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We show that photons propagating in a mesoscopic gas of atoms acquire
a correlation stronger than the value predicted by Rayleigh law. This enhanced
correlation results from cross-terms based on the effects of spatial disorder and
atomic quantum internal degrees of freedom. The great sensitivity of these cross-
terms upon dephasing, such as a Zeeman splitting induced by a magnetic field,
opens the possibility of a new kind of high precision spectroscopy.

1. Introduction

A wave propagating in a random medium undergoes scattering and the intensity
pattern resulting from interferences of the scattered waves with each other is known
as a speckle pattern [1]. The angular and time-dependent properties of these patterns
have been extensively studied [2–6]. For a large enough scattering system, speckle

patterns present universal features such as the Rayleigh law, which states that

the variance �T 2
¼ T

2
� T

2
of the transmission coefficient T of the wave through

the scattering sample, is simply related to its average by �T 2
¼ T

2
[1], where � � �

means a configuration average. The Rayleigh law is independent of the exact nature
of the wave and of the scatterers as long as they are classical. It simply expresses that
a speckle pattern results from the coherent superposition of a large number
of uncorrelated random and complex valued amplitudes of the scattered wave.
Our aim is to show that speckle correlations are significantly enhanced above the
Rayleigh value for the case of scatterers having quantum degrees of freedom.
Here we consider atoms with degenerate Zeeman sublevels. This enhancement results
from cross-terms of transition amplitudes connecting two different sets of quantum
states. For atoms with a degenerate ground state, the cross-terms involve the
corresponding ground state sublevels. This suggests that the enhanced correlations
are very sensitive to the Zeeman splitting induced by an applied magnetic field.
We show that it is indeed the case and that the amplified correlation displays
a resonant-like behaviour whose linewidth is, in principle, not limited. This might
prove useful in level-crossing spectroscopy measurements.
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We refer to the setup shown in figure 1. An ensemble of atoms placed at random

positions Ri, which scatter a monochromatic beam of wave vector ka, with

ŝa ¼ ka=jkaj, and polarization "̂a. At some time, which we choose to be zero

(t¼ 0), scattered photons of wave vector kb (ŝb ¼ kb=jkbj) and polarization "̂b,
are detected far away by the detector D after being multiply scattered. This process

will be referred to as ab channel. A time � later a second measurement is performed,

which corresponds to an incident beam incoming along ŝa0 , while the scattered

photons are measured along ŝb0 (a
0b0 channel). We assume that the atoms are cold

enough, and the time � is short enough, so that the scatterers stay at rest between

the two measurements. Considering that atoms have a diffusive motion characterized

by a diffusion coefficient DB due to fluctuations of the atomic momentum, they stay

at rest so long as � � �B, where �B ’ �2=DB. In optical molasses, the diffusion

coefficient DB is about a few mm2 s�1. For visible light with � � 5� 10�4 mm we find

the order of magnitude �B � 10�7 s. We also assume � > 1=G in order not to probe

atomic relaxation processes. For example, referring to the above orders

of magnitude, G should be larger than 107 s�1, otherwise there is no � that fits

all requirements. A similar couple of measurements is then repeated after a relatively

long time T � �, during which the scatterers move. This motion requires

the averaging over atom position, namely, a disorder average.
Atoms are modelled as degenerate two-level systems. We denote by jmii

the ground state Zeeman sublevels with a total angular momentum quantum number

jg, jmei are the excited states sublevels of linewidth G and total angular momentum je,

and m is the projection on a quantization axis. We consider resonant

elastic scattering so that the length of the wave vectors is fixed, jka, bj ¼ jka0, b0 j ¼

k ¼ 2p=�. For the sake of simplicity we shall assume that all ground state sublevels
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Figure 1. The suggested experimental setup. Each pair of pulses, incident along ŝa and ŝa0 ,
and detected along ŝb and ŝb0 , respectively, corresponds to a measurement of the non-averaged
quantity T abT a0b0 . During the time � the atoms stay at rest. Repeating this measurement many

times yields T abT a0b0 , provided T is sufficiently long so as to allow the atoms to move
appreciably.
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are a priori equiprobable. We use here a lowest order perturbation theory, meaning
that the incoming intensity is supposed to be sufficiently weak so that each atom
undergoes, at most, one lowest order scattering event during a period of time that
corresponds to a single measurement. On the other hand, notice that photons stay
within the atomic gas for a relatively long time during a multiple scattering sequence,
so that other photons are also passing through the medium. This eliminates
any possible ‘which path’ information, since there is no way by which one is able
to assign a certain atomic transition to a certain photon. Moreover, during the time
interval � many photons are scattered by the gas, so that there is no correlation
between the atomic states probed by photons that correspond to the first
measurement, and that of the second measurement.

The purpose of this work is to study the static normalized angular correlation
function of photons performing coherent multiple scattering in a cold atomic gas.
This function is defined by [1, 8]

Caba0b0 ¼
�T ab�T a0b0

T abT a0b0
: ð1Þ

For classical scatterers, intensity fluctuations obey the Rayleigh law which rewrites
Cabab ¼ 1. In the presence of a Zeeman degeneracy, angular correlations of speckle
patterns and intensity fluctuations become larger than one. This is a new and genuine
mesoscopic effect specific to multiple scattering of photons by atoms and directly
related to properties of atomic quantum states.

2. The single scattering case

It is instructive to begin with the simple example of only two atoms in the gas cloud,
and a ‘beam’ consisting of only two incident photons having a wave vector ka.
At t¼ 0, these two photons are scattered by the system of two atoms. The interaction
of the two photons with the atoms is assumed to be simultaneous, meaning that there
is no way by which one can obtain the intermediate state of the system between
individual scattering events. This point is crucial, since it distinguishes our case from
others [7], in which the low intensity limit is assumed, thus excluding the situation of
two photons scattered simultaneously off the atoms. Regarding the scattering
system, thus, one can only obtain its initial and final state, i.e. the internal quantum
states of both atoms (in addition to their positions) before and after the ‘beam’ has
interacted with them. Suppose that at t¼ 0 the atoms were in the Zeeman sublevels
jm1i and jm3i, and after scattering they were in the jm2i and jm4i sublevels,
respectively. Since the scattering of the two photons happens simultaneously,
there is no way by which we could assign a given transition (say jm1i ! jm2i

of atom 1) to a certain photon. In other words, the fact that the two scattering events
are indistinguishable makes any ‘which path’ information to disappear.
Of course, photon polarization can also be used to obtain ‘which path’ information
in certain cases, but we will not consider them here because they are not applicable in
the case of multiple scattering. Assuming that each photon is scattered, at most, only
once, our aim is to find the transmission coefficient T ab along a direction kb.
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For a very large number of incoming photons, T ab is approximated by the
probability of one photon to emerge along kb. Under the above assumptions T ab

equals, to lowest order

T ab ¼ Fjhm2jU1jm1i expð�iQ � R1Þ þ hm4jU2jm3i expð�iQ � R2Þj
2, ð2Þ

where we have defined the operators Ui ¼
P

me
ðdi � "̂aÞjmeihmejðdi � "̂bÞ, me being the

Zeeman quantum numbers of the atomic excited state, Ri is the position and di is the
electric dipole moment of atom i, Q ¼ kb � ka, and F is a proportionality factory
containing the photon frequency !, the quantization volume L3, the natural width
of the excited atomic state G, etc. We also assume a purely resonant scattering.
The average transmission coefficient T ab is found by averaging T ab both over the
positions R1, 2 and the initial quantum states jm1i, jm3i. Also, summation over
undetected final quantum states must be performed. Assuming kjR2 � R1j � 1,
the cross-terms involving products like exp ð�iQ � R1Þ exp ðiQ � R2Þ vanish upon
averaging over the positions of the atoms (disorder average) because of the rapidly
fluctuating phase difference. Thus, denoting J ¼ 2jg þ 1, we obtain

T ab ¼
F

J

X
m1, 2

jhm2jU1jm1ij
2 þ

F

J

X
m3, 4

jhm4jU2jm3ij
2: ð3Þ

We now wish to find the (not normalized) correlation function between T ab and
T a0b0 , namely

Corrða, b, a0, b0Þ ¼ T abT a0b0 � T abT a0b0 : ð4Þ

Denoting Afmm 0g
i ¼ F 1=2hm0jUijmi expð�iQ � RiÞ, we have

T ab ¼
1

J

X
m1, 2

Afm1m2g

1

��� ���2þ 1

J

X
m3, 4

Afm3m4g

2

��� ���2 ð5Þ

with a similar expression for T a0b0 , and

T abT a0b 0 ¼ Afm1m2g

1 þ Afm3m4g

2

��� ���2 A
fm0

1
m0

2
g

1 þ A
fm0

3
m0

4
g

2

��� ���2: ð6Þ

Note that the prime designates only the internal quantum numbers mi. This is
because the other degrees of freedom, namely the positions Ri, are assumed to be the
same for T ab and T a0b0 . It should be kept in mind, however, that the incoming and
outgoing polarizations corresponding to the two transmission coefficients are
generally different. To find Corrða, b, a0, b0Þ we now have to average (6). We first
notice that (6) contains products of four amplitudes corresponding to all the possible
combinations of internal and external degrees of freedom. Performing first the
disorder average, only products involving zero phase difference survive, the others

yThis factor is of no importance since it cancels in the normalized correlation function
(to be defined later). Therefore, it will not be given explicitly.
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contain rapidly fluctuating phases and vanish on average, leaving only

Afm1m2g

1 A�fm3m4g

2 A
�fm 0

1
m 0

2
g

1 A
fm 0

3
m 0

4
g

2 þ c:c: ð7Þ

Averaging over internal quantum numbers we find, using the definition (4)

Corrða, b, a 0, b 0Þ ¼
1

J4

X
mi,m

0
i

Afm1m2g

1 A
�fm 0

1
m 0

2
g

1

X
mi,m

0
i

A�fm3m4g

2 A
fm 0

3
m 0

4
g

2 þ c:c:, ð8Þ

where the pre-factor 1/J 4 corresponds to averaging over initial internal states
of the atoms.

Looking at the rhs of (8), we see that the correlation consists of a product of two
cross-sections, one for each of the two atoms. But as opposed to the usual, intensity
cross-section, each of the cross-sections appearing in (8) involves the coupling
of two scattering amplitudes that correspond to different Zeeman quantum numbers.
To be more explicit we write, up to a factor, the two kinds of cross-sections, which
we also term vertices

VðiÞ /
1

J

X
m1, 2

jhm2jUjm1ij
2 ð9Þ

for the usual, intensity cross-section, and

V ðcÞ /
1

J2

X
m1, 2, 3, 4

hm2jUjm1ihm4jUjm3i
� ð10Þ

for the correlation cross-section. For non-degenerate atomic states we
have J¼ 1, and the two vertices coincide. Therefore, focusing on the case a ¼ a0,
b ¼ b0

Corrða, b, a, bÞ ¼ 2jA1j
2jA2j

2 ðnon-degenerateÞ: ð11Þ

Since the two atoms are identical we have jA1j
2 ¼ jA2j

2 so that

Cabab ¼
Corrða, b, a, bÞ

T
2

ab

¼
1

2
ðnon-degenerateÞ: ð12Þ

This is the Rayleigh law for only two scattering atoms (the result Cabab ¼ 1
is the Rayleigh law for many atoms). Comparing (12) to (8) and (5) we notice that
the correlation in the degenerate (J>1) case generally differs significantly from that
of the non-degenerate case. An upper bound of the correlation in the degenerate case
is obtained by taking in (8) all the amplitudes Afmm0g

i to be equal. This leads to
Cabab ¼ J2=2, a much larger value than 1/2 obtained for non-degenerate
atomic levels.

3. Multiple scattering

We now turn to the multiple scattering regime, the limit of a large number of atoms
and photons. The average transmission coefficient T ab is obtained by summing all
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the possible scattering amplitudes AfR,mg
i , corresponding to a given configuration

fR,mg. Here fRg accounts for the spatial positions of all scatterers, and fmg is a
notation for their internal Zeeman states both before and after the scattering. The
index i denotes one possible multiple scattering path. Squaring the sum of amplitudes
we have

T ab ¼

���X
i

AfR,mg
i

���2 ¼ X
ii0

AfR,mg
i AfR,mg�

i0 : ð13Þ

When averaging over fRg, all cross-terms i 6¼ i0 vanish because of large fluctuating

phase shifts, so that T ab ¼
P

i jA
fmg
i j2, where now the averaging sign corresponds

only to the fmg degrees of freedom. This expression, termed Diffuson [5], is the
leading approximation in the weak disorder limit kl � 1, where l is the elastic mean
free path of the photons inside the gas. Similarly to the simple case considered above,
the correlation of the transmission coefficients is

T abT a0b0 ¼ T
fR,mg

ab T
fR,m0g

a0b0 ¼
X
ijkl

AfR,mg
i AfR,mg�

j AfR,m0g

k AfR,m0g�

l : ð14Þ

Here again, the averaging over fRg leaves only pairs of amplitudes having exactly
opposite phase shifts. For weak disorder, the only non-vanishing contributions
involve two possible pairings of amplitudes, either i ¼ j, k ¼ l, which gives
T abT a0b0 , or i ¼ l, j ¼ k so that

�T ab�T a0b0 ¼
X
ij

Afmg

i Afm0g�

i Afm0g
j Afmg�

j : ð15Þ

The correlation function thus, appears as products of two amplitudes, that
correspond to different internal configurations fmg and fm 0g, but to identical
scattering paths i (or j ). Most of multiple scattering paths i and j do not share
common scatterers so that we can average Afmg

i Afm 0g�

i and Afm 0g
j Afmg�

j separately, since
these averages are taken upon different atoms, and finally,

�T ab�T a 0b 0 ¼

���X
i

Afmg
i Afm 0g�

i

���2: ð16Þ

We now consider the special case a ¼ a 0 and b ¼ b 0. Performing both the
disorder and internal averages, the generalization of (12) is

C1=2
abab ¼

P
i

P
fmig, fm

0
i
g A

fmig

i A
�fm 0

i g

i =J 2ni

P
i

P
fmig

jAfmig
i j 2=Jni

: ð17Þ

Here ni is the number of atoms involved in the multiple scattering path i.
The non-degenerate limit is obtained by taking J¼ 1, which leads immediately to
the Rayleigh law Cabab ¼ 1. To illustrate the fact that the ‘quantum’ correlation
(i.e. for J>1) can exceed the Rayleigh law, we assume hypothetically, as in section 2,
that all amplitudes are equal. This gives C1=2

abab ¼
P

i J
2ni=

P
i J

ni which, for ni � 1
and J>1, is much larger than 1.
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To proceed further, it is useful to consider a continuous description [8]. We define

two Diffuson functions Dði, cÞ byy

T ab ¼

Z
drdr0DðiÞðr, r0Þ ð18Þ

and

�Tab�Ta0b0 ¼

���
Z

drdr0 exp ik0½�ŝa � r��ŝb � r
0�

� �
DðcÞðr, r0Þ

���2, ð19Þ

where �ŝa, b ¼ ŝa, b � ŝa0, b0 . The intensity Diffuson DðiÞðr, r0Þ is the sum of the

terms jAfmg
n ðr, r0Þj2 between endpoints r and r 0, whereas the correlation Diffuson

DðcÞðr, r 0Þ is the sum of the terms Afmg

i ðr, r 0ÞAfm0g�

i ðr, r 0Þ, i.e. that involve uncorrelated

configurations fmg and fm0g. The two functions Dði, cÞ are obtained from the

iteration of vertices V ði, cÞ, that describe the microscopic details of the scattering

process. The iteration is written symbolically (either for Dði, cÞ,V ði, cÞ we shall denote

by D,V) as

D ¼ V þ VW V þ � � � ¼ V þ DW V: ð20Þ

The term V accounts for a single scattering and DWV represents its iteration.
The quantityW describes the propagation of the photon intensity between successive

scattering events. Because the vertex depends on the incoming and outgoing

polarizations, all quantities in (20) are four-rank tensors: they depend on

two incoming and two outgoing polarization components. Finding the correlation

function Caba0b0 amounts to calculating the two Diffusons DðiÞ and DðcÞ.

This calculation is, however, quite complicated [9]. We have calculated numerically

the dependence of Caba0b0 on �ŝa, b (see figure 2). Analytically we have

Cabab ¼ Y
sin2ðX=bÞ

X sinX
� 2 sin2

p
b

� � expðX2 � p2Þ
p2 � X2

� �2

: ð21Þ

Here b ¼ L=l is the optical depth of the atomic cloud (l is the elastic mean free path),
and X ¼ L=L0, where L0 ¼ ðcl=3j�0jÞ

1=2. The quantity j�0j is proportional

to VðcÞ � VðiÞ, namely, to the difference between the correlation and intensity cross-

sections [2]. For VðcÞ ¼ VðiÞ we have j�0j ¼ 0, so that X¼ 0 and the exponential term

on the rhs of (21) is negligible. This term represents the correlation enhancement

above the classical value, which occurs thus only for VðcÞ > VðiÞ. The factor Y results

from projecting the transmitted intensity onto the specific polarization channels

being detected. For the transition J ¼ 3 ! Je 	 2je þ 1 ¼ 5, and a polarization

channel �þ to �þ, we have �0l=c � 0:1 and Y � 0:2.

yAll prefactors that depend on the strength and shape of the photon source and on the
quantization volume have been absorbed in the definition of the functions D(i,c).
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4. Effect of a magnetic field

From equation (17) it is clear that cross-terms, involving the coupling of amplitudes
corresponding to different Zeeman configurations, play a central role in the quantum
correlation. If an external magnetic field H, is now applied, the Zeeman splitting

suppresses all the contributions to Vði, cÞ that correspond to transitions between
different magnetic quantum numbers. For a large enough field H these terms vanish,
and the vertices become independent of H and proportional to

VðiÞ /
1

J

X
m

jhmjUjmij2 ðlarge HÞ ð22Þ

and

VðcÞ /
1

J

X
m

hmjUjmi

�����
�����
2

ðlarge HÞ: ð23Þ

Using again the illustrative assumption that all amplitudes are equal, we have
V ði Þ ¼ V ðcÞ. This means that the correlation cross-section is equal to the intensity
cross-section, which characterizes the non-degenerate (J¼ 1) case, thus leading
immediately [2] to the Rayleigh law Cabab ¼ 1. A detailed calculation [10] shows

that this is indeed the case, and the dependence of the normalized correlation Cabab

on the dimensionless field s ¼ g�BH=�hG is shown in figure 3. To modify equation

(21) so as to include the magnetic field, one has to make the replacement

X2 ! X2ð1� s2Þ: ð24Þ

0.2 0.4 0.6 0.8 1
ql

1

2

Caba'b'

5 10 15 20
L\l

1
2
3
4

Cabab

Figure 2. The correlation Caba0b0 as a function of q ¼ k�ŝa. The dashed line accounts
for the non-degenerate transition J¼ 1 to Je ¼ 3 and thus displays the classical Rayleigh
law. The solid line corresponds to the Zeeman degenerate atomic transition J¼ 3 to Je ¼ 5,
where the above-Rayleigh correlations are seen. The inset gives the dependence of Cabab upon
L, where the dashed line indicates the Rayleigh value, and the peak results from a
phenomenological cutoff limiting the correlation enhancement. These results are obtained
for L¼ 7l.
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The full width at half maximum (FWHM) of Cabab, as a function of the field
strength, behaves linearly with 1/b for large values of b. Its slope is calculated from
(21) and (24) to give

�H ¼ a
�hG
g�B

l

L
: ð25Þ

Here a is a constant of the order unity. Result (25) is very interesting.
The dependence of the FWHM on l /L, a parameter which can be controlled and
is usually of the order 1=10 or less, predicts the possibility of performing level-
crossing spectroscopy [11] with an, in principle, unlimited resolution. However, it
must be remembered that we have neglected various mechanisms that might reduce
the coherence in the system. For example, if L / l is very large, phenomena like
Doppler shift, recoil, and motion of the atoms, which destroy the coherence among
the possible amplitudes, become important.

The enhanced correlation is thus, much more sensitive to the application of
a magnetic field, than other phenomena such as Hanle or Franken effects [11, 12].
In level-crossing spectroscopy one uses the Franken or Hanle effects to measure the
energy width of atomic states. The FWHM of these phenomena is given
by g�BH ’ �hG, and is directly related to the optimal resolution that can be achieved
in the experiment. It is clear, therefore, that a phenomena as described here, which is
orders of magnitude more sensitive to a magnetic field, might be of a great usefulness
in improving these experiments precision.

5. Conclusions

We have found that when a light beam is multiply scattered in a gas of Zeeman
degenerate atoms, the transmitted intensity exhibits large correlations, which exceed
Rayleigh law. They result from the existence of internal Zeeman degrees of freedom

−0.3 −0.2 −0.1 0.1 0.2 0.3
s

1

2

3

4

5

C

Figure 3. The dependence of C 	 Cabab on s ¼ g�BH=�hG. This plot corresponds to the
transition J¼ 3 to Je ¼ 5 and L¼ 5l. The FWHM is g�BH ’ 0:2�hG.
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and their interplay with the random position of scatterers, which leads to the

standard Rayleigh correlation. We have shown that the enhanced correlations

decrease dramatically for relatively very small values of an applied magnetic field,

showing a sharp resonance-like curve. The FWHM of this curve is inversely

proportional to the linear size of the atomic cloud, and thus is in principle unlimited.

In level-crossing spectroscopy, one uses magnetic field-dependent phenomena

(Hanle and Franken effects) to measure atomic parameters. The narrowness of the

resonance peak of these phenomena is directly related to the experimental resolution.

The enhanced correlation and its very sharply peaked field dependence are, therefore,

a candidate for a new kind of high resolution spectroscopy.
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