


Quasiparticles and Fermi liquid theory

Metals : electrons interacting through a strongly screened
Coulomb interaction.

Quasiparticles : electrons dressed by the screening cloud
of the other electrons

gas of “independent * particles.



Properties of the gas of QP’s are those of a noninteracting electron
gas with renormalized physical parameters.

QP’s have a

Probability that a QP remains in its initial state is () = ¢ !/7e<(¢T)
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Energy €is measured from the Fermi energy

At the Fermi level, QP’s are well defined since the width A /7., of a
state vanishes more rapidly than its energy .



Weakly disordered conductors (Altshuler- Aronov)

For a weak disorder ( kgl > 1), QPs have a diffusive motion.

Then, the Coulomb interaction between the QPs 1s enhanced as
compared to a ballistic motion

. d/2
Decrease of the QP lifetime. 9 — (Ei)

Tee

— 1/L%py = Mean level spacing
E. = hD/L? energy to diffuse in a volume L

Is the temperature dependence of 7..(¢ = 0,1") obtained by
replacing ¢ — I’ like for ballistic systems ?

Correct for d = 3 but not for d < 2



More details:
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the function 1172 (w) accounts for effects due to disorder and to
Coulomb interactions.
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where 7 (t) is the probability to have a close diffusive trajectory
(return to the origin) within a finite volume
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It is given by W (w) o< — (E)

Z(t) = Q/ (4w Dt)4/?



e (3
Z(t) = Q/ (47 Dt)/?

Tee decreases with the dimensionality d

large return probability corresponds to a large number of returning
diffusive trajectories: in the excitation spectrum there 1s a large
number of low energy W excitations. (Polya theorem)



Finite temperature : 1' # 0

Convolution with the Fermi Dirac statistical factors:

e T) —47Tvo/ dw/ (e, €, w)W?(w)de’

Decay time at the Fermi level: Tcc(e = 0,7
: x 1 / T d_w - -
Tee (T) 0 CUQ EC

Additional factor T'/w 1s responsible for the low energy divergence.

Large number of low energy w excitations !



Self-consistent description:
(Altshuler, Aronov, Khmelnitskii, 1985)

The states are defined with an energy larger than 7 /7,,, (1)
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Therefore T / e
T) B

Tzn( /Tin

namely for d = 1 quasi-1d wire of section S )

, _2/3
o (T) = (Te \/E)

Soh?

The QP relaxation 1s still exponential.

Remark: This does not atfect the validity of the Fermi liquid
description: h /7, < T

How to see this unusual dependence of Tin In d =17



Coherent effects in multiple scattering:

Weak disorder —=— corrections to the conductivity that arise from
the coherent pairing between time reversed trajectories.

Interference effects are sensitive to dephasing !

How 1s 1t related to Coulomb interactions ?

The two paired multiple scattering trajectories correspond to a given
QP state. For ¢ > 7,,,(T) this state decays and interferences are
washed out.



The relaxation of the cooperon that results from the decoherence 1s
characterized by a phase coherence time 74(7")

We thus expect 76(T) =~ Tin(T)



Cooperon P.(r,r’,t) = probability for a wavepacket to move
from rto ' in a time ¢ by means of a coherent process.

In the presence of dephasing (e.g. interactions):

P.(r,r",t) — P.(r,r, 1) <em¢>

A ¢ 1s the phase shift induced between the 2 coherent trajectories
by the Coulomb interaction, i.e. due to the QP decay.

Apply a homogeneous magnetic field B and
measure transport properties



Assuming that (¢'2?) = ¢~ t/7e() gjves for the magnetoresistance

AR = R(B) — R(0)

L: = D74(T) and L7 = h/eB is the magnetic length, B the applied
magnetic field, L the length of the metallic wire, S its section.
L, 1s the spin-orbit length.



Measurements: (D.Esteve et al. , Saclay group, 2003)

Magnetoresistance of quasi-1d metallic wires (Au, Ag, Cu) of
different nominal purity

Measuring 7,(7) : raw data

IAg(éN)cl ] | Ag(sN)b

SN = 99.999 % source purity
6N = 99.9999 % ¢

Q:) 1 ppm of

Impurities

AR/R

+—>

100 atoms ~ 25 nm

AR/R




From these data, we extract

Why not 74(7T") = 7in (1) ?

Very precise measurement, we should be able to understand this
discrepency.

1,(T) in Ag, Au & Cu wires
I ] SN = 99.999 % source material purity
X 23 2E b 6N = 999999 o/o “ [ I3

Ag 5N

10_— Cu 6N

T, (ns)

Lol N Ll
0.1 1

F. Pierre et al,,
PRB 68, 0854213 (2003)



Intermediate summary:

Both the Quasiparticle states and the Cooperon have an exponential
relaxation:

1dP 1

<6’I,Aqb> _ e—t/T¢(T)

Not satisfactory!



Our results: the relaxations are not exponential, but rather

with an identical behaviour for the Cooperon at small times, and

To(T) = Tin(T)

There 1s a distribution of relaxation times



The Fermi golden rule:

Claim: the relaxation rate P(t) of a quasiparticle is not exponential
so that we need to be careful with the use of the Fermi golden rule
calculation that assumes :

1 dP 1 O
— — &
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Consider a QP initially in a state |0) at the Fermi level. After a time
t, the transition prob. P(?) (t) to lowest order 1n perturbation 18

PO (1) —hzZ/ dT/ A7 (0]Vi (7) m) (| Vi (') 0)

where V() =V (r(r),7)



Simplification: (Altshuler, Aronov,Khmelnitskii)

The overall effect of the Coulomb interaction on a given QP 1s
described using a fluctuating potential V' (r,t) whose characteristics
are determined by the fluctuation-dissipation theorem.
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Transition prob. towards final states is

€q T €y — €3 — €5
PEN) = o 3 U sl (05 2=
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where U, gs is the matrix element of the interaction, and

) = (Tlefzy

can usually be approximated by fi(Aw) ~ 27t0 (Aw) , hamely a
linear decay of the probability.




This approximation is not always valid !

Due to the diffusive motion of electrons, we need to keep the full
expression of f:(Aw)

22T \d\q /
7?(2)(75 T) ¢ deT dw

diffusive motion

iw(Tt—T1")

Averaging over disorder, (¢'@-(*(1)=r(T)y — o=Da*|7—7’]

so that

Non exponential behavior !



Behavior of the phase shift and of the Cooperon

P.(r,r',t) — C(T7T/7t)<6

due to interactions
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Inverse Laplace transform (analytic function):
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with |u,| = (3_77(71 _ §)> / at small times
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The origin of the factor 2.139... comes from the fact that although

<67;<I>>TC ~ o= (t/Tin)?? £ e~ t/2Tin

Y

the integral of the two fuhctions are cloge.

result




