Diffusing photons and superradiance in cold gases
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@ Strong disorder-Effective Hamiltonian.

@ Distribution of escape times



Scalar waves in random media

Scalar and monochromatic ( k() electromagnetic wave: 1)(7) is
the electric field, solution of the Helmholtz wave equation:

—V2 — kgu(r)y = kg

(compare to Schrodingerequation with disorder)
Disorder potential 1s continuous : fluctuations of dielectric

tant
T V@) = —R2u(r) = befe

Gaussian white noise model:
easy to do calculations

r)) =0
MV (r')) = Bo(r —r')
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B is related to scattering properties of individual scatterers



Edwards model : N, identical, localized, randomly distributed scatterers

E UT—T'J

J=1

The potential v(7) is compared to k' so that

v(r —r;) =ved(r — ;)

Weak potential limit (Born approximation) the scattering cross section
of a single scatterer 1s

and B = n;v5 where 1; is the density of scatterers.



Average amplitude of the field

Solution of the wave eq. with a source j(7) is given in terms
of the Green’s function G(r,7’) :

W(r) = / ar'§ ()G (r, )

Solution of (V* + ki — V(1)) G(r,r") = &(r — 1)

G(r,r'")ymay be expressed 1n terms of the free Green’s tunction G, (r,r")

without scattering potential:

G(r.r') = Gy(r.r) = | dr, G(r.n) V(1) G, (1.1

al and the Fourier
transform of the Green’s function is G(k)



G(k) is expressed in terms of the self-energy X(k)

G(k)=G,(k)| 1+ Z(k)G(k) |

the self-energy 1s given by the sum of irreducible scattering events

Z] 22 ZS 24

The main contribution to X(k)neglects interference effects between
scatterers,

(Z]> S0 1 50Q0Q 4 SQQQ 4

In real space:

interferences : (Zz) +@ +—> @_@ + o




The self-energy X 1s a complex valued function. Its imaginary part
defines the elastic mean free path [ ,

k
70 =—-ImX,(k)=no

the first neglected term provides a correction

Im3, (k)= ——Im, (k)

2kl
1dentify the small parameter % <1 :weak disorder &kl> 1
0
Average Green function:
_ _]y 1 eikOR R
G(r,r'Y=G,(r,r"Ye 7?' = e /%
(r,r)=Gy(r,1) py—

without disorder



>11s proportional to the average polarizability of the scattering medium,
so that its real part gives the average index of refraction n = ck/w

dw
The group velocity v, = —— of the wave inside the medium is,

dk




Summary: multiple scattering

Characteristic lengths:

Wavelength: g

Elastic mean free path: [ = L —1/d

>n,
Nn,;o0

T~

density of scatterers

Weak disorder A, <[ < independent scattering events



Multiple and resonant scattering of
photons by a cold atomic gas.




Scattering cross section and elastic mean free path

The scattering cross section o 1is related to the elastic mean
free path [ by [ = 1/n,0

A3 1
[ A 2n /1 + (26/T)2

12Je +1
32J 41

with ajj, =

v
Resonant scattering 1s much more efficient than Rayleigh scattering
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We have used a model of disorder where scatterers are independent :
Edwards model or white noise

In atomic gases, there are cooperative etfects (superradiance, subradiance)
that lead to an

Dicke states:
g)=|J,=0,m,=0)

) =

Pair of two-level atoms 1n their ground state + absorption of a photon.
Unperturbed O-photon states :

, = 1,m,) natural width T

Singlet Dicke state - ‘OO \/— U 6182 - ‘g162>:|

Triplet Dicke states

82>

11) —‘ele2

\/—Uelgz \g1€2>],



Second order in perturbation theory in the coupling to photons

hl™ cosk
eV ()= —¢ cosk,r |
2 kyr Werradlance
1
e = F[l - e Smk‘)r] Velr) o< =7
ko1 (attractive at short distance)
Superradiant state € = +1 Subradiant state € = —1

%[‘€1g2>+‘g1€2>] %[‘6182>_‘g162>]

'Y =2T (forr = 0) =0

Photon 1s trapped by
the two atoms

Characteristics of superradiance



Scattering properties of Dicke states

Scattering amplitudes of a photon by pairs of atoms in
superradiant T or subradiant T states are:

. / .
Tt = Aeik—K)R g (%) COS (k2 r) GT k| = |[K'| = ko
D . ' \ 1
T — Atk Ry (K1) o (KT oo Ner
. : | N
Il O+ l? + -
R:rl—;m r =11 —TIs o”
At short distance kgr < 1 between the 0=0-®, (detuning)
two atoms, the subradiant term 1 / \
1s negligible compared to Photon frequency two-level spacing

the superradiant term 7~



The scattering diagram ot a photon on a
superradiant state 1s analogous to a Cooperon

k infinite number of

| / exchanges of a virtual

- photon




Multiple scattering and superradiance

Multiple scattering of a photon by atoms 1n superradiant states, 1.€.
coupled by the attractive potential V,(r) oc —1/r

Use Edwards model to calculate the self-energy ZS) in the weak

disorder limit k,[> 1 . .
n; atomic density

6mn; [T dr .
3 ((9 1) : ) 1 Tm maximum
korm Jo &+ 3 ror + ¢ separation between
\ the two atoms.

Elastic mean free path

Group velocity

2 1/2
Index of refraction: n = (1 — (5) Regél))

W



Absence of divergence of the group velocity

* The group velocity at resonance 1s

C
=1
vg(0)
(/) ~ (.26
0 5 5 ¢ 85 Divergence of the group
- ~ 3.84 x 1077  ~ 10" for ™ Rb velocity for scattering by
Jxwo // independent atoms

' r loci
e Group velocity

B . states
2 é
-3t
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We study the diffusive propagation of multiply scattered light in an optically thick cloud of cold
rubidium atoms illuminated by a quasiresonant laser beam. In the vicinity of a sharp atomic resonance.
the energy transport velocity of the scattered light is almost 5 orders of magnitude smaller than the
vacuum speed of light, reducing strongly the diffusion constant. We verify the theoretical prediction o
a frequency-independent transport time around the resonance. We also observe the effect of the residual
velocity of the atoms at long times.

Weak disorder: kgl ~ 2 X 10° > 1

0
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FIG. 1. Radiation trapping (RT) experimental scheme. A D B 0,66m / S

pulsed probe beam is sent through the center of a laser-cooled
atomic cloud. The transmitted diffuse light is collected as a
function of time in a solid angle close to the forward direction.

— k’()?“m ~ (.51
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Transport time 1s defined

| Kor, =0.05 | '
. |
Transport time Ty | |
I
1.5 : : : : I
depends weakly on 22 S\
the frequency w
10 |
. 8 -___j__-__f___-___.___!___
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Strong disorder

Onset of a photon localization transition: for a critical amount of
disorder (density of atoms), there 1s a phase transition from delocalized
to localized photon states.

loffe -Regel criterion: A\ ~ [ where [ = 1/n;o

A 3\ 1

For resonant atom-photon scattering: | — = n.a

P =7 T M T (26)T)2
At resonance, § = () so that, é ~ I\
Cold vapor of ®> Rb : é ~ 10~* (far from localization)

[
p)
while n; >~ 10 em 3 and 7 ~ 3.4
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Cooperative eftects and dipole-dipole
resonant interation

Dipolar atoms are not independent scatterers.
There are long range dipole-dipole interactions.

Moreover, when two resonant scatterers are close
enough, collective states appear (Dicke states) that
change substantially the nature of the localization
transition.

Characterize the onset of localization transition by mean of
the distribution P(t) of escape times.



Atoms = collection of resonant two-level systems:

‘)

Ground state:

gl.) Excited state:

and d. =(d")

with d =d

ei><gi

Diagonal elements: spontaneous emission of isolated atoms

Off-diagonal terms: modification of the spontaneous emission
due to collective effects and dipole-dipole resonant interaction.



Distribution of escape times

Probability 7(#)that a photodetector placed outside the atomic cloud
will detect a photon at time 7 .

() =T Z<Sm(k D g (0yd- (t)>

Probability to detect a photon between times O and t :

P()=[r(Yd' ——=— P(T)

Laplace transform



Distribution of escape rates
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