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Condensed matter systems are usually characterized by their response to external
fields. The Kubo linear response theory is the standard theoretical tool used to
analyze it. In order to obtain transport quantities with this method, we generally
need to know both the eigenvalues and the eigenfunctions. This article discusses
another methodological approach which in some cases allows one to obtain some
characteristics of the dc dissipative transport from the response to a gauge field in
a multiply connected geometry. This avoids the need of the eigenstates to charac-
terize the transport properties which are directly read off the behavior of the energy
spectrum. This method is applied to the problem of transport in metals and Ander-
son insulators. © 1997 American Institute of Physics. [S0022-2488(97)01304-2]

I. INTRODUCTION

Among the various ways to characterize the state of matter, the response to an external electric
field constitutes one of the major probes. It might be either the dc or the ac responses measuring
the dissipative or reactive parts, the optical spectrum, etc.

The basic formalism used in order to express these transport coefficients is the Kubo linear
response theory. It involves the knowledge of the expectation value of a current—current correla-
tion function. This means that already in the simplest cases (e.g., a gas of noninteracting electrons
moving in a random potential) we need to know both the energy spectrum and the eigenfunctions.
The latter are difficult to evaluate, where in some cases, for instance, a semi-classical approxima-
tion can be used.

This methodological problem inherent to the Kubo linear response theory can be avoided in
certain cases which shall be discussed further by considering the same system closed on itself and
submitted to twisted boundary conditions. Then, the usual sum rules involving off-diagonal matrix
elements (e.g., the Thomas—Reiche—Kuhn sum rule) have to be generalized and it is possible to
express Kubo correlation functions in terms of the sensitivity of the energy levels to an applied
gauge field.

A. Equivalence between an Aharonov—-Bohm flux and a twist of the boundary
conditions

To set up the problem, we consider the example of one electron of mass M moving on a ring
of length L and radius R. The Hamiltonian is H(0)= (p?2M)+V and V(x) is a potential which
might, for instance, describe the effect of disorder. To obtain the energy spectrum, we must
impose boundary conditions. Single valuedness of the wave functions ¢{(x) requires
P(x+L)=y(x). Twisted boundary conditions (TBC) are defined through the generalization
W(x+L)=e'®Y(x), where ¢ is a real parameter. It is possible to get rid of the phase factor by a
suitable gauge transformation. This modifies the Hamiltonian H(0) into:
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1782 E. Akkermans: Twisted boundary conditions and transport

H(¢) describes the motion of an electron on a ring pierced by an Aharonov—Bohm (AB) mag-
netic flux @ defined by the vector potential A ;= ®/L and the physical nature of the twist param-
eter ¢ is given in that case by ¢= /D= (e/h) ®. The eigenenergies E,, of the twisted Hamil-
tonian in Eq. (1) do depend on ¢ and their curvature at ¢=0 is given by the (nonperturbative)
expression:
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where (|n),e,) describe the eigenstates of H(0).

B. The f-sum rule

The combination on the rhs of Eq. (2) does appear in another context, namely, the Thomas-
Reiche—Kuhn sum rule (or f-sum rule).! It might be useful to rederive it here. Consider the
Hamiltonian H(0) on the real line (the 3d generalization is straightforward), and the eigenbasis
(|n),e,). Using the commutator [x,Ho]= (ik/M)p,, we may write ifi/M (n|pll)=(e;—e,)
X{n|x|l) so that:

Kilpdm)l?
l#n en—el
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We can extend the sum on the ths to all states |n) since (n|p,|n)=0 in the absence of applied
magnetic field (time reversal invariance). Then,

2 Hp o) 1
M#E,, %:gﬂl[ﬁpﬂllﬁ—l (4)

(for suitably normalized eigenstates). Equation (4) is the formulation of the f-sum rule, and the
Fin= M |{l|p|n)*/(e,—e;)] are the oscillator strengths.! The puzzling result is the follow-
ing. The proof of the f-sum rule relies only on the commutation relation [py.x]=—ifh . We could
therefore expect that it will work as well for the TBC case so that the curvature
&*E, 19> |¢=0=0 for any state. However, in the multiply connected geometry considered for
TBC, the position operator x is not single valued and therefore is not admissible so that the usual
proof of the f-sum rule cannot be used. This point is crucial and will be at the heart of the
subsequent discussion. Roughly speaking, it might be formulated in the following way using the
language of metals and insulators. A metallic system is characterized by delocalized states such
that the f-sum rule is not fulfilled in the multiply connected geometry and therefore the twist
curvature is nonzero. On the other hand, an insulator is characterized by (exponentially) localized
states such that it is always possible to build (even for multiply connected geometries) an effective
position operator. The f-sum rule is then fulfilled and the curvature is zero (up to exponentially
small corrections with the system size). Therefore, the behavior of the appropriate curvature is the
hallmark characterizing localized or extended states. The remainder of this article is a declination
of this theme for the physical situation of the Anderson metal—insulator transition where the
curvature is related to the dc residual electrical conductance.”
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1. TRANSPORT IN DISORDERED METALS: THE THOULESS CURVATURE
A. The Kubo linear response theory

Consider a d-dimensional gas of volume L of noninteracting electrons moving in a random
potential V(r) in the absence of magnetic field. The (one particle) Hamiltonian is H(0). Accord-
ing to Kubo, the expression of the residual (T=0), dc conductivity Re o;;(w=0,T=0)=¢ is
given by the trace

e’k
o= WTr(jGO+(Ef)pijG0+(Ef)Pi)v (5)

where p; is the momentum along the i-direction and JG,"(E) is the imaginary part of the
resolvent operator G " (E)=[1/E—H(0)+in](5—0") associated with H(0). The relation be-
tween the conductance G, and the conductivity is G,= L% 2. Due to the impurity potential
V(r), both G, and o are random variables. A large part of the activity in the field of Mesoscopic
Quantum Physics during the last years has been devoted to the calculation of the various moments
of o mainly in the weakly disordered (metallic) regime but also for Anderson insulators.* The
average conductivity (o) for weakly disordered metals is calculated to low orders in the small
parameter 1/k¢l, where [ is the elastic mean free path and k; the Fermi wave vector. The zeroth
order (including the so called diffusion modes) gives the Drude expression: (o) = ne’r/M. To
that order the average conductance (G,) can be formally expressed (in units of e*/h) as the ratio
of two characteristic energies as (G,)= (e*/h)(E./A), where E = AD/L? is referred to the
Thouless energy and A= 1/L¢p(E 1) is the mean level spacing . The diffusion constant D is related
to (o) by the Einstein relation {o)=e¢’Dp(E/) and p(E/) is the density of states at the Fermi
energy. This formal way of writing (G,) corresponds to the standard physical picture of block
scaling’ and diffusion motion (random walk) of the electronic wavepackets. The next order in
1/k¢l leads to the weak localization corrections (cooperon diagrams) which are at the basis of the
scaling theory of localization.®

B. The Thouless curvature

The Kubo formula [Eq. (5)] for the conductivity requires the knowledge of the eigenfunctions
of the Hamiltonian H(0). To see it, rewrite o under the form:

2

e h
o=2pra Knlpilm)*8(Eq—€,) 8(E;—ep). )

Since we shall be interested in the behavior of finite size systems, it is worth mentioning under
which conditions Eq. (6) is derived. We consider a finite size system in a box with a discrete
energy spectrum. The applied constant electric field is described by a harmonic vector potential in
the limit w—0. A finite conductivity is the result of transitions induced by the (w-dependent)
electric field between levels separated by % w, so that keeping the system finite and taking the limit
w—0, the conductivity vanishes. In order to obtain a finite response, two methods are usually
considered. One is to take the thermodynamic limit first (for finite @) so that the spectrum
becomes continuous. Then, the limit @—0 gives a finite conductivity. The other method, usually
considered for finite size mesoscopic systems consists of assuming the existence of a weak cou-
pling between the system and external reservoirs through leads and contacts. This coupling is
described phenomenologically by an energy y over which the energy levels are spread out such
that Zw> y> A in order for the transitions between the levels to be induced by the electric field
only and not by the coupling to the leads. Finally, we consider the limits y—0 and then w—0.
Both methods are equivalent and represent nothing more than a way to regularize the sum in Eq.
(6). Keeping this in mind, and taking the limits as prescribed above we obtain:
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%

where the matrix element is between off-diagonal states (diagonal ones are zero) with the same
energy E;. This requires a degenerate Fermi surface and the knowledge of the eigenfunctions at
the Fermi energy. ’

Consider now twisting the boundary conditions of the system along, say, the x direction,
leaving the boundary conditions unchanged in the other directions. The curvature of the energy
levels is given by Eq. (2). Let us now see how this curvature might be related to the conductivity
o. The main steps of the original derivation of Edwards and Thouless’ are the following. Define
the dimensionless quantity gr= (/AY(I*E,19¢%) |¢:0, where the energy E, is the closest to the
Fermi energy. Due to the disordered potential, g7 is a random variable. We assume the matrix
elements of the momentum to be uncorrelated with the energies. This, as we shall see, is correct
within the Random Matrix Theory (RMT) description of weakly disordered metals. Replacing the
squared matrix element by its average over the disorder, we obtain:

®)

h2
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Then, we assume for the average conductivity the Drude expression and using 7= (M /ﬁkf)zD
gives (|p,|*)=MAk. From Egq. (8) we obtain
ﬁ2
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The remaining random sum is zero on average. It is likely to be dominated by the smallest
denominator, i.e., typically of the order of the inverse mean level spacing A. Assuming the energy
levels to be uncorrelated (which is incorrect for weakly disordered metais) , the sum in Eq. (8) has
a Cauchy distribution with a width /A, and g;= (A*/2ML*A)[1+27ksl]. For weakly disor-
dered metals, ks> 1, so that (RAML?A) wkl =1 (E,/A). Therefore, the typical curvature gy is
(in’ units of e?/h) the Drude average conductance obtained from the Kubo formula.

This derivation is based on assumptions which are not well justified or even incorrect. I would
like to present a slightly different argumentation independent of some of the previous assumptions.
First, I define the Thouless curvature g, by the quantity

1 ¢
81=75 WN(Ef,¢)|¢=o, 9

where N(E,¢) is the density of states integrated up to the Fermi energy. This has the advantage
of defining the curvature as a trace. Using

1
N(Ef,¢)=f;def(e)3 Tr G*(e,¢) ,

where f(€) is the Fermi—Dirac distribution and G*(e,¢) the resolvent operator, we obtain:

—1 h fd JT
8= L2 ef(€)J Trl

(G (&0)*+ %G+(6,O)PXG+(E,O)PxGJr(f,O)]
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which after an integration by parts gives

2

—; (e, Ef)(w2 (10)

I shall take g, given by Eq. (9) as an operational definition of the Thouless curvature. It is already
clear from that definition that g; cannot be reduced to the Kubo expression [Eq. (5)] for the
conductivity; they are different quantities. For instance, unlike the conductivity o, the average of
the curvature g over disorder is zero. To see it, let us rewrite g, using Eq. (2). Then,

ﬁ2
(&1)= 572 (—p(EP+(D)),

where

1 (1 1 4 (1
(D=7 | —def’ (eIm X, py- Pz<a€<P1|Go (e)lpz>> V 9E (317,« p(Ef)) +p(Ey)

P1:P2

and therefore (g;)=0. This result is nothing but a derivation of the compressibility sum rule.®?
Nevertheless, g contains information about transport properties of the system and in particular as
we shall see now, its second moment is proportional to the square of the average (Drude) con-
ductivity. To calculate (g;?), consider the quantity SN(E,$)=N(E,$)—N(E,0). Expanding
SN(E,¢) up to the fourth order in ¢ gives

2 1 04 2
8T =ﬁW5N (Ef,®)|p=0 (11)

so that we need to calculate (SN*(E #»$)) which describes the fluctuation of the number of levels
in a band of width E around the Fermi level. It has been obtained for ¢=0 (Ref. 10) by assuming
that the energy spectrum of a weakly disordered system is well described by the RMT.!! The
validity of this assumption for energies A<<E<FE, has been thoroughly discussed in the
literature.* It corresponds to the physical situation where diffusive electronic wavepackets explore
ergodically the whole (finite size) system, i.e., for times > 7= L%/D. In that limit, the spatial
dependence of the solutions of the diffusion equation does not contribute to the diffuson and
cooperon diagrams so that only the zero mode (¢=0) remains. This regime sometimes called
zero-dimensional could have been obtained directly by setting =0 in the solution of the diffusion
equation. The RMT assumption is different from those used in the original derivation of the
Thouless formula.” It takes into account the correlation between the energy levels which leads to
the level repulsion characteristic of the Wigner—Dyson distribution. The extension of this calcu-
lationto ¢ # O gives:

2

1+ +1n

In (12)

2
(A+4E ¢°)’ H

Together with Eq. (11) it gives (g;2)= (6/7%) (E,/A)%. Using the Drude expression for the
average conductance {(g) we obtain:

1
(N*(E,$))= 5= N

e? V6

5 (8r")*=—(8) (13)

which establishes the Thouless relation.
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1. THE SCATTERING DESCRIPTION OF TRANSPORT

So far, we have seen how to describe the average Drude conductivity from the curvature of the
energy levels with respect to a twist of the boundary conditions. This description is limited to the
Drude approximation and does not apply, for instance, to higher order corrections leading to weak
localization effects and eventually to the Anderson metal—insulator transition. The aim of this
section is to derive another expression of the Kubo formula [Eq. (5)], in terms of the response to
an AB flux where the thermodynamic limit is taken from the very beginning so that there is no
need to consider a frequency dependent electric field.

Consider a large electronic system with a continuous energy spectrum submitted to a time-
dependent AB flux of the form ®(#/T) where T is some characteristic time scale. For instance,
®(t/T)=— Vr describes a constant voltage V and T= h/eV is the Bloch period. This looks very
much like the Greenwood'? description of the dissipative conductance. But the latter applies to
finite size systems where the adiabatic theorem can be used to study the motion of the energy
levels with ®(#/T). Here, this option does not exist since we consider a continuous spectrum. The
interaction of electrons with the AB flux is conveniently described using the on-shell scattering
matrix S(E,®), for which there is a continuous version of the adiabatic theorem. In a scattering
description,13 there is a characteristic time, the Wigner time delay tw(E), which tells us about the
time required by a wave packet to sweep off the scattering potential. In the limit 7>ty (E), an
incident wavepacket of energy E interacts essentially with a stationary (time-independent) flux
line. Hence, our adiabatic expansion will be in terms of the small parameter ¢y (E)/T.

The basic setup of the scattering description for the case of an AB flux has been described
elsewhere.!* To be self-contained I shall present the main results. The scattering states:
| W, (E)) are eigenstates of the total Hamiltonian at energy E; o (assumed to be a discrete
variable for the sake of simplicity) describes the scattering channels at that energy and = defines
ingoing and outgoing states. The S matrix is then defined by S= [dEZ |V " (E)){(¥, (E)|. The
following relation holds:

S In Det S(E)=—2im Trz6H, (14)

where S(E) is the S matrix restricted to the energy shell E and Trg is defined for any operator
A by

TrEA=§ (¥, (E)A|Y, (E)). (15)

The variation H of the Hamiltonian is due to a variation of the scattering potential-—here the AB
flux. Defining the total phase shift 7(E) by InDet S(E)=2in(E) we rewrite Eq. (14) as
Sy(E)=—m TryéH.

Bearing in mind these preliminary definitions, we write the Hamiltonian under the form
H(®()=H(P(0))+V(t) which defines the scatiering potential V(r) and with
®(0)=lim;_,.,P(¢/T). We assume that initially the system is in an eigenstate (| ¢,),E,) of the
time independent Hamiltonian H(®(0)) and we write the state of the system |W(£)) at time ¢ as

[ (1))=|¢,)+|6¥(z)) (16)

which defines | ¥ (#)). The Schrodinger equation can now be rewritten

]
| oW (1)) = 77[V(t)|¢a)*iﬁ5;|5‘1’(t))] (17)

E,~H()+i

where 7p—07". For a slowly varying perturbation, we can as a first approximation neglect the
second term in the bracket. The validity of this approximation can be checked doing the change of
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variable s= ¢/T.. Then, the second term appears to be proportional to 1/7 and is negligible in the
adiabatic limit T—. Equation (17) can be solved iteratively and gives to lowest order
|6 (6))aa=G " (Ea,) V(D) $o) s0 that [W(£))ea=(1+ G (E,,1)V(1))| ba) or equivalently:

|W(t)>ad:ml¢a> : (18)

which according to the Lippman Schwinger equation shows that |¥(¢)),, is nothing but a scat-
tering state |W',"(E,,?)) at energy E, of the Hamiltonian H(®(z)) where 7 is taken as a fixed
parameter. This defines the adiabatic states as the scattering states due to the potential V(z) with
a fixed 1.

To obtain the first order correction to the adiabatic approximation, we insert the expression of
|6W (1)), into Eq. (17):

d
|89 (0)1=GH(E,,D)(V(D) o) = i | W, (D). (19)

Since the scattering states are eigenstates of the Hamiltonian H(®(#)) with energy E,, they obey
the corresponding Schrodinger equation so that

W (B, ) =G (B, DI, (E,.0), 20

where 2G*(E,,t)= 1[E,—H(t)] and H is the time derivative of H(®(¢)). This gives:
| ()),=(1+2iAGT(E,.t) PG (E, OE)|W,7(E, 1)) 2n

for the first correction to the adiabatic approximation. It is rather straightforward to check that it

is proportional to 1/T. This describes the energy exchange between the system and the external

source, here the potential V(¢). It has been considered to study various problems including the

calculation of the friction force'® and of the mobility of heavy impurities in Fermi liquids.'®

Equation (21) is the starting point of our calculation of the Kubo linear response coefficients.
The expectation value of a given operator A can be written

<A>: 1<\P(t)|A|\P(t)>1:<\Pa+(Ea)|A|\Pa+(Ea)>+O-A(.ﬁ’ (22)

where the first term is the thermodynamic response associated with A (magnetization, persistent
currents.. .. ), while the second term deals with the energy exchange within the adiabatic approxi-
mation and defines a Kubo response coefficient ¢4 . It is a complex number whose real part
describes dissipation and the imaginary part is related to the reactive response.

From now on I shall focus on the electrical dissipative conductance. This approach has been
extended to the case where there is, in addition, a uniform magnetic field in order to obtain the
Hall conductance within this formalism.!” The dissipative conductance corresponds to the particu-
lar case where the operator A is the total current I flowing in the system and where ®(¢/T)
is a time dependent AB magnetic flux. Therefore, (I)=—(JdH/dP) and @ is D(0)
=limy_,,®(¢/T). To lowest order in 1/T, we obtain from (21) and (22):

2

Go=— ol w75 L
a— wh a(a)

9H vip 2y v
(G (E) 55| ¥ (El)). (23)

d¢
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where ¢= (e/h) ®(0) and the scattering states are obtained in the limit 7—o. To obtain the
dissipative conductance G4, we have to sum over the filled states with the Fermi—Dirac distribu-
tion  f(FE). It gives G,=[dEf(E)Z,6(E—E,)G,. Using S(E—E))=1/
(¥, NE)|IGT(E)|¥,"(E,)), we obtain:

3(G (E))? H)
d¢ a¢

Using the cyclicity of the trace, the identity (G (E)?=—(9/9E) G*(E) and performing an
integration by parts, we obtain at T=0, where df(E)/JE=— 6(E—Ey)

Gy=— ——j dEf(E) TrE(jG (E) (24)

2

— ¢ T
G —‘—h" rEf

o ) (25)

50 E5g
which is the standard Kubo expression for the conductance. Since JG*(E ) < NE;~H), we
obtain, as expected, G4 « p*(Ey). To connect Eq. (26) to Eq. (5) for the conductivity, we consider

the expression (1) for the Hamiltonian in the presence of an AB flux which corresponds to a given
direction, say x, and 0H/d¢ | g—o= (R/ML) p, . Then,

IG* (Ef)

e*h

Ga= a2 s

(IGT(E)p. 3G (Ef)p,), (26)

which, using G,=oL%"2, gives back Eq. (5).

A. Connection with the scattering phase shift

The total current is given to the lowest (adiabatic) approximation by

B ( dE) 3 - aH .
Iad—' E'(E ad_J dEaf(Ea) (E ) (9(1) a (Ea) . (27)
Using Eq. (14), it is rewritten at T=0:
Ef
1@ ()= = | YaE (B, 800, (28)

This is the expression of the (thermodynamic) persistent current flowing in the system due to the
AB flux line'* in terms of the total scattering phase shift 7(E, $(0)).
The first order correction is obtained by inserting Eq. (21) into the expression of the current:

oH
. ‘I’(l‘) 0743

1 9 2d® 9 [ 4 2
() __Eén(Ea,®(0))+7'd75‘E— 5577(15,1,‘1)(0)) :
1 a

Therefore, the total current is given to that approximation by

28 dD [ 9 2
l(®)=lad(¢(0))+;T——(En(EF@(O))) . (29)

dt

From Eq. (22) we identify the dissipative conductance G4

2

1 e 2
Gd_—z‘h‘( ¢7/(Ef ¢(0))) (30)
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which is equivalent to Eq. (26), thus establishing the description of the dissipative transport in
terms of the scattering phase shift.

I did consider here the limit of noninteracting electrons, but a formally identical scattering
description applies as well to a Fermi quuid.18

IV. DISTRIBUTION FUNCTION OF THE CURVATURE; GENERALIZATION OF THE
THOULESS RELATION

G, has been calculated in the limit of an infinite system and in order to compare with our
previous results in Section II, we need an equivalent expression for finite size. For a large system,
the relation between the variation SE,(d)=E, (¢)—E,(0) of the energy levels and the total
phase shift 7(E,$) evaluated in a narrow energy window around E, is'’
7OE,($)=An(E,$), where A™' is the density of states near the energy E. This is a conse-
quence of Eq. (14). Then, for a large but finite system, the dissipative conductance can be rewrit-

ten:

G e? 1 (&En)2 1)
dT 37 A2 ’

h A"\ d¢ E,-E,
where ... is an average over ¢ and the energy E, is close to the Fermi level. Relation (31) is

important in two respects. First, it allows one to write the Kubo formula for a finite size system in
terms of the behavior of the energy levels as a function of an AB flux. Second, unlike the Thouless
curvature [Eq. (9)], it is not restricted to the Drude term. In principle, it could be used as well to
evaluate the whole distribution function of the conductance and higher orders in 1/k/l for the
average. The first interesting point in comparing these two expressions is that at the Drude level
they should already be connected since both of them are different formulations of o= ne?7/M.
This means that for a given system there is a relation?® between the typical curvature (g T2> of the
energy levels evaluated at ¢=0 and g,= (1/A?) (((?Enlﬂqﬁ)z), where G,= (e*/h)g,. Such a
relation is not obvious between a local quantity (the curvature) measured at ¢»=0 and a global one
averaged over the whole energy curves E,(¢). The aim of this section is to discuss this connec-
tion and its generality.

We consider first the distribution function P(c) of the curvature c= ¢*E, /9> lg—0. We saw
that, assuming the energy levels to be uncorrelated, P(c) has a Cauchy distribution
P(c)=(Um)[vo/(yo +c?], where the width 1y, obtained from Eq. (8), is
Yo= 2@/ M?L*)({|p,|*)/A). However, the energy levels in a weakly disordered metal are
correlated so that the curvature distribution is no longer Cauchy. The form of P(c¢) was exten-
sively studied®’ in the search of quantum signatures of chaos in the parametric motion of energy
levels. For various systems (random matrices, quantum kicked tops, ...}, the tail of the curvature
distribution was found to be P(¢)~ 1/c¢2"# for large ¢. The exact form of the distribution has
been first approximated by Zakrzewski and Delande® by fitting their numerical results for various
models with chaotic spectra. It is given by the modified Cauchy form:

(c)= N (32)
Ps(c ,
B (yﬁz 22 (B+2)

where N is a normalization constant and =1 if the system is time reversal invariant, 8=2 if
this symmetry is broken and 8=4 if there is Kramers degeneracy. Von Oppen® succeeded in
demonstrating that Eq. (32) is indeed exact for the Gaussian unitary ensemble of hermitian ma-
trices (8=2). Recent numerical results®* have extended the validity of the distribution Pg(c) to
metallic spectra perturbed by an AB flux. In particular, in the limit ¢— 0 here considered, where
the spectrum is time reversal invariant (8=1), the form (33) has been obtained analytically by
Fyodorov and Sommers.?’
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The following simple argument shows, at least for the tail of Pg, how the modified Cauchy
distribution is derived from the Wigner—Dyson assumption. Within the RMT description of the
energy spectrum, the distribution P g(s) of the distance s (in units of the mean level spacing A)
between neighboring levels is given by P B(S)"’S'B for small s. In the presence of a perturbation
¢, the separation s(¢) of an isolated pair of neighboring levels might be written
s(P)= JsZ+ ¢2~s+ ¢*2s  (for s—0), so that the ~curvature c~ 1/s. Using
Pg(s)ds=Pg(c)dc, we obtain P g(c)~ 1/(c** Py (for large c). The immediate consequence of the
expression of Pg(c) is the divergence of the second moment of the curvature for the case of an
AB flux around ¢=0. Therefore, this moment cannot be used to evaluate a conductance even for
the Drude term. In the previous derivation leading to Eq. (13), we did consider a smeared curva-
ture [Eq. (9)] insensitive to the exact form of the curyature distribution. But in order to compare
(for a discrete energy spectrum) between the curvaturé g of the levels (at ¢=0) and g, we have
to take into account the exact expression of P g(c). It is worth emphasizing that the divergence of
(c?) is a nonperturbative result, (c*(¢) « E. In(A/E,¢?)) for small ¢ (Pp<< V/vEc< 1).%% There-
fore, it cannot be obtained from the unitary case (where (c?) is finite) by taking the limit
¢—0. Since the second moment of the curvature diverges due to the 1/c>, tail one can choose
(le,(0)]) instead to define the conductance as gy={|c,(0)|}/A.?" Using the distribution
Pg(c), we obtain gr=1y, /A for B=1 and gr= (2/m)(y,/A) for B=2. The unexpected result is
that the coefficient yg4 entering the expression of Pg(c) and defining the natural scaling of the
curvature is

(i*(¢)) wB[[JE,\?
YT T A\ s ) (33)
where (... ) and ... are averages taken, respectively, over the disorder (or the energies) and the

flux ¢. For the case where ¢ is an AB flux, we obtain therefore a relation®® between the Thouless
average curvature g;= (|c,(0)|)/A and the expression (31) averaged over the disorder

gr=2mg,. (34)

This relation has the universality of the RMT,? i.e., it does not depend on the microscopic details
of the physical problem. It is also more general than the relation (13) between g+ and the Drude
conductance, since Eq. (34) holds beyond the range of validity of RMT when weak localization
corrections ( = A/E,) are taken into account.?

Eq. (34) applies to problems other than transport in disordered systems.?° But for the latter,
it can be considered as a characterization of metallic systems with delocalized wave functions. The
equality (34) between a curvature and the Kubo conductance is a result of the RMT. For instance
it does not hold either in ballistic or in localized systems. Section V will provide such an example
in a one dimensional disordered system.

V. RELATION BETWEEN THE LANDAUER AND THOULESS CONDUCTANCES

There is another very popular description of the conductance introduced by Landauer.®! It
connects transport to the scattering properties of disordered systems connected to reservoirs
through ideal leads. The system is characterized by an S-matrix, but unlike the derivation of
Section III, here the S-matrix refers to the whole finite system as a scatterer and not to a time-
dependent AB flux. The Landauer conductance g; is given by

L= T (35)
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where T=3,|t;|? is the sum of the transmission probabilities 7;=]¢,|* of each available channel
i. g diverges for a perfectly transmitting sample where T=1. There is a related formula derived
from microscopic linear response theory>* which gives g; = (e/h) T. It was subsequently gener-
alized to the multichannel case by Fisher and Lee®® under the form
gr= (¥h) 3 ,]1;|>= (%/h) Tr t¢!, where ¢ is the transmission matrix. The discrepancy between
this relation and the Landauer formula can be understood in the following way.>* The conductance
g, is obtained from the system alone, i.e., for a voltage being the difference of chemical potential
of the ideal leads. It corresponds to a four probe terminal measurement.>> In contrast, the conduc-
tance g; = (e2/h) T is finite for a finite perfect sample. It corresponds to a two terminal measure-
ment where the voltage is the difference of the chemical potentials in the incoherent reservoirs,
i.e., when the voltage probes are separated by more than the phase coherence length L 4, so that
the leads serve both as current and voltage probes. For a perfect scatterer (7=1), it remains the
finite conductance of the leads, i.e., the contact resistance given by the total number of channels
(in units of e?/h). In a 1d geometry, these two conductances are related. The two probe resistance
R= (h/e®)(U/T) is the total resistance of the circuit made of the contact resistance h/ e? due to the
leads and (W/e®H[(1—-T)/T] of the system itself such that 1/T=1+(1-T)/T, ie,
g '+ (hle?)=g,~'. In the general multichannel case, the four probe Landauer conductance
g; is more difficult to define since it depends on the geometry of the system, i.e., on the exact
microscopic details of the contacts between the leads and the system. Since the Thouless curvature
gr or the Kubo expression g, are independent of these details, we shall be interested in the
relation between these curvatures and g; .

The relationship between g; and the Thouless curvature has been discussed by Anderson and
Lee.3® In a strictly 1d geometry, these authors found that the Thouless conductance is not propor-
tional to g, but instead to its square root. This result was subsequently criticized. I would like to
show that their result is indeed correct provided we replace g; by g;. Therefore the Thouless
curvature gy is not the conductance in a 1d geometry as in the metallic case but one must choose
instead g, given by Eq. (31), i.e., the average of the square of the persistent currents. The breaking
of the proportionality between g, and g, given by Eq. (34) is a consequence of the fact that we are
outside the range of validity of RMT for a localized 1d system. To obtain back the relation (34)
and therefore g; proportional to g;, we must go to the limit of a large number of coupled
channels as studied numerically.’’

Let us turn back to the 1d geometry discussed by Anderson and Lee. In that case the S-matrix
is 2X?2 and it is possible to define instead another (Hermitian) matrix M given in terms of the
reflection and transmission amplitudes r and ¢ by:

1 r
t t

M=
r¥ 1
T

which couples the right channels

to the left channels

[4]
v
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such that Wr=MW¥,. The energy spectrum of the system with twisted boundary conditions is
obtained by solving MW =\V, where A =¢*! ¢ ie., by closing as usual the system on itself with
a fictitious AB flux. The density of states n(E) is given by the relation n(E)= (1/)(d 0/dE),
where 6=7 In Det S(E, ¢) is the counting function. Then, g and g, are obtained by means of
Egs. (9) and (30), i.e.,

1 %6
8= 5 32 a0 (36)
and
1{36\2
ga= p( 39, 37
where . .. is an average over ¢. The relation between @ and ¢ is obtained as follows. Notice first

that Tr M is representation independent. By definition of the twisted boundary conditions, e¢*!¢
are eigenvalues of M and therefore Tr M =2 cos @. On the other hand, using the explicit expres-
sion of M we have Tr M =2 Re(1/t), where 1= |f]e’® is the transmission amplitude with a phase
O(E) which follows directly from the relation between the matrices S and M. Therefore,
Tr M=2{t|"! cos 6 and

cos ¢=[t(E)| ™! cos O(E, ). (38)

The Kubo conductance g, is then obtained directly from Eq. (37), g,= (1/7?) g1 - But from Eq.
(36), we have g7= (1/2r) \/g{ as found by Anderson and Lee.*® Again, this result is not surprising
for an insulator. The new result here is that it is possible to relate the Landauer conductance and
the conductance g, expressed also in terms of TBC.

Vi. CONCLUSION

I have shown in this article how to obtain information about the transport properties of
disordered and noninteracting systems without evaluating the full Kubo linear response coeffi-
cients as given by Eq. (5). We obtained various expressions for transport quantities in terms of the
parametric motion of the energy levels with respect to a twist of boundary conditions for the
system in a nonsimply connected geometry. In the metallic regime of a weakly disordered system,
we can describe the energy spectrum by means of the RMT. There, the Thouless curvature g7, the
typical value g, of the persistent currents and the Landauer conductance g; do coincide up to the
correction of weak localization. For an Anderson insulator, g; and g, are linearly related but are
proportional to the square root of the Thouless curvature. The range of applicability of these
relations is wider than the Anderson problem of a disordered metal and were successfully applied
not only to the study of Quantum Chaotic systems but also to Quantum Hall systems.
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