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Before averaging : speckle pattern (full coherence)
Configuration average: most of the contributions vanish because of
large phase differences.

[A new design !]
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r /W\\» »  Vanishes upon averaging...up to quantum crossings
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Diffuson

Solution of a diffusion [ 9,
equation



Quantum crossings

A diffuson 1s the product of 2 complex amplitudes: it can be viewed as
a” diffusive trajectory with a phase”.

Smallest phase defect: crossing which interchanges
..~ . the amplitudes and pair them ditferently : phase shitt.

.h' 's Small phase shift <2 7 = localized crossing

Crossing probability of 2 diffusons:

1 T,=L"/D
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Weak disorder physics

o Weak disorder limit: g > 1

* The probability of a quantum crossing 1s small :
phase-coherent corrections to the classical limit
are small.

* Quantum crossings are independently
distributed : generate higher order corrections
to the Diffuson as an expansion in powers of 1/g



Consider the transmission coefficient 7.,
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Outgoing photons build a speckle pattern
1.e. an interference picture

How to characterize a speckle pattern ?

Calculate the angular correlation function
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The transmission coefficient 7,3 is a random variable.

For scattering of a classical wave by classical
scatterers, a speckle 1s well characterized by the
Rayleigh law:

—2 =2

ST2=T2_T =T

which accounts for the granular aspect of a speckle :
relative fluctuations are of order unity.

The Rayleigh law simply expresses that a speckle
pattern results from the coherent superposition of a
large number of uncorrelated random, complex valued
amplitudes.

The Rayleigh law characterizes the interference pattern
of a complex wave system.



{ Fluctuations and correlations }
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Slab geometry

transmission coefficient
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correlations involve the product
of 4 complex amplitudes with or
without quantum crossings

Correlation function of the
transmission coefficient :




Angular correlations of speckle patterns

0-quantum crossing correlations:

a" (a) b (b)
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Rayleigh law:




1-quantum crossing correlations

Long range correlation :
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0(2) does not contribute to universal conductance fluctuations



2-quantum crossings correlations
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C'®) is independent of angular
channels: uniform background that

extends over the entire system.
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Crossings: coherent effects,
spatially localized 1n a

\Volume A4

b*  Long range diffusons (classical)







Uneasy experimentally to separate the contributions to the
angular correlations: long range parts are small compared to C*"

and the universal C* contribution affects equally all the speckle
Spots

To separate the different contributions we study their
dependence as a function of an additional parameter : time
correlations



Quantum mesoscopics effects result from interferences and as
such are very sensitive to dephasing.

Sources of dephasing:

e External magnetic field, Aharonov-Bohm flux,
e Degrees of freedom of the waves (electron spin, photon polarization)
e Degrees of freedom of the scatterers: dynamics, Zeeman sub-levels

The probability P(r,r’,t) is affected by a global dephasing

L,= D7, isthe phase coherence length



Dynamics of the scatterers

Complex amplitude

E(ry,r,t)= Y A(r,r,Cy(t)) €
Cy

5 1(T)

Ergodic assumption: C(2) =C,(0)
the ensemble of multiple scattering
sequences 1s independent of time

Time correlation function: C

. . E T E* O — PC t —t/T¢(T)dt
of the intensity (B, T)E"(r,0)) = /O (10,7, t)e

Dephasing effects result from Diffusons
built from the pairing of 2 amplitudes
which belong to distinct and out of phase
realisations.




Uneasy experimentally to separate the contributions to the angular
correlations: long range parts are small compared to C"" and the universal
contribution affects equally all the speckle spots C*’

To separate the different contributions we study their dependence
as a function of an additional parameter : time correlations
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Photon correlations induced by disorder
In @ quantum mesoscopic gas

Ohad Assaf, E.A.



Framework:

Multiple scattering of photons by a
cold atomic gas.




Consider the transmission coefficient 7.,
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Outgoing photons build a speckle pattern
1.e. an interference picture

How to characterize a speckle pattern ?

Calculate the angular correlation function
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The transmission coefficient 7,3 is a random variable.

For scattering of a classical wave by classical
scatterers, a speckle 1s well characterized by the
Rayleigh law:

—2 =2

T2 =T2_T =T

which accounts for the granular aspect of a speckle :
relative fluctuations are of order unity.

The Rayleigh law simply expresses that a speckle
pattern results from the coherent superposition of a
large number of uncorrelated random, complex valued
amplitudes.

The Rayleigh law characterizes the interference pattern
of a complex wave system.



Two new features

® For a gas of atoms with degenerate Zeeman sublevels,
the intensity correlations are enhanced well above the
Rayleigh limit:

T2 >T

Contrast between bright and dark spots 1s enhanced.

This enhanced variance results from interference based
on the effect of spatial disorder and atomic quantum
internal degrees of freedom.



® This large contrast speckle interference pattern is very
sensitive to dephasing such as Zeeman splitting
induced by a magnetic field H which removes the
ground state degeneracy of the atoms. Resonant-like

shape. C
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The linewidth A (/7 )is reduced by a large factor L /las
compared to other spectroscopic techniques routinely

used (Hanle or Franken effects)



Experimental setup
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During the time 7 > [~ the atoms stay at rest. However the
two photons 1 and 2 experience different atomic internal
configurations due to all photons between them.

The measurement is repeated after a time /' > 7 during
which atoms move.

The configuration average results from this motion.



Correlation enhancement

s 29g+12‘ {mR}’ tm} = (ma, m)
{m}
Summation over 71 1s a statistical average over the atomic ground
state with a weight 1/(2j, + 1)
Summation over 175 results from non-detected final states.
At Rl g a sum over quantum amplitudes:

A{m,R} qu(R)Z mQ‘V‘mG me]V|m1>

W — Wmym, T z—

that corresponds to a given and fixed position { ?}of the atom.
The operator V = —d.E describes the dipolar interaction between atoms
and photons.

classical phase: ¢ =ik(|]R — Rs| + |Rq — R|)
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{m}

{R} spatial configuration of the atoms
{m} configuration of the ground state sublevels

Internal atomic degrees of freedom are independent of
spatial positions : A;.[m’R} = Az{m} ci®i({R})

Configuration average : <6i(¢i_¢j) > = 57;3'

_ L {m} 2

The average intensity 1s a sum of intensities 1.e. without interferences
between scattering trajectories. But each A;{m} remains a sum of quantum
amplitudes thus leading to quantum interference effects.



Correlations
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<[ > <[ /> Interference terms between
distinct atomic
C(I,I') = <I(R)[’(R)> — (I){I") configurations
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For a non degenerate atomic ground state : jg = 0 and {m} = {m'}

and for /V >> 1 we recover the Rayleigh law:

But for a degenerate ground state, we always have:

namely correlations enhanced above the Rayleigh limut.



Proof in the limit of a large number of atoms N>>1.

For a fixed spatial configuration { ? } of atoms, among all possible couples
of scattering trajectories of a photon, the ratio of those sharing at least one
common scattering event to those without any common scatterer becomes
negligible for large N.
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A typical scattering sequence 1s a succession of /V; independent scattering

events, each being composed of paired single scattering amplitudes weighted
by the statistical factor 1/(2j, + 1)

sothat C(I,1") > (I){(I")



Iteration of an elementary vertex




Dephasing by a magnetic field

The enhanced correlation 1s an interference mesoscopic effect : 1t 1s
sensitive to a dephasing process.

For instance an applied magnetic field // removes the ground state
degeneracy so that the enhanced correlation reduces back to the
Rayleigh law.

jooee " . " S — this contribution vanishes for a
‘ N large enough magnetic field
/ " he since Zeeman splitting takes it
Jg m] R ] far from resonance



Calculate C(H ) using the diffusion approximation for the multiple
scattering of photons leads to

b= L/l :optical depth
X = b\/|f0 — f25?]

depend on the features
of the atomic transition

(f07 f27 YO(C))

C(H)
Full width at half max.
(FWHM)

A(H)
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Full width at half maximum (FWHM) A(H)
a simple derivation.

Single scattering : the vertex)’ integrated over the
frequency w has a lorentzian shape :1/(6% 4+ I'*) of
FWHM [

Two independent scatterings : the corresponding
width is a product of 2 lorentzians so that the

FWHM becomes T'(v/2 — 1)'/2

For n > 1 independent scatterings, the FWHM
becomes ~ I'/\/n

Assuming a diffusion process for the photons, leads
to .~ (L/l)”so that the FWHM becomes

z
A(H) =T+
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The FMHW of the “resonance” of C(H ) may be, in principle, much
smaller than the atomic linewidth]".

Typically, the optical depth b = I./] ~ 10* so we can gain about two
orders of magnitude compared to other spectroscopic methods



