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Abstract. - We study fluctuations in the diamagnetic response of disordered mesoscopic 
samples. For weak magnetic fields, we derive a convenient expression for the susceptibility x of 
any specific sample and show the existence of large anomalous fluctuations in x ,  in agreement 
with other recent calculations. For strong magnetic fields, we show that the fluctuations are 
considerably suppressed. 

Recently there has been much interest in the physics of mesoscopic systems[l]. A 
mesoscopic sample can be viewed as one huge <<molecule>> and the electronic wave functions 
are sensitive to the specific configuration of impurities in the sample. Therefore mesoscopic 
systems can exhibit anomalous fluctuations from sample to sample. For instance, the 
relative fluctuation in the electrical conductance is anomalously large and decreases with the 
sample size L only as L-l, instead of the standard L-3’2 decrease, in three dimensions 121. 

Similar anomalous fluctuations are expected to exist also in the static magnetic 
susceptibility of disordered mesoscopic samples. It is the purpose of the present letter to 
study such fluctuations, which are due to the orbital motion of electrons in the presence of 
the disordered potential of impurities (we do not consider magnetic effects due to the spin). 
We consider both weak and strong magnetic fields. The case of weak fields (Landau 
diamagnetism) has been discussed in recent works of Cheishvili [3], Fukuyama [4] and 
SerotaE51 which had appeared while our work was in progress. For this case, we derive 
results similar to those of ref. [4,5] (our calculation is based on a convenient expression for 
the susceptibility which, to our knowledge, has not been given in the literature). For strong 
magnetic fields, we demonstrate that fluctuations are strongly suppressed. 

We, thus, consider an isolated metallic sample, with the Hamiltonian (in obvious 
notations) 
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where V(r) is the impurity potential, the sum is over all electrons in the sample, and the 
electron-electron interactions are neglected. For weak magnetic field standard perturbation 
theory, to first order in A, leads to the following expression for the x-th component 
(x = x, y, x )  of the current density 

where p(r) is the carrier density and the kernel Qz&, r’) is defined as 

Here GP denotes the advanced Green’s function of the unperturbed problem (i.e. in the 
absence of the magnetic field), f(~) is unity for occupied states (and zero otherwise), and the 
(c.c.)-term denotes complex conjugation of the first term (it can be written exactly as the 
first term, but with retarded Green’s functions instead of the advanced ones). The same 
expression for ja(r) can be derived using, from the start, Green’s functions with magnetic 
field and then expanding in A (see e . g .  ref. [6]). 

One could now easily write down an expression for the susceptibility x using the relation 
M =  (l/2c)Jd3rr x j ( r )  between the currents and the magnetic moment M of the sample. 
Such an expression, however, would not be of particular use for our purpose. For instance, 
in the absence of disorder (and in a homogeneous magnetic field) current flows only at the 
boundaries of the sample so that calculating x from currents would require a careful study of 
boundary effects (see e .g .  ref. [7] for an illuminating discussion of this point). Below we 
derive a more convenient expression for 2. Let us first write eq. (2) as 

This result is a consequence of a sum rule: 

jd3r’ Q&, r’) = (e2/mc),c(r) JzP, 

which follows from gauge invariance and can be also verified directly. The change in energy, 
due to the magnetic currents, is given by 

(5) E = - - j d 3 r j . A  1 (r)  = - l / d 3 r d 3 r ’  2c QZa(r, r’)A*(r) [A,(r’) - A , @ ) ] .  2c 

Next, we symmetrize this expression by splitting it into two equal parts, changing in the 
second part r e r ’ ,  a e/3 and using the symmetry relation Qzp(r, r’)  = Q&’, r) .  Finally, 
choosing the Landau gauge A, = B, (the magnetic field B is in the x-direction), we obtain 

where the integration is over the sample volume 0. Let us emphasize that no averaging over 
disorder was made so far: eq. (6) refers to  any specific sample. 
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For free electrons (i.e. no disorder) a straightforward calculation leads to  the Landau 
diamagnetic susceptibility, xo = - ,&g0/3, where pB is the Bohr magneton and go is the 
density of states at the Fermi level. In the presence of disorder the average Green’s function 
(Gk(r, r’)) differs from the free-electron Green’s function by a factor exp [ - I r - r‘ 1/21], 
where 1 is the elastic mean free path. This leads only to small, of order (ICF 1F2, corrections to 
the average susceptibility (x), consistent with the old result of Dingle [81. (kF is the Fermi 
wave vector, and kF 1 >> 1 is assumed.) 

It is important to realize that the susceptibility remains essentially unaffected by 
disorder only on the average. In a given sample disorder can have a large effect on 
susceptibility. The point is that the magnetic currents j(r) in the bulk vanish only on the 
average. For any specific samplej(r) in the bulk does not vanish. Moreover, due to diffusion, 
long-range correlations in the spatial current distribution exist, which leads to large 
fluctuations in susceptibility. 

Calculation of ( 8 2 )  from eq. (6), with Qyy(r, r’) given by in eq. (3),  requires averaging of 
a product of four derivatives of Green’s functions. This averaging is done by the diagram 
technique, and the diagrams are similar to those describing the conductance fluctuations [2]. 
An example of a diagram with two ladders is shown in fig. 1, where solid lines denote 

Fig. 1. - A diagram with two ladders. Arrows to the right (left) denote an advanced (retarded) Green’s 
function. 

averaged Green’s functions and shaded boxes represent diffusion ladders. For distances 
larger than 1, a diffusion ladder $(rl, r2, r3, r4) = 6(rl - r3)6(r2 - r4) T(rl, r,; AE), where 
A E  = E  - E‘ and T(rl, r2; AE) satisfies the diffusion equation 

with D = (1/3) vF 1 being the diffusion coefficient (vF = hkF/m). 
For an infinite medium the solution of (7) is 

1 

The other parts of the diagram (i.e. other than the ladders) are short range and decay at  a 
distance of order 1. They can be replaced by &functions with appropriate weights. As a 
result, we obtain the following contribution from the diagram in fig. 1: 

(9) 
8k$13 

(8~’)  = - 2$ (-) Re [dE [ dE’ ld31.d3r’ (x - x ’ ) ~  T2(r, r’; A E ) .  
h3 v; a - m  0 
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If one uses the expression (8) for the ladder in eq. (9), one obtains ( ax2) = X~@IL)', which 
is Fukuyama's result [4] (there are similar contributions from other diagrams). Similar 
calculations in two dimensions lead to [4] (6x2) =j&kFZ)', where zo is the Landau 
susceptibility in two dimensions. 

Serota [5] has pointed out that the above estimate for (6x2) would be correct if the 
sample were coupled to the outside world by leads(l). For a truly isolated sample there 
exists an eigenfunction of the diffusion equation (7) which is constant throughout the sample. 
This eigenfunction contributes to the ladder a constant To(@) = Sl-'(h'/2m)'(l2x/Z3) 
(hD/i AE) which is not included in the expression (8) for the ladder. Taking into account this 

zero mode, together with the appropriate energy cut-off A = LWdg;' in addition to T given by 
eq. (8), leads to the Serota's [5 ]  result ( 6 ~ ' )  = (kF Z)4$, in any dimension d. 

Let us now consider the case of a very strong magnetic field (in this part we restrict 
ourselves to the two-dimensional case only). Let us assume that all electrons reside in the 
lowest Landau band (the lowest Landau level broadened by the disordered potential V(r)) 
and that the filling factor is close to one. Thus, the electron concentration is n= 1/2xA2, 
where A = (hcleB)'" is the magnetic length. For a sufficiently smooth potential (the typical 
variation length L, of the potential is much larger than A) one can use the quasi-classical 
approximation for the guiding centre motion. (This approximation has been used, by a 
number of authors, in the theory of the quantum Hall effect [91.) The energy correction, AE, 
due to disorder, is then given by 

AE = K j d 2 r V ( r ) .  2zhc 

Equation (10) simply means that each of the (approximately) d2r/2xA2 electrons within the 
area d2r contributes an energy V(r). The fluctuating part of the magnetic moment AM is 
therefore 

AM= - ( L ) , / d 2 v V ( r ) .  2xhc 

The same result can be derived with the help of the local current density j(r). Indeed, 
within the guiding centre approximation, the particle drifts along an equipotential line with 
a velocity v(r) = (c/e)(l/B')(B A VI'). The current density is thus: j(r) = e(2xA2)-' v(r) = 
= (e/2xh)8 A VV, where 8 is a unit vector in the 2 direction (the direction of B).  The 
magnetic moment related to these bulk currents is 

since, for the two-dimensional geometry considered here, r is perpendicular to 8. Let us 
recall that V(r) describes the fluctuating potential in the bulk and does not include the 
confining potential at the boundaries of the sample (the latter gives rise to the surface 
currents which produce the main, average, part of the magnetic moment). Taking V(r) = 0 at 

(') There is no need for actual leads. If, for instance, the electrons scatter elastically within the 
sample but undergo an inelastic collision when they reach the boundary, then Fukuyama's estimate for 
( 8 2 )  should be valid. 
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the sample boundary, we can rewrite eq. (12) as 

AM=-- e 1 d2rV (r)  div r = - “-/ d2r V (r)  , 
4xhc 2xhc 

which coincides with eq. (11). Writing now the potential correlation function (V(r ) .  
.V(r’)) = G f ( r  - r’), where V, is a characteristic magnitude of V(r) and f ( r )  is a function of 
order 1 decaying on a length L,, we find 

eVoLL 
( A M 2 )  =(e) 

Let us recall now that, in this regime of extremely strong magnetic fields, the average 
magnetization corresponds to one Bohr magneton per electron (indeed, the energy per 
electron is just hwJ2 = heBI2mc). Therefore the average magnetization is 

L2 eh 
( M ) = -  - 2Xh2 2mc 

and the relative fluctuation is 

Thus, in contrast to the weak-magnetic-field case (where 6’ was size independent and 
large) here the relative fluctuation is small and decreases with the sample size. 

In conclusion, we have studied fluctuations due to disorder, in the magnetic response of 
mesoscopic metallic samples. For weak magnetic fields, we derived a convenient expression 
for the susceptibility x and recovered the results of Fukuyama [4] and Serota C51 for (82) .  
For strong fields, we show that fluctuations in the magnetic response are considerably 
suppressed. It would be interesting to consider the closely related problem of persistent 
currents in disordered rings [lo], when the magnetic field acts not only in the annulus but 
also on the ring. It would also be of interest to discuss the disorder-induced fluctuations in 
the de Haas-van Alphen effect and their interplay with the oscillations due to the edge 
states 1111. * * *  
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