
Lecture 2

•            Introduction to mesoscopic physics
• Transport, transmission and probability of 

quantum diffusion.
• Mesoscopic limit: characteristic length scales.
• Deviation to classical incoherent transport: 

quantum crossings.
• Weak localization and Sharvin effect.
• Universal conductance fluctuations.
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              Probability of quantum diffusion

Propagation of a wavepacket centered at energy    between any two points.               
It is obtained from the probability amplitude (Green’s function for the 
afficionados !) :

ε

Gε(r, r
′) =

∑

j

Aj(r, r
′)

Superposition of amplitudes associated to all multiple scattering 
trajectories that relate             . The probability of quantum diffusion 
averaged over disorder is: 

r and r
′
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∑
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|Aj(r, r′)|2 +
∑
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A∗
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′)Aj(r, r′)

classical term interference between 
distinct trajectories: vanishes 
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Before averaging : speckle pattern  (full coherence)
Configuration average: most of the contributions vanish because 
of large phase differences.

Diffuson Pcl(r, r
′) =

∑

j

|Aj(r, r′)|2
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A new design !



The diffusion approximation:

How to calculate                 ? It may be obtained as an iteration equation Pcl(r, r
′)
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Summation over
scattering  sequences
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Iteration of the Drude-Boltzmann term  P0 (r, ′r ) = G(r, ′r )G∗( ′r ,r)∝ e−
R
l

R2

Pcl(r, r
′) = P0(r, r

′) +
1

τ

∫
dr′′Pcl(r, r

′′)P0(r
′′, r′)

[ ∂

∂t
− D∆

]
Pcl(r, r

′, t) = δ(r − r
′)δ(t) with  D =

vgl
3

In the limit of slow spatial and temporal 
variations,                        and |r − r

′| " l t ! τ

Diffuson

(diffusion equation)



Mesoscopic limit: characteristic length scales

The diffusion motion is characterized by its elementary step, 
the elastic mean free path    related to the elastic collision 
time by  

le

le = vgτe

L

saa sb

sa' sb'

le
〈R2〉 = Dt

traversal time (Thouless time) : L
2

= DτD

t

τe τD

τφ

ballistic

diffusive ergodic

mesoscopic limit classical limit

! le

withD = vgle/3



Normalization of the probability
The probability of quantum diffusion must be normalized,

d ′r P(r, ′r ,t) = 1 ∀t ⇔ P(q = 0,ω ) = i
ω∫

At the approximation of the Diffuson, we have from the iteration 
eq.

since 

The Diffuson provides a normalized approx. to the probability of 
Quantum diffusion !  Missing terms ?

Pcl(q, ω) =
P0(q, ω)

1 −

P0(q,ω)
τe

P0(q, ω) =
τe

1 − iωτe

→ Pcl(q = 0, ω) =
i

ω



Reciprocity theorem

For time reversal invariant systems, Green’s functions have the property:

G(r, ′r ,t) = G( ′r ,r,t)
Reciprocity thm. states that complex amplitudes associated to a 
multiple scattering sequence and its time reversed are equal. 

By reversing the two amplitudes of                   gives  

Reversing only ONE of the two amplitudes should also give a 
contribution to the probability, but it is not anymore a Diffuson! 

The Diffuson approx. does not take into account all contributions to 
the probability.

Pcl(r, r
′) Pcl(r

′, r)
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r1 → ra → rb · · · → ry → rz → r2

r2 → rz → ry · · · → rb → ra → r1

The total average intensity is:

|A(k,k′)|2 =
∑
r1,r2

|f(r1, r2)|2
[
1 + ei(k+k′).(r1−r2)

]

incoherent 
classical term

interference term

Diffuson

Cooperon



Quantum crossings
A diffuson is the product of 2 complex amplitudes: it can be viewed as 
a” diffusive trajectory with a phase”. Coherent effects result from the 
Cooperon which can be viewed as a self-crossing

Crossing probability of 2 diffusons:

Crossing mixes the amplitudes and pair 
them differently         phase shift.⇒

τD = L
2 / D

Small phase shift ≤2π ⇒ localized crossing

λ
d−1

le p×(t) =

∫ τD

0

λd−1vgdt

Ld
=

1

g

volume of a crossing

g =
le

3λd−1
Ld−2

! 1



Electrical conductance of a metal

A metal can be modeled as a quantum gas of electrons 
scattered by an elastic disorder.

At T=0 and in the absence of decoherence, it is a complex 
quantum system.

Classically, the conductance of a cubic sample  of size     is 
given by Ohm’s law:                    where    is the conductivity.               G = σL

d−2

L
d

σ

g =
le

3λd−1
Ld−2 = Gcl/(e2/h)

where      is the classical electrical conductance s.t.             

Gcl/(e2/h) ! 1

Gcl



Weak disorder limit:  λ  l⇒g 1

Probability of a crossing               is small: phase coherent corrections 
to the classical limit are small

Quantum crossings modify the classical probability (i.e. the Diffuson)
but it remains normalized     
The long range behavior of the Diffuson propagates  (localized) 
coherent effects over large distances.

 Weak disorder physics 

Quantum crossings are independently distributed : 
          We can generate higher order corrections to the Diffuson 
            as an expansion in powers of 1 / g

∝1 g( )



A direct consequence:  corrections to electrical transport

Classical transport : Gcl = g ×
e2

h
with g " 1

Quantum corrections:  ∆G = Gcl ×
1

g

so that ∆G !

e2

h



To the classical probability corresponds 
the Drude conductance Gcl

First correction                 involves one quantum 
crossing and the probability to have a closed 
loop:

(∝1 / g)

 
po(τD ) 

1
g

Z(t) dt
τD0

τD

∫

Return probability 

 

ΔG
Gcl

− po(τD )

quantum correction decreases  
the conductance: weak localization

L

Weak localization- Electronic transport

τD = L2 D

Z(t) =

∫
drPint(r, r, t) =

( τD

4πt

)d/2



Note that the 2 trajectories involved in a loop evolve in opposite directions. If 
there is time reversal invariance, amplitudes associated to       and to its time 
reversed     are equal so that their product is the return probability of a classical 
diffusion process: 

j

jT

Z(t) =

∫
drPint(r, r, t) =

( τD

4πt

)d/2

is solution of a diffusion equation with  Pint(r, r
′, t)

Pint(r, r, t) = Pcl(r, r, t)

The return probability to the origin is doubled compared to incoherent 
processes.

Time reversal invariance

r = r
′



|A(k,k′)|2 =
∑
r1,r2

|f(r1, r2)|2
[
1 + ei(k+k′).(r1−r2)

]

Generally, the interference term vanishes due to the 
sum over                  , except for two notable cases:r1 and r2

k + k
′
! 0 :  Coherent backscattering

r1 − r2 " 0 : closed loops, weak localization and           periodicity 
of the Sharvin effect. 
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In the presence of a dephasing mechanism that breaks time coherence, 
only trajectories with                contribute.

For instance, in the presence of an Aharonov-Bohm flux, paired 
amplitudes in the Cooperon acquire opposite phases:

φ
2πφ/φ0 −2πφ/φ0 the phase difference becomes: 4πφ/φ0

t < τφ

Cooperon

φ0/2           periodicity of the Sharvin effect 

is obtained from the covariant diffusion equationPint(r, r
′, t)

(
1

τφ
+

∂

∂t
− D

[
∇r′ + i

2e

h̄
A(r′)

]2
)

Pint(r, r
′, t) = δ(r − r′)δ(t)

effective charge 2e



 Tab = tab
2

Caba 'b ' =
δTabδTa 'b '
TabT ′a ′b

Slab geometry

transmission coefficient

Correlation function of the 
transmission coefficient :

 correlations involve the product 
of 4 complex amplitudes with or 
without quantum crossingsa
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2-quantum crossings correlations

=
2
15

1
g2

Crossings: coherent effects, 
spatially localized in a 
volume λd−1l

Long range diffusons 
(classical)

Propagation of coherent effect over long distances

a
a

b
b

a'
a' b'

b'

(K  )1

a
a

b
b

b'
b'a'

a'

 (K  )2

a
a

a'
a'

b
b

b'
b'

(K  )d
3

a
a

a'
a'

b
b

b'
b'

(K  )c
3

cd

C
(3)
aba′b′

=
12

g2

D2

L4

∫ L

0

∫ L

0
dzdz′Pint(z, z′)2



0 crossing: 
1 crossing: vanishes due to the summation over the channels.
2 crossings: correction                                           universal

(very different from the classical self-averaging
 limit                     )

Depends on the distribution of closed loops 

G
2
= Gcl

2 = e2 h( )2 g2
Landauer description : G=

e2

h
Tab

ab
∑

δG2 ∝G
2
/ g2 = (e2 / h)2

 

δG2

Gcl
2 

1
g2

Z(t) t dt
τD
2

0

τD

∫

 δG
2  Ld−4

Universal conductance fluctuations



Quantum conductance fluctuations

Classical self-averaging limit :

where                       and  
           is the average over disorder.

δG

G
=

1

N
=

(
Lϕ

L

)d/2

δG =

√
G2

− G
2

...

In contrast,  a mesocopic quantum system is such 
that : 

Fluctuations are quantum, large and independent of 
the source of disorder : they are called universal. 

In the mesoscopic limit, the electrical conductance is 
not self-averaging.

δG !

e2

h

G = σL
d−2

δG
2
∝ L

d−4



Weak localization corrections to the 
electrical conductance

 

δG2

Gcl
2 

1
g2

Z(t) t dt
τD
2

0

τD

∫

 

ΔG
Gcl

−
1
g

Z(t) dt
τD0

τD

∫

Z(t)= dr Pcl (r,r,t)=∫
τD
4πt

⎛
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⎞
⎠⎟
d /2

Conductance fluctuations

Summarize :



Universal conductance fluctuations

Dephasing and decoherence
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We expect the conductance 
fluctuations to be reduced by a factor 2

δG2 δG2

2

φ

1.5

vanishing of the weak localization 
correction for the same magnetic field

In the presence of incoherent 
processes               : L > Lφ

δG2
→ 0

 46 Si-doped GaAs samples at 45 mK 


