥEUDQHV

for example, 
configurations like

D8 stacks

the field theory is still 
non-Lagrangian

D6’s

N 16�
V

if we pull 
the D8’s in… . . .

Hanany-Witten
brane-creation effect

. . .

However, we can 
separate the NS5’s [but the conformal point is 

when the NS5‘s coincide!]



. . .

… eventually we reach 
a quiver description

. . . [Hanany, Zaffaroni ’97; 
Brunner, Karch ’97]

1 11

1 . . .2 3 4 4 4 3 24{
“tail”

{
“tail”

{
“core”

tensor multiplet+
hyper

flavor

�(k)
��
������
�	

scalars in the tensor multiplets 
couple to vectors:

(�i+1 � �i)7U(F 2
µ�)i

�
1

g2
<0

FRQIRUPDO�SRLQW�
FRLQFLGHQW �i



Adapting methods developed 
in [Gaiotto, Witten ’08] for 3d theories

we can also study these theories 
by looking at their moduli spaces

BPS equations on D6:
Nahm equations ∂zX

1 = [X2, X3] ����

D8’s can be thought of as a certain boundary condition: 
Nahm poles for the D6’s.

Xi
∼

ti

z
∼
= 
�(2) 
�������	���� 
�(k)

. . .

�=

Young diagram

�=

Xi

z

�=

quiver tail

�=

5 4 2

1 1



…and the funnels become 
our D8–D6 bound states!

near-horizon 
on the NS5 stack...

Conjecture:

�=
N

More 
precisely:

� '�
V�HQGLQJ�RQ�D�'�

ÀX[�LQWHJHU
�

M3
H

µ ≡ ����
��	�����
����

N = � 16�
V

One-to-one correspondence
with AdS7 solutions!



More quantitative checks?

• $G6�&)7��Ī� GHJ� IUHHGRPī �= YRO(M3)

we can compare it with the R-symmetry anomaly in field theory

.
.
.

{
VLPSOH�FDVH�
�/ = �5 =

µ

One example:
1
12 (N3 � 4Nµ2 + 16

5 µ3)

from both computations!
[work in progress with S. Cremonesi]

[Intriligator ’15; Ohmori, Shimizu, 
Tachikawa,Yonekura ’15]

cancel gauge anomalies using GS mechanism;
then compute SU(2) R-symmetry anomaly



More general CFT6 from F-theory

6R�IDU�ZH�KDYH�VHHQ�FKDLQV�RI SU(N) JDXJH�JURXSV

. . .k kkk k

R � R4/Zk VLQJ�
. . .

M-theory

. . .

IIA

simplest example:

�= . . .
. . .

D7’s

IIB

lift

T-duality

• F-theory allows to include more general gauge groups 
• The D8’s should be dual in F-theory to an object called “T-brane”

[del Zotto, Heckman, AT, Vafa ’14]



2�+

2�� 2��

1/2 16� 1/2 16�

known IIA phenomenon:
an NS5 can ‘fractionate’ on an O6

D6s

2��

NS5

[Evans,Johnson,Shapere ’97]
[Elitzur,Giveon,

 Kutasov, Tsabar ’98]

��(2n+ 8) ��(n) ��(2n+ 8)

In F-theory this is 
reproduced geometrically:

I�
p

¿EUH�GHJ�

“blow-up”

I�
p I�

p

IQV
2p

• )LUVW�JHQHUDOL]DWLRQ� 62/6S JDXJH�JURXSV



• There is also an analogue for exceptional gauge groups

now we need 
several blowups…

E8 E8

…

2

two tensors
(no gauge group)=

1

E8 = “E-string”
(no gauge group)

E8 ÀDYRU�V\PPHWU\

F4 G2

1

=
DJDLQ�³(ĥVWULQJ´

ZKHUH F4 � G2 � E8

KDV�EHHQ JDXJHG

this pattern also appeared in
[Berhadsky, Johansen ’96]
[Aspinwall, Morrison ’97]

[Intriligator’97]… tensor multiplets

6S(1) G2 F4 G2 6S(1)E8 E8

1 2 1 1 12

)LQDO�UHVXOW� WKH (E8, E8) WKHRU\



6S(1) G2 F4 G2 6S(1)E8 E8

1 2 1 1 12

In M-theory:
M5

R � R4/�E8 VLQJ�
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Conjecture: 12 fractional M5’s

a ‘discrete flux’ is created whenever
 a fractional M5 is crossed

for a nice alternative explanation
[Ohmori, Shimizu, Tachikawa, Yonekura ’15]



Conclusions
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pattern of D6’s 
ending on D8’s

•Classification of type II AdS7 solutions 

• 'XDO�¿HOG�WKHRULHV� VWURQJ�FRXSOLQJ�SRLQWV�LQ�OLQHDU 8(k) TXLYHUV

• More general quivers from F-theory; fractional M5’s? 

•Infinitely many analytic AdS7, AdS5, AdS4 solutions

•Related by simple universal analytic map


