
Lecture 3

Correlation of speckle pattern: optics and atomic physics

Diffusons, Quantum crossings and weak disorder

Angular correlations of speckle patterns

Dephasing-decoherence and dynamics of scatterers

Time correlations of speckle patterns

Photons correlations induced by disorder in a 
quantum mesoscopic gas
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Before averaging : speckle pattern  (full coherence)
Configuration average: most of the contributions vanish because of 
large phase differences.

Diffuson 
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Vanishes upon averaging...up to  quantum crossings
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A new design !
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Pcl(r, r

′, t) = δ(r − r
′)δ(t)

Solution of a diffusion
 equation 



A diffuson is the product of 2 complex amplitudes: it can be viewed as 
a” diffusive trajectory with a phase”.

Crossing probability of 2 diffusons:

Smallest phase defect: crossing which interchanges 
the amplitudes and pair them differently : phase shift.

τD = L
2 / D

Small phase shift ≤2π ⇒ localized crossing

λ
d−1

le

volume of a crossing

g =
le

3λd−1
Ld−2

! 1

Quantum crossings

p×(τD) =
1

g



Weak disorder physics

• Weak disorder limit: 

• The probability of a quantum crossing is small : 
phase-coherent corrections to the classical limit 
are small.

• Quantum crossings are independently 
distributed : generate higher order corrections 
to the Diffuson as an expansion in powers of   
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Outgoing photons build a speckle pattern
 i.e. an interference picture

Consider the transmission coefficient 
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 Calculate the angular correlation function 

Tab

Caba′b′ =

δTabδTa′b′

Tab Ta′b′

with δTab = Tab − Tab

How to characterize a speckle pattern ?



The transmission coefficient        is a random variable.

For scattering of a classical wave by classical 
scatterers, a speckle is well characterized by the 
Rayleigh law: 

Tab

δT 2 ≡ T 2 − T
2

= T
2

which accounts for the granular aspect of a speckle : 
relative fluctuations are of order unity.

The Rayleigh law simply expresses that a speckle 
pattern results from the coherent superposition of a 
large number of uncorrelated random, complex valued 
amplitudes.

The Rayleigh law characterizes the interference pattern 
of a complex wave system.



 Tab = tab
2

Caba 'b ' =
δTabδTa 'b '
TabT ′a ′b

Slab geometry

transmission coefficient

Correlation function of the 
transmission coefficient :

 correlations involve the product 
of 4 complex amplitudes with or 
without quantum crossingsa
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Fluctuations and correlations
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Angular correlations of speckle patterns

0-quantum crossing correlations: 

Caba 'b '
(1) = δΔŝa ,Δŝb

qaL
sinhqaL

⎛
⎝⎜

⎞
⎠⎟

2 with qa,b = k Δŝa,b
Δ ŝa = ˆ′sa − ŝa

Rayleigh law: 

C
(1) : (aa

′)(aa
′) −→ (bb′)(bb′)

δT 2

ab
= Tab

2C
(1)
abab

= 1



1-quantum crossing correlations

Caba 'b '
(2) =

1
g
F2 (qaL) + F2 (qbL)[ ]

F2 (x) =
1

sinh2 x
sinh2x
2x

−1⎛
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⎠⎟ Cabab '

(2) b≠b '⎯ →⎯⎯
2
3g

Long range correlation :

(aa)(a′
a
′) −→ (bb′)(bb′)

C
(2)

:

(aa
′)(aa

′) −→ (bb)(b′b′)

does not contribute to universal conductance fluctuationsC
(2)



2-quantum crossings correlations

=
2
15

1
g2

Crossings: coherent effects, 
spatially localized in a 
volume λd−1l

Long range diffusons (classical)
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∫ L

0

∫ L

0
dzdz′Pint(z, z′)2

     is independent of angular 
channels: uniform background that 

extends over the entire system.

C
(3)



Time dependent speckle patterns



Uneasy experimentally to separate the contributions to the 
angular correlations: long range parts are small compared to        
and the universal         contribution affects equally all the speckle 
spots 

To separate the different contributions we study  their 
dependence as a function of an additional parameter : time 
correlations

C (1)

C (3)



Dephasing-decoherence
Quantum mesoscopics effects result from interferences and as 
such are very sensitive to dephasing.

The probability                  is affected by a global dephasing  P(r, ′r ,t)

eiΔφ (t ) ≈ e− t /τϕ

Lϕ = Dτϕ is the phase coherence length

Sources of dephasing:

  External magnetic field,  Aharonov-Bohm flux, 
  Degrees of freedom of the waves (electron spin, photon polarization)
  Degrees of freedom of the scatterers: dynamics, Zeeman sub-levels

•
•
•



Dynamics of the scatterers
Complex amplitude

E(r0 ,r,t) = A(r0
CN
∑ ,r,CN (t)) e

iφN (t )

Ergodic assumption:                         
the ensemble of multiple scattering 
          sequences is independent of time

CN (t) =CN (0)

Time correlation function: 

Dephasing effects result from Diffusons 
built from the pairing of  2 amplitudes 
which belong to distinct and out of phase 
realisations.

of the intensity

r

r0

r1(T)

r1(0)
k0

k1

kN

rN(T)

rN(0)

kn-1
rn(T)

rn(0)

kn

0

0

T

r

2

I  ( 1  +   g  ( T )  )

0

0

d 1

ro

ro r ro r

0

0

T

T

T

r

20

ro T

22

〈E(r, T )E∗(r, 0)〉 =
c

4π

∫
∞

0
Pcl(r0, r, t)e

−t/τφ(T )dt



Time correlations of speckle patterns
Uneasy experimentally to separate the contributions to the angular 
correlations: long range parts are small compared to        and the universal         
contribution affects equally all the speckle spots 

C (1)

C (3)

To separate the different contributions we study  their dependence 
as a function of an additional parameter : time correlations

C(1)(t) =

(
L/Lφ

sinhL/Lφ

)2

C(2)(t) =
2

g
F2(L/Lφ) C(3)(t) =

1

g2
F3(L/Lφ)



Experiments
F. Scheffold and G. Maret 
(1998)

C (1) (t)

Frequency dependence: A.Lagendijk  et al. (1992)
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Photon correlations induced by disorder 
in a quantum mesoscopic gas

Include atomic degrees of freedom 

Ohad Assaf, E.A.



Framework:

 Multiple scattering of photons by a 
cold atomic gas.  
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Figure 2. Left: a cloud of cold atoms as point scatterers with fixed random positions
r and randomly oriented total angular momenta J . Right: a zoom into the energy level
scheme of a resonant degenerate dipole transition, here the example of J = 1, Je = 2.
δ = ω−ω0 is the detuning of the probe light from the atomic resonance frequency ω0, and
Γ is the natural width of the excited atomic state. The polarisation of scattered polarised
photons (full and dotted lines) is coupled to the internal magnetic quantum numbers m.

smaller than the measured value of 1.2 in the channel of flipped helicity
(h⊥ h). It was soon realized that the degeneracy of the probed atomic
dipole transition J = 3 → Je = 4 is responsible for an imbalance of CBS
amplitudes and therefore reduces the measurable enhancement factor [10].
We thus have to generalise the theory of the multiple scattering of polarised
light by point dipoles to the case of an arbitrary atomic transition J →
Je [11]. This theory indeed explains the observed enhancement factors and
shall be described in the following.

2. Multiple scattering of a photon by atoms with internal degen-
eracy

2.1. THE ONE-PHOTON TRANSITION MATRIX

Consider a cloud of laser-cooled atoms confined in a standard magneto-
optical trap. The cooling is such that their velocity spread v is much smaller
than the Doppler velocity Γ/k (Γ is the natural width of the excited atomic
state). Therefore, we can neglect the Doppler effect and may assume that
the atoms’ positions rα,α = 1, . . . , N , remain fixed on the light-scattering
time scale. On the other hand, the velocity spread should be much larger
than the recoil velocity vrec = !k/M (where M is the atomic mass) for the
scattering of a photon of wave-vector k. This allows us to treat the positions
as classical random variables and to follow the standard diagrammatic ap-
proach to describe multiple scattering (see [12] and references therein). The
CBS probe beam with incident wave-vector k, polarisation ε and frequency
ω excites a closed atomic dipole transition defined by a ground state with
total angular momentum J and an excited state Je with frequency ω0. In



Outgoing photons build a speckle pattern
 i.e. an interference picture

Consider the transmission coefficient 

L

saa sb

sa' sb'

 Calculate the angular correlation function 

Tab

Caba′b′ =

δTabδTa′b′

Tab Ta′b′

with δTab = Tab − Tab

How to characterize a speckle pattern ?



The transmission coefficient        is a random variable.

For scattering of a classical wave by classical 
scatterers, a speckle is well characterized by the 
Rayleigh law: 

Tab

δT 2 ≡ T 2 − T
2

= T
2

which accounts for the granular aspect of a speckle : 
relative fluctuations are of order unity.

The Rayleigh law simply expresses that a speckle 
pattern results from the coherent superposition of a 
large number of uncorrelated random, complex valued 
amplitudes.

The Rayleigh law characterizes the interference pattern 
of a complex wave system.



• For a gas of atoms with degenerate Zeeman sublevels, 
the intensity correlations are enhanced well above the 
Rayleigh limit:

δT 2 > T
2

Contrast between bright and dark spots is enhanced. 

This enhanced variance results from interference based 
on the effect of spatial disorder and atomic quantum 

internal degrees of freedom. 

Two new features



• This large contrast speckle interference pattern is very 
sensitive to dephasing such as Zeeman splitting 
induced by a  magnetic field H which removes the 
ground state degeneracy of the atoms. Resonant-like 
shape.

C
2

=
δT 2

T
2

− 1
∆(H)

∆(H) !
h̄Γ

gµ0

l

L

The linewidth            is reduced by a large factor        as 
compared to other spectroscopic techniques routinely 
used (Hanle or Franken effects)
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Experimental setup
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During the time                  the atoms stay at rest. However the 
two photons 1 and 2 experience different atomic internal 
configurations due to all photons between them.

The measurement is repeated after a time              during 
which atoms move. 

The configuration average results from this motion. 

T ! τ

τ ! Γ
−1



                                Correlation enhancement
1) Single atom:  detected photon intensity

Is =
1

2jg + 1

∑

{m}

∣∣∣A{m,R}
∣∣∣
2

{m} = (m1, m2)

{R}

Summation over        is a statistical average over the atomic ground 
state with a weight       
Summation over        results from non-detected final states.
            is a sum over quantum amplitudes:

A
{m,R}

= e
iφ(R)

∑

me

〈m2|V |me〉〈me|V |m1〉

ω − ωm1me
+ iΓ

2

that corresponds to a given and fixed position      of the atom.
The operator                 describes the dipolar interaction between atoms 
and photons. 

φ = ik(|R − Rs| + |Rd − R|)

1/(2jg + 1)

V = −d.E

m1

m2

A
{m,R}

classical phase:



2) Multiple scattering by more than one atom:

I(R) =
1

(2jg + 1)2

∑

{m}

∣∣∣
∑

i

A
{m,R}
i

∣∣∣
2 r

r'

Ai

A
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{R} spatial configuration of the atoms
{m} configuration of the ground state sublevels

A
{m,R}
i = A

{m}
i e

iφi({R})

Internal atomic degrees of freedom are independent of 
spatial positions : 

Configuration average : 〈ei(φi−φj)〉 = δij

〈I〉 =
1

(2jg + 1)2

∑

{m}

∑

i

|A{m}
i |2
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r

r'

Ai
A

∗

i

The average intensity is a sum of intensities i.e. without interferences 
between scattering trajectories. But each          remains a sum of quantum 
amplitudes thus leading to quantum interference effects. 

A
{m}
i



Correlations
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Interference terms between 

distinct atomic 
configurations

〈ei(φi−φj+φk−φl)〉 = δijδkl + δilδjk

δijδkl δilδjk

〈I〉〈I ′〉

C(I, I ′) = 〈I(R)I ′(R)〉 − 〈I〉〈I ′〉

=
1

(2jg + 1)4

∑
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∑
i !=j
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∑
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j
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For a non degenerate atomic ground state : jg = 0 {m} = {m′}and

we recover the Rayleigh law:and for N ! 1

C(I, I ′) ≡ 〈I(R)I ′(R)〉 − 〈I〉〈I ′〉 = 〈I〉〈I ′〉

But for a degenerate ground state, we always have:

C(I, I ′) > 〈I〉〈I ′〉

namely correlations enhanced above the Rayleigh limit. 



Proof in the limit of a large number of atoms N>>1.
For a fixed spatial configuration        of atoms, among all possible couples        
of scattering trajectories of a photon, the ratio of those sharing at least one 
common scattering event to those without any common scatterer becomes 
negligible for large N. 

〈I〉 ∝
∑
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∣∣∣
2

= (2jg + 1)N
∑

i

(2jg + 1)−Ni

∑

{m}i

∣∣∣A{m}i

i

∣∣∣
2

A typical scattering sequence is a succession of       independent scattering 
events, each being composed of paired single scattering amplitudes weighted 
by the statistical factor            
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∑
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V({m}, {m′}) =
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+ iΓ
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meje
h

'
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j

process that contributes to the 
correlation but not to the average 

intensity

Iteration of an elementary vertex

D = V + VWV + · · · = V + DWV



The enhanced correlation is an interference mesoscopic effect : it is 
sensitive to a dephasing process. 

For instance an applied magnetic field      removes the ground state 
degeneracy so that  the enhanced correlation reduces back to the 
Rayleigh law.

me

m1 m4

meje
h

'

m1 m2

j

this contribution vanishes for a 
large enough magnetic field  

since Zeeman splitting  takes it 
far from resonance

Dephasing  by a magnetic field

H
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Calculate             using the diffusion approximation for the multiple 
scattering of photons leads to

C = Y
(c)
0

(
sin2(X

b
)

X sinX
− 2 sin2(

π

b
)
e−π

2+X
2

π2 − X2

)

b = L/l : optical depth

X = b
√

|f0 − f2s2|

(f0, f2, Y
(c)
0 )

depend on the features 
of the atomic transition

∆(H)

C(H)

 (not a lorentzian !)

(FWHM)
Full width at half max.



Full width at half maximum (FWHM)
        a simple derivation.

• Single scattering : the vertex     integrated over the 
frequency     has a lorentzian shape :                   of 
FWHM     

• Two independent scatterings : the corresponding 
width is a product of 2 lorentzians so that the 
FWHM becomes  

• For           independent scatterings, the FWHM 
becomes 

• Assuming a diffusion process for the photons, leads 
to                   so that the FWHM becomes 

∆(H)

1/(δ2 + Γ2)
Γ

Γ(
√

2 − 1)1/2

n ! 1

! Γ/
√

n

n ! (L/l)2

∆(H) ! Γ
l

L

V

ω



the exact expression is
∆H ! a

h̄Γ

gµ0

l

L
a = 2

√
ln 2/f2with
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The FMHW of the “resonance” of           may be, in principle, much 
smaller than the atomic linewidth   .   

Typically, the optical depth                         so we can gain about two 
orders of magnitude compared to other spectroscopic methods     
(Hanle or Franken effects). 

: Doppler effect, fluctuating dynamics of atoms, etc.

Γ

b = L/l ! 10
2

C(H)

l/L


