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Abstract. — The ensemble average of the persistent currents of Aharonov-Bohm mesoscopic
rings is evaluated in a case where the number of electrons rather than the chemical potential is
fixed. The difference between the average currents in these two situations is expressed on
general grounds in terms of the fluctuation of the scattering phase shift. It is then shown that in
the diffusive regime this difference is (%/2¢)-periodic and does not depend on the disorder.
Possible extensions of the approach used here are emphasized.

The purpose of this letter is the study of persistent currents in disordered mesoscopic
metals threaded by an Aharonov-Bohm flux. Although the approach presented here is valid
for any disorder, the expression of the current will be derived within the diffusion
approximation [1] for which k:1>>1, [ being the elastic mean free path.

The general problem of the existence and behaviour of persistent currents in systems
submitted to an Aharonov-Bohm flux was first considered by Bloch [2]. It was subsequently
studied by Buttiker, Imry and Landauer[3] who considered also the effect of a slight
disorder. These currents were found to be ¢,-periodic (¢, = h/e) and to decrease on average
exponentially [4] with the size of the system in the presence of elastic scattering. Their
recent experimental observation [5] on an assembly of 107 disconnected Cooper rings have
raised new questions: i) the ensemble average of the current exhibits a (¢,/2)-periodicity and

“ii) the amplitude is much higher than the expected exponential decrease.

The important distinction in this problem between isolated (fixed number of electrons)
and nonisolated (fixed Fermi energy) rings was first emphasized by Cheung et al. [6]. It was
subsequently studied in more details by Bouchiat and Montambaux[7] for slightly
disordered systems. They showed numerically that for isolated rings the variation of the
Fermi energy with the Aharonov-Bohm flux gives rise to an ensemble-averaged current
with (¢o/2) periodicity, while in the opposite limit of a nonisolated system it remains periodic
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with ¢, as it should. As discussed by Imry [8], and established recently by Schmid [9] and by
Altshuler, Gefen and Imry [10] while this work was completed, this behaviour remains in
the diffusive regime. The role of the electron-electron interactions was also considered in
this regime[9,11] to explain the change of periodicity. Noticing that the interactions
preserve the local charge density, to take them into account imposes a constraint stronger
than the conservation of the total number of electrons.

The assumption of the diffusive regime is of erucial importance. It describes a situation in
which the multiple elastic scattering of the electrons can be approximated by a random walk.
For mesoscopic samples of length L smaller than the phase coherence length L, in spite of
the elastic scattering, the electronic wave functions are coherent all over the sample. They
are therefore sensitive to the specific configuration of the impurities. This gives rise to
anomalously large fluctuations of the electrical conductance [12]. Thermodynamic quantities
like for instance the Landau diamagnetic susceptibility are showing anomalous fluctuations
as well[13]. It was nevertheless generally believed that unlike transport coefficients
average thermodynamic quantities were not sensitive to the diffusive motion of the
electrons. Such a statement has to be revisited in order to explain the experimental results
on the assembly of isolated rings.

The average over the ensemble of the current for both isolated and nonisolated systems
was considered [9, 10] from the thermodynamic point of view in order to relate canonieal and
grand canonical descriptions. Here, I consider a different approach of the problem. The
currents will be described in terms of the on-shell scattering matrix or equivalently the
scattering phase shift [14]. This formulation is general and applies not only to persistent
currents, but also to systems submitted to a magnetic field. It is also convenient and allows
to express in a simple way the difference between the ensemble-averaged current of,
respectively, isolated and nonisolated systems in terms of the scattering phase shift.

Consider a mesoscopic metallic ring of volume V with noninteracting electrons, threaded
by an Aharonov-Bohm flux. At zero flux the ring is defined by a Hamiltonian H, which
includes the elastic impurities while in the presence of the flux the Hamiltonian is H(¢). I
assume that H, admits delocalized states |m) defined in the volume V and H(¢) has similar
eigenstates |m’). In the limit V — o« of an infinite volume, it is always possible to associate
with any solution |m) of energy E of H, a solution |m') of H(¢) with the same energy. These
two stationary eigenstates differ in the asymptotic limit by a phase shift only, so that there
exists an operator S(E,¢) defined by |m') =S(E, ¢)|m). S is known as the on-shel
scattering matrix [15]. More precisely, the operator S, describing outgoing waves can be
expressed in terms of the resolvant operators G (E) and G*(E) respectively associated with
Hjyand H by S.,(2) = G*2)[GF (2)]"}, where z is a complex number. The scattering phase shift
é(z) is then the real function obtained from S, by [15]

8(z)=ImInDetS.(2). ey
Using successively the basis of H, and H(¢) provides for the determinant the equality
z—E,
DetS.(2) = ml}ﬂ/ Py 2

where E,, and E;, are, respectively, eigenvalues of H, and H(¢). Finally, taking the
derivative of eq. (2) and using the relation =g(F) = — Tr Im G, (F) between the density of
states per unit energy g(£) and the resolvant gives

dé(#, ¢)

~lgE, ¢)~9E, Ol = —7) @
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which relates the change in density of states due to the flux ¢ to the derivative of the total
phase shift §(Z, ¢).

So far, the results derived above are very general. Consider now the additional
constraint provided by the conservation of the number N of electrons in the sample. The
chemical potential u(¢) depends now on the flux, and can be written u(¢) = uo + Au($), where
@o is the zero-flux contribution which depends on the particular configuration of the
impurities. The conservation of the number of particles is then expressed by

#($) )
| aEg@, = [ dBgE,0=N. @
(]

Integrating eq. (3) over the energy and taking eq. (4) into account provides the important
equality
w[no(uo) — ol (@] =8 (u(4), 4) (5)

where ny(¥) is defined as the number of states up to energy E in the absence of flux. This
relation is reminiscent of the Friedel sum rule for the perfect screening of a point charge in a
metal.

To first order in du(¢), eq. (5) gives

1
79 (o)

Au(g) = - (o, $) (6

which relates the change Au(¢) of the chemical potential to the corresponding change of the
scattering phase shift. The persistent current I(¢) can also be expressed in terms of the
scattering phase shift [14] by

()

I9=1] a8
0

93(H,¢)
— @

¢

It is an odd and periodic function of flux with period ¢,. The total phase shift is therefore an
)ven and ¢,-periodic function of the flux which can be expanded as

S(E, ¢)=&(E) + 2: ca(E) cos <2nn%> . (8)

The éverage value over the flux of (&, ¢) is 8y(&). Since from eq. (5), one sees (1) that
&g, 0) =0, it implies that Jy(uy) = 0. Together with eq. (7), it gives to first order in Au($)

19=— 3 2:2sin(2en ) [
@=- 3 2= 7'sin (2 n¢0) oj AE ¢ (B) +

-+

4 . ¢ ¢
: 2rn— zn' —|.
7o 9(10) r% o) Calppo)S10 ( " 4’0) €08 (2 " ¢0) ©)

(1) In the absence of flux, the scattering impurities introduce also a phase shift. Nevertheless, I do
not consider it since it does not contribute to the current given by eq. (7).
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The chemical potential u, at zero flux can be written po= {u,) + Suo, where {(u,) defines the
average over the disorder. To first order in du,, the average (I(¢)) of the current is then
given by

(o)

_1[ gg2 S -
@) = | dBZ 0E, 9)

2

The first term in this relation corresponds to nothing but the average current (I(¢)) of an
open system with fixed chemical potential {u,). In the mesoscopic regime here considered,
(I(¢)) was shown [4] to decrease like exp [— L/I]. It is moreover periodic with period ¢, as
expected. The second term in eq. (10) is new. It results from the conservation of the number
of particles (eq. (5)) and the relation it implies between the change Au($) of chemical
potential and the total scattering phase shift. To obtain its periodicity, it remains now to
evaluate the correlation function of the ¢.s within the diffusion approximation whic
provides the second physical input of the problem. To that purpose, it is worth noticing that
from eq. (3) it is possible to relate &(u,, ¢) to the variation of the density of states. Therefore,
the fluctuation (8%(u,, ¢)) which appears in eq. (10) can be expressed as the energy integral
of the density of states correlation function K(¥, E;). This quantity has been calculated in
great details for zero flux by Altshuler and Shklovskii [16]. I rely on these computations and
for T'=0 and nonzero flux it gives

<32(#0, 95)) =- deldEzReE 1 1n

w (B — By + ihDg?’

where 7, stands for the integers n,, n, and n,, while the transverse wave vectors g, and g,
are quantized as g, = (zL)n,. The diffusion constant is D =;1/3 in three dimensions. The
component g, depends on the flux and to work out this dependence, consider first the
correlation function

(eali) i) = == [ ds a4’ exp [i%(nqs ' %’¢’)} (B0, 900, D). (12)

1
(2ngo)?

It corresponds to a generalisation of eq. (11) to the case where the densities of states depenc
on different values ¢ and ¢’ of the flux. There are two contributions to the diffusion pole. The
first one, the diffusion, gives a component of g, which depends only on ¢ — ¢'. In the limit
¢ = ¢’ considered in eq. (11) this contribution to the average current disappears. It describes
.in fact the zeroth-order harmonic &(u,) which precisely does not contribute to eq. (10). The
second contribution is the Cooperon for which the ¢, component is given by
q. = n/L(n + (¢ + ¢')/¢y), where n is an integer. For ¢ = ¢’ it gives a nonzero contribution to
the average current and allows to rewrite eq. (12) as (c¢,(xo) Cito)) = S {Cc2(1o)) which
establishes within the diffusion approximation the statistical independence of the harmonics
from the scattering phase shift.
In order to calculate now the amplitude of the average current, we have to evaluate
(€2(u0)). This calculation is closely related to the one presented in [10] for the fluctuation of
the chemical potential. Within the same approximation, it gives

u/Ee
2
(chwo)) = Ve f \(/m_exp [— 7 V]ull[cos n V]u]) + sin (o Vu])]. (13)
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In the mesoscopic regime here considered, u,>> E., so that the upper limit of the integral can
be taken as infinite. Then, (c2(zo)) appears to be independent of the disorder, i.e. of E..
Therefore, from eq. (10), the difference (1(¢)) — (I($)) is also independent of disorder. This
is a periodic function of the flux and the amplitude I, of the harmonics is given by

214

= V24

I.= (14)

where A = #?/(2mk:L?) is the mean level spacing at the Fermi energy. Introducing the

number M = (k;L)? of transverse channels and the Bloch expression I,=ev,/L for the

current of a one-dimensional ring without disorder, eq. (15) rewrites I, = — i/(4=*V2)Io/M).
The main results derived above are now summarized:

) i) The conservation of the number of particles in an isolated system gives a general
relation (eq. (5)) between the variation with the flux of the chemical potential and the total
scattering phase shift. Then the difference (I(¢)) — (I)(¢)) of the ensemble-averaged
currents for, respectively, a closed and an open system is simply expressed as the flux
derivative of the fluctuation of the scattering phase shift.

ii) This fluctuation has been calculated within the diffusion approximation, by
considering the Cooperon contribution. It shows that (I(¢)) — (Iy(¢)) is a periodic function
of the flux with period ¢o/2. The harmonics I, are independent of both disorder and » and
given by eq. (14).

iii) A derivation similar to the one leading to eq. (8) could have been worked out in the
absence of magnetic flux, in order to relate the scattering phase shift 8(E) to the fluctuation
3g(E) = g(E) — (g(E)) of the density of states. Then, =(¢%(u,)) appears to be the fluctuation
of the number of levels below the Fermi energy as was calculated by Altshuler and
Shklovskii [16]. Their result gives (¢%(uo)) ~ (uo/E)**>> 1. The average persistent current
therefore appears to play a role similar to the conductance fluctuations in the presence of a
magnetic field, the latter providing a measure of (¢%E.)). An «ergodic» hypothesis is
currently admitted according to which different values of the magnetic field correspond to
different realisations of the impurity configuration. From eq. (13), one has (8%, ¢)) =1,
herefore much smaller than (4%(u)). It seems therefore that this hypothesis does not apply
for the case of persistent currents.

These results coincide with those derived in ref. [9,10] but are at odd with numerical
results obtained by Montambaux et al. [17] in the diffusive regime, who found a dependence
on the disorder proportional to /M., where M,=MU/L. Moreover, although the above
results recover the (4,/2)-periodicity observed experimentally [5], the amplitude of the
current is orders of magnitude smaller than the experimental value. The reason for this has
probably to do with the diffusion approximation rather than with the assumptions leading to
eq. (10). A quantitative explanation would involve other mechanisms. It would therefore be
interesting to consider related problems in the presence of a true magnetic field applied on
the electrons.
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