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Statistical properties of the energy spectrum of many body interacting systems are investigated.
We calculate the spectral form factor using a semiclassical description for the partition function (or
the evolution operator) of the system. The coupling constant describing the interaction plays a
role analogous to % in the usual semiclassical approximation of quantum mechanics. It is shown
that the equivalent of the Van Vleck determinants are given by Fredholm determinants which for
the case of electrons interacting through a Coulomb potential are related to the dielectric function
calculated within thc RPA . The low energy part of the many body spectrum is then shown to obey
a Poisson statistics in accordance with recent numerical results. The validity of this description is
finally discussed.

I. INTRODUCTION

The aim of this work is to present a method for obtaining some analytical results about
the statistics of the energy spectrum of many body systems. The interest for such statistical
properties is at least twofold. First, recent numerical investigations of many body hamiltonians
[1] did show a connection between the nature of the statistics of their energy levels and their
integrability .This was somehow unexpected since unlike one body systems (e.g. billiards), most
of these many body hamiltonians do not have a classical limit. Therefore, it is rather difficult
to associate to the observed statistics a possible chaotic behaviour in the classical limit.

More surprising is the result [2], [3] showing that for some models, there is a crossover
between Poisson and Wigner statistics when going higher in the energy spectrum. The nature
of this crossover is certainly a central issue in the existence of a Fermi liquid behaviour.

- A second reason for the raise of interest in the statistical properties of energy spectra of many
body systems is the connection recently worked out between the behaviour of non interacting,
disordered mesoscopic systems and the semi-classical analysis of their energy spectra. More
precisely, under certain conditions, it is possible to relate some thermodynamic and transport
quantities to the behaviour of the energy levels under external perturbations like a magnetic
Aharonov-Bohm flux (or a change of boundary conditions). The generalization of these results
to describe transport properties of many body systems would certainly be of great interest.

Unfortunately, we do not have at the moment in order to describe the statistics of the many
body spectra powerful tools like the semi-classical approach to the single particle quantum me-
chanics or the periodic orbit description. The standard perturbation methods usually describe
systems in the thermodynamic limit and therefore are not adapted to the description of discrete
spectra. There is nevertheless a possible way to obtain a ”semi-classical” description of many



body systems. The basic methodology was first developped in the context of field theory (5]
and nuclear physics {6]. It is the aim of this paper to extend them to study the statistics of
energy spectra of many body systems.

II. STATISTICAL PROPERTIES OF THE ENERGY SPECTRUM

A successful characterization of the nature of a quantum system is given by the distribution
function P(s) of the distance s between neighbouring energy levels measured in units of the
mean level spacing A. Two kinds of behaviour are usually observed. P(s) is either of the
Poisson type (P(s) oc e™°) or of the Wigner type (P(s) o sPe=8") where 8 depends on the
symetry of the hamiltonian. The Poisson distribulion in the context of single particle quantuy
mechanics is believed to describe systems which are integrable in the classical limit. In contrast,
the Wigner distribution deals mostly with a non integrable (or chaotic) classical limit. These
distributions are universal and depend only on very general symetry considerations.

If P(s) is easily studied numerically, it is rather difficult to obtain analytical results to
describe the statistics even for the one particle problem. This is certainly one of the reasons
for the success of phenomenological approaches like the Random Matrix Theory (RMT), which
was indeed designed to describe the excitation spectrum of interacting systems, namely heavy
nuclei {7]. In the framework of the semi-classical approach to quantum mechanics, there is
nevertheless a quantity which conveys a lot of information about the nature of the system. This
is the spectral form factor K (t) defined as the Fourier transform of the two point correlation
function of the density of states K (e; —e;) = < ple1)p(e2) >, where p(e) = —2ImTr GR(¢) and
G*®(e) is the resolvent operator. Some statistical quantities describing the energy spectrum can
be simply derived from the knowledge of X' (t). For instance the number variance measuring the
fluctuation of the number of energy levels N (E) in a band of width E is very often considered.
It is defined by Ey(E) =< 6N*(E) >=< N*(E) > — < N(E) >* and can be written as a
function of K (¢) as:
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Within the framework of the RMT, K(t) is found to be proportional to ¢. This gives for
L, the well-known Dyson relation %,(E) = ﬁ ln(g) which describes the rigidity of the levels
distributed according to the Wigner law. A great success of the semi-classical approach to
weakly disordered mesoscopic metals was to relate, in the diffusive limit (kfl > 1), the spectral
form factor K (t) to the return probability P(2) of a classically diffusive particle [8]. P(t) being
a central quantity for the calculation of either thermodynamic or transport quantities [9], this
relation did provide a connection with the statistical properties of the energy spectrum of
disordered metals without interactions. It is the extension of the calculation of K(t) to many
body systems which is discussed in the rest of this paper.

To(E) =2 /0 “at

III. "SEMI-CLASSICAL” DESCRIPTION OF A MANY BODY SYSTEM

In order to evaluate K(t), we need to express the density of states of the many body
spectrum. It is given by the inverse Laplace transform of the partition function:

o(E) = % / +: ApPEZ(B) @)

where Z(8) = Tr e™##. The hamiltonian H of the system is given by:
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H:Zp—’—k—Zv(zi—x]-) (3)
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1t describes particles interacting through the binary potential v of strength A. We shall con-

centrate on the case of electrons. Introducing fermion field operators which obey the usual

anticommutation relations, we can rewrite H as:

=tV = [ oy @hwie) + 5 [ [ ddw! @lne - v @)

where h(z) is the kinetic energy (to which could be added as well a part describing either
disorder or periodic potential).

Tt is possiblc to rearrange the interaction term V' by using the commutation relations. There
are three different ways to do this which do correspond respectively to the Hartree, Fock and
pairing rearrangements. Since in this paper we consider only normal Fermi systems, ounly the
first two possibilities are relevant, the third dealing with the BCS case. Moreover, as will
appear clearer later, the Hartree and Fock arrangements are equivalent in the semi-classical
limit considered here. Therefore, we shall consider the Hartree case Vy which leads to simpler
and more transparent calculations since it involves only two density operators o(z) = vi(@)v(=).
1t is given by:

Vi = 2% //dxdwa(a:)w(a:)v(x - ¥ (YY) (%)

plus a constant term incorporated in a redefinition of the energies. To go further and calculate
the partition function we need to decouple the quartic term. This is done using the usual
Hubbard Stratanovich transformation [6]. To that purpose, we introduce an auxiliary field
. o{x,s) over which we integrate. Then,

Z(,@) - %/D[U(I,S)}e%fﬂg dsfdzdz’a(a:,s)v”‘(z~z’)o(z’,s)Z[U; ﬁ] (6)

where the partition function Z[o; s] describes a one body hamiltonian but in the unknown field
o(z, s) which depends both on the imaginary time and on the position :

8
210:8) = Te Pesp{~ [ ds [ doy(@)lh(a) + o(z, ) ()} )
where P is the time ordering. The normalization constant N is given by:
N = /D[U(z, s)]e;—;foﬁ dsfdxdz’a(r,s)v‘l(z—z’)a(z’,s) (8)

Our initial interacting problem is now replaced by a non interacting one. The price is that now
the one body partition function Z[o;s] describes a non trivial, f-dependent Hamiltonian. A
strategy to study such a problem was proposed by Dashen, Hasslacher and Neveu [5] in the
framework of quasi—claésical approximation to find particle states in quantum field theory. Eq.
(6) for the partition function suggests looking for a stationnary phase approximation for the
functional integral. This is justified for a large value of the inverse coupling strength % which for
our problem plays a role analogous to the inverse Planck constant for the usual semi-classical
approximation. Rewriting the partition function as:

2(9) =, [ Dlioletseos ©
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we define the action:

S[oo, B] = —g [ / dnda o0(2)v (@ — o) () + %log’l‘r exp { / oy (z)(h(z) + Ug(z))zj;(z)}]
(10)

For the sake of simplicity, we are looking for a f-independent ¢, which is justified precisely
for the Hartree arrangement here considered. We obtain the saddle point field oy through the
stationarity condition of the action §S[ay, 8] = 0. It gives:

u(z) = [ dala ) Snia, B (1)

where n(e;, §) is the Fermi Dirac distribution function with a chemical potential given at zero
temperature by the Fermi energy e;. Since we are dealing with a one particle Hamiltonian, we
then have to solve the Shrodinger equation:

B, |
[—%V + ao(x)] &i(z) = adi(z) (12)

for an electron in the potential og(x). The basis {¢i(z), ¢} describes the one particle spectrum
out of which the many particle states are built as Slater determinants. Eq. (12) turns out to
be the usual self consistent Hartree equation. The thermodynamic potential which corresponds
to the classical action is obtained from the eigenenergies of (12) in the usual way:

1 1 _Be
0 =5 Y nle, Hn(er, 6) /dxdy @ v~ ige(@) ~ 5 Tlog (1) (13)
L 1
For the usual electron gas model in the translationally invariant system the Hartree field is
zero, so the last expression simplifies to

Qp = —% zk:log (1 + e_p"‘) (14)

where k£ denotes the momentum states of one-particle. The partition function at this stage can
be written as

Zy=cP®=T[ (1+eP%) (15)
k

or using the many-body states with energy as a functional of the occupation numbers:

Zg = Z e_ﬁE{nk}, E{nk} = anek (16)
{ne} k

It is worth emphasizing at that point that had we started with the Fock arrangement for
V', we would have obtained the self consistent Hartree Fock equation as a saddle point . In our
case, the Fock term will be recovered as part of the quadratic fluctuations around the stationary
solution that we shall study hereafter.



1IV. QUADRATIC FLUCTUATIONS AROUND THE STATIONARY SOLUTION

Again in the spirit of the standard semi-classical description of path integrals, we consider
now the quadratic corrections around the stationary phase approximation. To that purpose,
we consider small variations of the field o(z,¢) around gy of the form a(z,t) = og + n(z, ).
Then, the action is expanded up to second order :
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The dependence of 77 on the coordinate z in the rhs of Eq. (17) is understood as well as
periodic boudary conditions in the time integrals. The second derivative which appears in Eq.
17 can be written:

525[0'0]

50(t)50(t') |zr=z70 = —’U_I(SL‘ — Il)ﬁ(t — t/) — F(x, x’; t, t') (18)

where I'(z, #’;¢,) can be expressed in terms of the density-density response function xq given
by a product of one particle propagators Gy calculated within the Hartree approximation:
Dz, 251, 1) = iGo(z — 2/, t — t)Go(z' — z,¥ —t) = xo(z — 2',t — ¢') (19)

The correlation function which appears depends on the kind of interaction we do consider.
For a Coulomb interaction, it is the density-density correlation function. For other models we
have to consider the appropriate one (for instance, the spin correlation function for a Heisenberg
model). Then, we can perform the integral over the auxiliary field and obtain for the partition
function the expression:

1
Z = ———e Pt (20)

where (2 is the Hartree thermodynamic potential and D(f) = Det e(r — r',t — ¢’} where ¢ is:
efr—r,t—t)=8(r—r)6(t~t)— /dzv('r —z)Go(z — 7', t —YGo(r' ~z,t' — 1) (21)
The determinant D(f) is defined in the space of periodic functions with imaginary period

B in addition to periodic boundary conditions in the real space. Within this subspace, we can
write its Fourier transform

. n(€k+qy B) + n(flw 8)
i) =1—V, S 2kt T R P 22
€(q, iwn) qu_j R Rp——— (22)
where w, = 2 are the usual Matsubara frequencies and n(e) the Fermi Dirac factor. For the

Coulomb interaction, € appears to be the dielectric function calculated within the RPA.
The nature of the approximation might be more transparent writing D(8) in a formal way
as the ratio of the determinants of two operators:

 Det (Gy +5)

D
(ﬂ) Det éo_l

(23)

where the diagonal matrix element of the operator in the denominator



Go ™ i, k, q) = iwn — €xrq + € (24)

is the Green’s function describing the propagation of an electron-hole pair in the non-interacting
case and

Gl=Gy 42 (25)

is the equivalent quantity for the interacting case written with the help of the Dyson equation.
The matrix elements of the self-energy operator 3 are given in our approximation by

E(k’ q, ﬁ) = ‘/q[n(fkﬂliﬁ) _n(6k7/3)] (26)

Det C%“] has zeroes at "Jg,q = €x4q — € while Det G~ has zeroes wy,q corresponding both
to particle-hole excitations, which go to wqu in thermodynamic limit together with zeroes wg
emerging from the continuum and describing bound states. Thus one obtains for D(8) the
structure of a Fredholm determinant. Its poles describe the excitation energies of the non
interacting system while its zeros are those of the interacting one at this approximation which
is nothing but the well known RPA. In this description, the non perturbative character of the
method appears clearly. It is well known otherwise that it corresponds to the resummation of
infinite number of diagrams [10] implied by the Dyson equation (25). The ground state energy
and the density of states are easily obtained within this formalism [11] as an extension of the
Krein-Friedel formula derived in context of scattering theory. This determinant structure which
appears here for a many body problem is the equivalent of the Van Vleck determinant of the
semi-classical description associated with the amplitude of the corresponding periodic orbits.
At that stage, this analogy is mostly formal since we do not know how to identify an analogous
periodic orbit structure.

V. THE SPECTRAL FORM FACTOR AND THE NUMBER VARIANCE OF THE
MANY BODY SPECTRUM AT LOW ENERGIES

We are now in a position to calculate the two point correlation function of the density of
states and the spectral form factor K (¢). The partition function is given by Z(8) = \/l—e“iQO

D(B)
where D(f) is the Fredholm determinant defined above and € is the thermodynamic potential
of the many body system obtained within the stationary phase approximation given by (13).

We then write the spectral form factor as the Fourier transform of the two point correlation
function of the density of states:

K(€) =< p(E+3)p(E - 5) > 27)

where the average is taken over a interval L in the energy spectrum large compared to the mean
level spacing centered at some energy E,. This supposes that we are in a homogeneous part
of the spectrum where the mean level spacing keeps its meaning, for instance low enough in
energy. This average over the spectrum is equivalent to the so called diagonal approximation
used in the semi-classical description [4], namely

1 rEBe+L/2 €

K(e) dE p(E+ 5)o(E - ) (28)

= L Ec~—L/2

The density of states is given by the Laplace transform (2) of the partition function. By virtue
ol this expression we are able to rewrite K(e) as



EC+L/2 +ico  p+ioo '
Kle) = ( ) / / dpd By D(B) Y2 D(f,)"? > o~ B1E{nk}=B2E{n}
—-L/2 2w 00 ,
{ne}{ni}
(29)
‘We perform the integration over the energy first. Using the fact that Lsin &
L — oo we obtain

— wé(z) when"

1 100 _ Bl
—— [ Tap D) D(=py Y e AP E) (30)
e —i00 {ne b ind}

K(e) =

Along with our diagonal approximation, we keep only the diagonal terms {nz} = {nj}

giving the main contribution to K(e). We normalize the correlation function dividing it by a

constant L/C, C being equal to the remaining sum of constant terms. Then, at low enough

temperature, where our approximation of a homogeneous spectrum is meaningful we can write
for the Fourier transform of K (¢):

K(#) =1/|D(it)| (31)

where D(3) is the Fredholm determinant defined above within the RPA.
The number variance is then given by Eq.(1), i.e.:

o DG . o Bt
$o(E) =2 /0 dt— i sin(Z) (32)

This relation is the central result of this paper. It relates a statistical property of the many
body spectrum to the dielectric function through D(it), i.e a quantity which in principle can
be calculated from the usual perturbation methods developped for interacting systems in the
thermodynamic limit.

V1. APPLICATIONS AND DISCUSSION

In this last section, we would like to discuss more in details the meaning of the various
approximations considered in this description of the statistical properties of the many body
spectrum. This might be of some importance especially if we are interested comparing it with
the Fermi liquid description. It is first of all worth mentionning that the spectrum calculated
through this functional integral approach gives well defined energy levels. The only width of
the level to this approximation is proportional to e (a being a constant) i.e. independent of
the system size. It describes the probability of tunneling towards another minimum oq of the
functional integral. This would correspond to the spontaneous decay of a metastable state. It
is very small within the weak coupling approximation here considered.

To obtain now the statistics of these levels we have to study the behaviour of K(¢). To that
purpose, we rewrite the Fredholm determinant D(f) under the form:

D) = I < 2“7”) (33)

or, by definition of the Fredholm determinant as the ratio of the product of the eigenvalues of
the interacting system over those of the non interacting one, i.e.:

II, sinh (£ 3>)

I ﬂsmh(ﬁ?‘l)

D(B) = (34)



we can express both the numerator and the denominator as a distribution of harmonic oscilly,
tors:

1 1 T
T oanl, = exp{—1 ny+ St — —
Hu,\;eg 2sin %U/\t {g} p{ uéé:o[( A 2) 2]} (35)

where {n,} means summation over all sets of the boson occupation numbers ny = 0,1,2.
Similarly, we can decompose the denominator of Eq.(34) and retain only the first term for the
Hartree Fock expansion. We finally obtain:

D@ty = exp[%itZw)‘o] S exp{—i 3 (m+ %)w,\t} (36)

Ao {nr} wy #0

We then have a spectrum obtained as a superposition of an infinite number of harmonjc
oscillators. For one particle quantum mechanics, Berry and Tabor [12] did show that a system
whose spectrum is described by a finite number of harmonic oscillators does not exhibit leve]
clustering and therefore does not have a Poisson statistics as expected for such an integrable
case. Our description goes beyond this limit since we have an infinite number of such oscilla-
tors in order to describe our many body spectrum. Since these harmonic oscillators do have
incommensurate frequencies, we can approximate D(it)~! given by Eq.(36) by a superposition
of incoherent waves such that K (t) given by Eq.(31) is a constant. This leads for the number
variance to 3(E) « N%(E) i.e. to a spectrum of the Poisson type.

Then, the question arises about the range of validity of our approximation or more precisely
about the number of levels that can be safely described within it. To estimate this number or
at least a lower bound, we may establish a connection between our approach and the Fermi
liquid theory. There, a central role is played by the width I of the quasiparticle states where
' = k(e~¢s)%. The energy e is measured from the Fermi energy €5 and k is the effective coupling
constant obtained by considering higher order corrections in , k(X)) = A(1+a,(A) +...). Within
our description, I’ can be obtained from the partition function Z(8) by adding sources and
calculating the one particle Green’s function as a second derivative of Z (6) as usual in field
theory. Then, well defined quasiparticles have the propagator (in the proper eigenbasis) :

Ga,a’ (t _ tl) — a’a,Zae—i(ea—iI‘.,)(t—gl) (37)

with I's < €. For the Coulomb potential, the imaginary part T is given within the RPA [13]
by:

7r2\/5w (e—ef)2
128 “P\ 7,

(38)

where w, is the plasma frequency and then & 2. In our approximation, the spectrum is
defined by a characteristic energy scale wy obtained as the level spacing between the zeroes of
the Fredholm determinant D. We can now evaluate a lower bound for the number of levels
that can be described within our approximation. It is obtained for I' > wy. At the energy ¢ the
number 7 of levels is € — e; = nwg. Then our description is valid for energies e—e; < (/%2 ie. at
weak coupling. This is not surprising, since our description has the validity of the RPA which
consists in a bosonization of the low energy excitations [11] which is a good approximation at
weak coupling.

Higher in energy, the statistics of the spectrum appears to be described by a distribution
of the Wigner type [2], [3]. The nature of this crossover which might be viewed as a phase
transition in the Hilhert space of the system is beyond the scope of this article. Nevertheless,



we believe that the present method may provide the good tool in order to investigate this
question. :
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Propriétés statistiques du spectre d’ énergie de systémes & N corps

Cet article présente une étude des propriétés statistiques du spectre d’ énergie de systemes a N corps
en interaction. Nous calculons le facteur de forme spectral en utilisant une description semiclassique
de la fonction de partition (ou de la trace de l'opérateur d’ évolution) du systéme. La constante de
couplage qui décrit les interactions joue un role analogue & celui de A dans la description semiclassique
habituelle de la mécanique quantique. Nous montrons de plus que I’ équivalent des determinants de
Van Vleck est donné par des determinants de Fredholm qui, pour le cas d’une interaction de type
Coulomb, sont reliés & la fonction diélectrique calculée dans 'approximation de la RPA. La partie
basse énergie du spectre du probléme & N corps obeit 4 une statistique du type Poisson ce qui est en
accord avec des résultats numériques récents. La validité de notre description est finalement discutée.



