J. Physique 45 (1984) 1549-1557

Classification
Physics Abstracts
42 .20 — 47.35 — 71.55)

Chains of random impedances

E. Akkermans and R. Maynard

SEPTEMBRE 1984, PAGE 1549

Centre de Recherches sur les Trés Basses Températures, C.N.R.3,, B.P. 166 X, 38042 Grenoble Cedex, France

(Regu le 20 février 1984, révisé le 16 avril, accepté le 22 mai 1984)

Résumé. — On calcule le coefficient de transmission d’une onde élecirique de fréquence w A travers un réseau

linéaire de dipoles électriques d’impédances aléatoires en fonction de w et de N, la taille du réseau. Deux types
de désordre sont étudiés : le désordre faible ol tous les moments des impédances aléatoires sont définis etle désordre

fort ol aucun de ces moments n'est défini. Les longueurs caractéristiques associées aux phénomeénes présents
simultanément, de localisation et de diffusion sont obtenues a partir du coefficient de transmission, ainsi que la
fréquence de coupure du filtre passe-bas équivalent. Pour la plupart des situations, la dissipation impose sa lon-
gueur caractéristique et sa fréquence au coefficient de transmission. Toutefois une situation particuliére est envi-
sagée ol le phénoméne de localisation pourrait &tre observé en dépit des effets de dissipation ou de diffusion.

Abstract. — The transmission of an electrical wave of frequency w through a random ladder network is calculated
at low frequency in terms of the scaling variables @ and N (the size of the chain). Two classes of disorder are consi-
dered : weak disorder where all the moments exist, and strong disorder where no moment can be defined. The
characteristic lengths — localization or diffusion — are obtained from the transmission coefficient and the cut-off
frequency for the band low-pass filter. For most situations dissipation imposes its characteristic length and fre-
quency dependence on the transmission coefficient. A special situation is found where the localization phenomenon
could be observed above the dissipation or diffusion effects.

The problem of propagation of a wave in a one
dimensional random medium has now been studied
extensively and is well understood. It is established
that all the modes are exponentially localized while
the threshold of localization is the zero frequency.
The critical exponent v, for the localization length
o = w ™ has been found 1, 7] to be 2 for a weakly
disordered medium. However the question of the
universality of this value with the various kind of
disorder usually considered has not been answered
so far and constitutes part of the motivation for this
study. Alternatively, the diffusion of a particle in a
random one-dimensional medium has been also
studied extensively by various authors [8, 10]. The
space-time scaling relation &, = ' or ™' for
asymptotically long time or low frequency has been
obtained for various classes of disorder : v, = 1/2 for
weak disorder and vy < 1/2 for strong disorder. The
analysis of both effects — localization and diffusion —
has not been attempted and this represents the second
part of our study. This mixed situation is present
in many linear mechanical systems where dissipation
or viscous forces act simultaneously with the reactive
or harmonic forces. A unified description of the most

general linear systems deals with an electrical network
built up with resistances, capacitances and inductances.
When only inductances and capacitances are present
the ladder network corresponds to a harmonic chain
[11-12] while the resistances and capacitances describe
the diffusion process [8].

This article is organized in 5 sections. In section 1,
a general expression for the transmission coefficient T
of a propagating wave of low frequency @ through a
chain of random impedances is obtained from the
lowest order term of a series expansion in the fluctua-
tions around the average impedances (in the appendix
the detailed calculation of this coefficient is reported).
The correct averaging is then performed and produces
the { In T ) expression. The case of weak disorder
is studied in section 2 and the new frequency depen-
dence of a mixed network — reactive and dissipative
impedances — is then obtained. For this mixed
network the dissipation plays the dominant role at
low frequency. In section 3 the class of strong disorder
is considered for the random impedances. A new
expression for the localization length is deduced.
A special type of random chain is also studied for
which the effects of localization could dominate
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those of dissipation at low frequency. Space correla-
tions of phases are given in section 4 in terms of a
characteristic length while conclusions are drawn
in section 5.

1. The low frequency transmission coefficient of a
chain of length N.

We consider a sequence of N + 1 random impe-
dances Z, (n =0,1,2,..., N) linked with two semi-
infinite ladder networks of self-inductances L alter-
nating with equal capacities C (see Fig 1). Let v, be
the voltage at terminal n; the current equation at
node » for frequency o is :

Vn—l - Vn . Vn - Vn+1
Z Zn+1

H

) =ioCV,. @)

By using the current intensity I, through the impe-
dance Z, in the section n, I, = (V,_, — V,)/Z, the
current equation (1) can be changed into :

I, =25+ 1,, =ioCZ,1, @)

where the disorder, via the impedances Z,, now
becomes diagonal. For_weak disorder, there is an
average value for Z, : Z = Z and we start by solv-
ing the equation (2) for the average chain :

Ly, =21+ I, =iwCZI,. (3)

The solutions are given by the associated characte-
ristic equation

X2_2X<1+’-(‘-’2C—Z>+1=0. @
By defining :
iwCZ
cos¢=l+ﬂc——. &)

2

The solutions have the canonical form X = e*i¢
where ¢ can be a complex number. This step is useful
to define a basis for the disordered chain for which
the solutions of (2) are sought in the following form :

I, = A, e + B it )

where 4, and B, can be complex numbers obeying
the continuity equation :

A,e" + BeT™ =4 e B_ e (7)

JOURNAL DE PHYSIQUE

Ne 9

The coefficients of adjacent intensities are connected
by the transfer matrix :

An _ 0 An—l 8
Bn o Bn—l ( a)
1+ ¢, ¢, e 2iné
| 9,, [_Cn ezm¢ 1 - é,, (8 )
wheré
wCq, Z
én = 2 sin ¢ (86)
_Z 1 (8d)
gn Z .

Here £, or g, describe the fluctuations of the random
impedances around the average value Z. For the
random ladder network of figure 1, the coefficients
Ay and By of the current at the section N are obtained
from 4, and B, by the product of the N transfer

matrices 0, :
Ayl | & A4,
-]l e

With the aim of determining the frequency depen-
dence of the characteristic length of this problem we
now expand the product to first order in the fluctua-
tions ¢, (equivalent to the Born approximation in
scattering theory) :

N N .
1+ Y& % e
n=1 n=1
y (10)

N

I1 6,

n=1

12

N
_Z é e2in¢
n
n=1

which gives the relations :

N N
Ay = AO<1 + Y 5,,> + B, ) e
n=1 n=1
N . (11)
By = — 4, Z £ erint 4 B0<1 — Z 5,,) .
n=1 n=1

Both regular chains at the ends of the random network
support incident, reflected and transmitted waves of

TRy S e ST
c TC c C

Fig. 1. — Chain of random impedances. The random Z,C chain is connected with two regular semi-infinite L.C networks.
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dispersion relation

k=ow/LC 12)

where k is the wave vector. This dispersion relation is
a special case of relation (5) where Z = iwL and
¢ =k < 1 in the approximation of long wave length.
The transmission coefficient through the random net-
work is obtained by imposing the following expressions
for the intensities :

elkn 4 p e ik n<0
A,e™ + B,e"™ 0<n<N

ikn

I =

n

(13)

te n>N.

Matching of these solutions at both ends n = 0 and
n = N provides the four relations :

I, —-2I_,+1I,=—w*LCI_,
I_,-21,+ I, =iwCZ, I,

Iyiy — 2Ly + Iy = i0CZy I
Iyiy —2Iyey + Iy = — @ LCIy, 4.

(14)

By using (12) and (13) in (14) a linear system of four
unknown variables r, ¢, 4, et B, is obtained, a system
which can be solved directly. The energy flow through
the network is defined {11] by the local relation :

J =Re{I*V,}. 15)

The transmission coefficient T, ratio of the transmitted
energy flow to the incident energy flow, is equal to
|2

In the appendix, the expression InT =1In|¢ | is
derived up to lowest order in &, or g, (Born approxi-
mation for | ¢ |*). Taking into account the randomness
of the impedances Z,, we define the average {In T )
over the distribution function of Z,. It has been shown
by various authors [1, 13] that the correct proceeding
is to average the transmission coefficient over a
disordered chain since it is only { In T ) which obeys
the central limit theorem for large N. This property
is due to the multiplicative character of the transmis-
sion coefficient through different media which becomes
extensive in the In T formulation. This averaging pro-
cedure provides a great simplification when successive
random impedances are assumed uncorrelated. We
finally obtain the following expression :

4 Pk

{nT)x=In @R

—2NIm¢

4
(16)

where ¢ is given by the low frequency approximation
of (5) :
¢ = i wCZ)?. 17

The first two terms are not related to the disorder.
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Furthermore the first term does not depend on the
size N of the chain, it originates [11] from the mismatch
of the impedances at the junctions between the sem-
infinite. LC network and the chain of average impe-
dance Z. For large and disordered chains it is negli-
gible. The second term is proportional to the imaginary
part of ¢ therefore to the dissipation in the circuit.
The last term makes use of o2(w), the variance of the
| g, |. It is this term which is perturbative and derived
to lowest order in | g, |>. However we know from the
Furstenberg’s [14] convergence theorem that at any
order in g, a variation in N of { In T ) is expected but
with more complicated frequency dependence than in
the non perturbative regime. Only at low frequency
a very simple power law dependence is obtained for
{(InT)>.

2. Weak disorder.

In this section we consider disorder situations where
the various related moments of the distribution func-
tion of Z, are well-defined.

2.1 PURE REACTIVE RANDOM NETWORK. — The ran-
dom impedances Z, are of self-inductance nature L, :

Z, =ioL,. as)

A section of the ladder network is made up of capa-
citance C and inductance L,. This configuration can
be mapped onto the harmonic chain of atoms where
L, and C'stand for the masses and the inverse harmonic
restoring force respectively.

It can also be put in correspondance with the
Schrédinger equation of the random Kronig-Penney
model [1]. By tuning the L (the average inductance)
to L in order to eliminate the reflexions at the junc-
tions, one finds from (17) that ¢ = + k, Im¢ =0
and o2 = ((L, — L)*/L?) are independent of the
frequency. Then,

Nk? o2

{InT)=— T

19

This result has previously been derived for the disor-
dered harmonic chain [2, 3, 5, 15]. With the dispersion
relation (12), ¢ In T") becomes proportional to — N .
This result can be understood in a simple way : The
o = 0 mode is extended owing to global translation
invariance. It is the mobility edge of localization at
1 dimension. For small but non-zero frequencies, the
modes become localized. The localization length £,(w)
is usually defined by the standard relation (in units
of the length of one section) :

(T =— (20)

N_
éo(w) ’
Here we obtain

4

w? LCo?’ @D

60(60) =
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The linear dependence of {In T > in N comes from
the uncorrelated distribution of random impedances
to lowest order in the fluctuation expansion or, at any
order, from the Furstenberg’s theorem. The w? varia-
tion of ¢; !(w) is simply due to the weight of a local
impedance fluctuation in w? as in the harmonic
disordered chain where any mass fluctuations contri-
bute as w? to the force equations. Another way to
present the result [19] is to consider the network as a
low-pass filter for which the transmission coefficient
vanishes above some critical frequency w,. We know
from the general theorem of localization in one dimen-
sion that at any finite frequency, the coefficient of trans-
mission vanishes for the infinite network. For a finite
network of size N, a low-pass band filter subsists up
to a critical frequency w,(N). This cut-off frequency
is simply evaluated by writing :

Solw)) 2 N (22)

which produces here :
w, ~ N~12,

23

This scaling relation is characteristic of the low fre-
quency regime of standard localization.

2.2 PURE DISSIPATIVE RANDOM NETWORK. — All the
random impedances are resistances Z, = R,. From

(17))
¢ = i*?(wRC)'? (24)

which produces damped waves, as expected, in the
average medium.

Since
B\ 1/2
Imo = (ﬁf) 25)

2

the dissipative term contributes to In T by an atte-
nuation in — 2 N(wRC/2)"/?. The fluctuations in R,
contribute through | ¢ |*> by a term proportional to w

R 2
while ¢%*(w) = <?" -1 > is independent of fre-
quency. Finally, by adding the two terms we find :

D 2
{InT)=~ - N2 wRC)'* — n @RCo )

(26)

For low frequency the dominant term is the first one
coming from the average dissipative medium (weak
disorder does not affect strongly the scaling relation
of the latter). It is well known that this purely dissipa-
tive case corresponds to the problem of diffusion of a
particle in a random medium. The diffusion length
¢p(w) is obtained from (25) by rewritting :

N
{(InT>=x~ — ) @7
which gives :
én(w) = (2 RCw)™ 12, 28)
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This is the standard space-time relation for diffusion
where ¢ is proportional to ¢/2 The cut-off frequency
corresponding to this case is now w, ~ N2 : the
pass band width is strongly reduced compared to the
localization situation (A).

2.3 THE MIXED REACTIVE-DISSIPATIVE NETWORK. —
Since weak disorder does not affect the scaling relation
of the dissipative case, we consider for simplicity only
the fluctuations in the impedances :

Z, =R+ ioL,. (29)

The dominant term for w — 0 is indeed the resistivity
part of ¢ so that the dissipative term is unchanged
from (26). In contrast the term of disorder is changed
by the frequency dependence of the variance o2(w) :

2
@) = {1 g,@ [ > = 0? (%) ()

where o7 is the variance of the random inductances.
With ¢ given by (24) we see :

3 2
(InT> = — NQwRC)Y? _ NT‘“ %ai. 31)
The main conclusion of this general case is that the
disordered term is not the dominant one for the trans-
mission coefficient. In the presence of dissipation in
the one dimensional network, the localization effect,
responsible for the term in Nw?, is negligible compared
with dissipation at low frequency. In terms of charac-
teristic lengths, the diffusion length &, ~ ™2 ismuch
shorter than the localization length &, ~ w~3. This
situation must be enhanced even further in higher
dimensions since the localization length is even longer
(for example &, ~ '/*” in two dimensions [16]).

3. Strong disorder.

One-dimensional systems are very sensitive to the
occurrence of a cut, even when the probability of this
event is vanishingly small. This situation has been
considered in detail by Alexander ef al. [8] for the case
of diffusion in a random medium corresponding to the
purely dissipative network. In this section we are going
to generalize this result to the case of localization
(reactive network) and mixed chains.

Let us consider first the purely reactive network with
large fluctuations of L, described by the probability
density function p(L,) :

pL) =1 —o)Lg*L "2 (32)
for L, e [L,, + oo[ and & €10, 1] (L, : minimum value
of L,). All the moments of this distribution diverge
and no effective medium can be defined for this case
of strong disorder. Therefore the previous method
cannot be used and some modifications must enter in
the previous expression for the transmission coefficient
(16). The basic idea is to truncate the distribution
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function (32) up to a special value L, defined as the
most probable value of the largest fluctuation of L,
on a chain of size N. Let us call #(L,) the probability
that the inductance L, is less than L, :

. Lo\~

The probability of finding a chain of N random induc-
tances with only one fluctuation larger than L,is
equal to #V(1 — #). The most probable value of the
large fluctuation L, is obtained by maximizing
771 — ) which gives N = n(L,) [1 — n(L,)]~*. For
large size one finds :

(33)

(34

The truncated distribution for finite size is then :

. 1—a g7 -(2-o < T
PL) = { A= Lo L2 L < b a5)
" 0 otherwise .

This is for the same conditions as in (32). The moments
are now well-defined.

Lxl—%p NT
o
(L, = D?> oa?
o = 72 = - OCZN. (36)

The expression (19) must be changed both for k and
g, since

1] — o

k2 = 0? LC =~ w? Ly CNT™*  (37)
which gives
(MTY>> — ——*L cniTE (38)
=40 + w 0 )

The expression (38) defines a new scaling relation
through the factor NI?-®/( =12 which provides a
new localization length &, as well as cut-off frequency
for the pass band :

60 ~ w—z(é::)
1 2—a (39)
o, ~ N 21-e

As o is defined in 10, 1{, the exponent v of ™" is also
reduced to the interval 10, 1] instead of 2 for a weak
disorder. This leads to an important shortening of the
localization length. This is expected since strong
disorder enhances considerably localization pheno-
mena.

Consider now the mixed network with constant
resistance but random impedances. Suppose that these
impedances have the probability distribution given
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by (32). The second term of the expression (31) of
¢In T > must be changed by taking into account the
N-dependence of L and o, (36) :

{(InT)Y= — NQoRCO)"* —
LEC1—0a , %
BV
The scaling between N and o is different in the two
terms. While the dissipative term gives the No'/?
dependence, the localization one now exhibits a new
dependence ® N®*~®, The limit of very low fre-
quency now shows two regimes. Let us call wcp the
cut-off frequency for the dissipative term (wep ~ N ~?)
and oo the same cut-off for the second term. One
finds :
_ 2

weo = N 3079 41
which becomes less than or equal to w¢p for 2/3 <a<1.
For these values of « and for w 2 w¢ the transmission
coefficient is controlled by the localization phenomena
instead of the dissipation. It is, to our knowledge, the
only situation where localization can be observed at
low frequency in the presence of dissipation.

Finally, for completeness, let us deduce the diffusion
length for the case of random resistances where the
resistances follow a law of distribution analogous to
(32). By a similar method one can obtain the moments
of the truncated distribution :

1l -«

Ry NT™*
x (42)
X _N.

o =
1 — o

Expression (26) now becomes

_ 172 —a
(InT) = — <%M> wl/zNﬁ_

o

CaR, 2-a

— 0 @N'"*. 43
+a” “3)
The scaling variable is now '/? N@=9/20 =21 for
both terms, which produce the «diffusion» length :

Eo(@) ~ 0 28 (44)

2—a
1=* in agreement

and the cut-off frequency w, ~ N
with reference [8].

4. Phase correlation function.

We would now like to consider the effect of disorder
on the phases of 4, and B,. In the case of the random
impedances network we can generalize previous
approaches to this problem [17, 18] due to the fact
that the disorder introduces only one single charac-
teristic length describing both amplitude and phase-
correlation decay.
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We define the phase-correlation function gq(p) as
the ratio of the phase at some point p to the initial
phase ¢, so that

q(p) = z—z (45)
where we defined the phases ¢, by :
{ 4, =]4,]e" "

B, =|B,|e it 46)

We can easily show that phase-correlation functions
have the same scaling form for both cases :
ap) =22 and ¢y =22,

] 0
corresponding to 4, and B, respectively. Following
Azbel, we consider the only relevant extensive quan-
tity which obeys a central limit theorem for N — o,
to describe phase correlations, { In g ).

Starting from (11) and using the notation introduced
in the appendix, we get the following form :

7BV f Im (&),
0 n=1

47

with a first order expansion of tg (¢, — ¢,). Then we
have

m>~_1p )
<m% = -3 3 ImEP>. @

where the linear terms in £, of zero mean-value are
eliminated.

This expression for { In g(p) > allows us to obtain
the scaling form of the phase-correlation function in
the three previous cases :

i) purely reactive network : Im (¢,) = d 2LC g,
(ng(p)y = — ZE2NOL
ii) purely dissipative random network :
i - (2],
(Ing(p) > = - w,

iii) mixed reactive-dissipative network :

C 1/2
Im(¢) = L(ﬁ) w*g,

L*C
(Ing(p) > = vy 02 No®.
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Then the influence of disorder on the phase correlation
of the amplitudes 4, and B, has the same scaling form
as { In T }. This was expected since in 1D, the disorder
can be described by a single characteristic length.

5. Conclusions.

Let us summarize the main results of this article. The
electrical one-dimensional network is made up of a
finite number N of random reactive and dissipative
impedances. The propagation of an electrical wave is
studied by means of the transmission coefficient T
through the network. Simple results for the scaling
variables w and N can be obtained only at low fre-
quency. In this regime an effective medium is built up
by average impedances while the fluctuations around
the mean-values are treated by a perturbation expan-
sion to lowest order in the fluctuations g,. The correct
averaging on { In T ) is performed and produces the
scaling dependence as well as the characteristic lengths
(localization and diffusion) and the cut-off frequency
of the low-pass band filter. For weak disorder (all the
moments of the distribution function exist) we find
for the general chain a strong dominance of the dissi-
pation over localization, reflected by the fact that the
shortest characteristic length is that of diffusion.
Strong disorder is considered in terms of distribution
laws for which no moments exist. The extreme sensi-
tivity of the one-dimensional systems to this type of
disorder leads to a marked, change in the scaling rela-
tions, in particular a new frequency dependence of the
localization length is derived. A special situation is
envisaged where there is no randomness in the dissi-
pation while the reactive -impedances are strongly
fluctuating. For this situation only, there is a domain
of frequency where the localization becomes dominant
over the dissipation.

The domain of validity of the low frequency expan-
sion is limited by values of {In T ) > — 1 or, equiva-
lently, by the cut-off frequency w, of the low-pass band
filter. At higher frequency we have estimated the fol-
lowing terms in the expansion which show a similar
scaling dependence. This indicates a range of validity
probably broader than might be expected from the
lowest term of the perturbation expansion. However,
at higher frequencies, we know from Azbel’s recent
numerical work [1] that « passing modes» emerge
from a background of very small transmission coeffi-
cients for discrete values of w in the case of a random,
purely reactive chain. We believe that any dissipation
term will affect these « passing » modes and smooth
considerably the frequency dependence of the trans-
mission coefficient. This smoothing conjugated with
strong damping of the dissipation would probably
prevent the observation of the localization phenomena
through the transmission peaks even at high frequency,
except for the special situations described in section 3.

Many physical systems can be put into correspon-
dence with the electrical network described here.
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Vibrations of random masses corresponds to the
purely reactive case while the electrical resistance could
describe the viscosity of phonons coming from the
anharmonic normal collisions or, more generally,
inelastic scattering. Mechanics or linearized hydro-
dynamics have electrical network analogues. The

water waves by a random bottom belongs to the class
of random impedance problem in one or two dimen-
sional networks. Since the frequency dependence of
the localization length is even more divergent, & ~
exp(1/w?), [16] in two dimensions the viscous length
will be shorter, preventing the observation of the

recent proposal [19] to observe localization of shallow localization phenomena at low frequency.

Appendix.

DERIVATION OF { In T ). — Starting from (14) we obtain two different systems coupling respectively (4, Bo, 1)
and (4, By, 1) :

{A0+B0=1+r

. . . = . = A.l
Aye” + Byet — r(e* — inCZg,) = e™* — inCZg, @.1
and
te W+ 4 gd, — bB, =0
) (A.2)
te* 4+ cd, — dBy =0
where a, b, ¢, d, are defined by :
a= e-—i(N+1)¢ Sl . ei(N+1)¢(1 + Sz)
b=cOWtoeg, 4 e WD — §,)
c=e NS, — el + §,)
d=e"s, +e ™1 -5,
and
N . N N .
S, =Y e S, =3¢ S = Y &, e,
p=1 p=1 p=1
Eliminating r and ¢ in (A.1) and (A .2) one obtains :
{Ao(e“"” — e 4+ iCwZg,) + By — * + iCwZg) = e * — e*
. . A.3
Ay(a — ce®) + By(de* —b) =0. A3
Let D be the determinant of this system, then the resolution of (A.3) gives
A0=2lsmk(b—de"‘) and Bozzlsmk(a—ce”‘)
D D
and we find the following expression for ¢ :
pey 2 Asinksing a5y (A.4)

D

This result gives the expression of the transfer matrix to the lowest order in ¢, and, the quadratic terms, S7
and S, S, in (A.4) are of the second order in the fluctuation . Actually, we should have to take into account
in the expansion (10) of the transfer matrix, the terms ¢, &, (n # p). But for a complete disorder without site
correlation where ¢, and £, are independent random variables, the contribution of these terms vanishes after
averaging. This is a well-known result for the incoherent scattering in a random medium with the Born appro-
ximation where the two sites scattering is destroyed by the averaging of the interference effects and yields finally
a cross-section proportional to the impurity concentration. -

Substituting the expression of D into (A.4) one obtains :

_ Q2
£ eV _ ' 4k.p(1 — S35+ 8,853 . __ A.5)
ML + 0P — ST + (& — ¢7) (Sy e + 5;¢™)

o
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where we have done an expansion in e**® and e** and the following non restrictive hypothesis :
Im¢ =0
Taking first the squared modulus of (A.5) and afterwards its logarithm :

2

Ak O NImé+In|1—S248,8, P —

1
i Py

— In

kl _ ¢2 N 2
1 -5, + m)—z(sl + ¢? ¢S3)‘ (A.6)

thetermIn|1 — S7 + S, S, |? gives :
— 2Re(S2) + 2Re (S, S,)

which is zero when averaged. The last term in (A . 6) gives the contribution :

N N
_ ‘S2 I2 + 2 Re l:/w:( Z | én |2 e—2in¢* + e—2iN¢* Z lén |2 eZin¢*>:]
n=1 n=1

2 _ 42
where we have defined 1 = (k——i—_;é)i and we have eliminated the linear terms in ¢,, which have zero mean- ‘
values and, we have taken into account the fact that the ¢, are non-correlated variables.

In the presence of dissipative terms, one can make the assumption | ¢ | > | k | in the zero-frequency limit

and (In T > reduces to :

2

4 ¢k

{InT)» = ](¢ —2NIm¢—<|S2|2> A.7
where
<mm>=<;wﬁ>
<IS2 I2 4 n; lgn
(18, 1> = 2L o) A.8)

where the notation ¢?(w) was introduced to reflect the fact that g, could be w-dependent.
Substituting (A8) in the original formula (A7) leads to :

4 ok

(lnT>=ln m

’ —2LIm¢—]—V—|—4¢—|202(w) (A.9)

as was given in the text.
If there is no dissipation (purely reactive network), then ¢ = k and the original formula (A5) becomes :

1—S2+8,8,

1-8,
and
(InT)=~<L|S, )
because of the cancellation of ( — 2 Re (S2) + 2 Re (S, 83) > and then
V2 2
<1nT>=_Nk4" (A.10)

which is a result given directly by (A9) with ¢ = k.
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