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Abstract
We present a detailed numerical study of the effect of a disordered potential on a confined
one-dimensional Bose–Einstein condensate, in the framework of a mean-field description,
using a highly efficient and fast converging numerical scheme. For repulsive interactions, we
consider the Thomas–Fermi and Gaussian limits and for attractive interactions the behaviour
of soliton solutions. We find that the average spatial extension of the stationary density profile
decreases with an increasing disorder strength both for repulsive and attractive interactions
among bosons. In the Thomas–Fermi limit, a strong localization of the bosons is obtained in
momentum space around the state k = 0. The time-dependent density differs considerably in
the cases we have considered. For attractive and disordered Bose–Einstein condensates, we
show evidence of a bright soliton with an overall unchanged shape, but a disorder-dependent
width. For weak disorder, the soliton is delocalized and for stronger disorder, it bounces back
and forth between high potential barriers.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The spatial behaviour of a wave submitted to a strong enough
random potential remains one of the major and still unsolved
issues in physics. It is a ubiquitous problem that shows up in
almost all fields ranging from astrophysics to atomic physics.
The interference induced spatial localization of a wave due to
random multiple scattering has been predicted and named after
Anderson [1]. The Anderson localization problem despite its
relatively easy formulation has not yet been solved analytically
and still raises a lot of interest. Strong Anderson localization
of waves has been observed in various systems of low spatial
dimensionality where the effect of disorder is expected to
be the strongest [2–4]. Above two dimensions, a phase
transition is expected to take place between a delocalized phase
that corresponds to spatially extended solutions of the wave
equation and a localized phase that corresponds to spatially
localized solutions. The description of this transition is mainly
based on an elegant scaling formulation proposed by Anderson
and coworkers [5]. Due to its indisputable importance, the

localization of light is a hotly debated but still unsolved
problem [6–9]. The weak localization regime, a precursor of
Anderson localization for weak disorder, has been studied in
detail both theoretically and experimentally for a large variety
of waves and types of disorder [10–13].

In contrast, relatively little attention has been paid to the
extension of Anderson localization to a nonlinear medium.
Though analytical [14–16] as well as numerical work has
been done to address this issue, no clear-cut answers have
been obtained to ascertain how localization is affected by
the presence of a nonlinear term in a Schrödinger-type wave
equation. It is the purpose of this paper to address this
issue in the context of the behaviour of a one-dimensional
Bose–Einstein condensate (BEC) in the presence of a
disordered optical potential, since it has raised recently a great
deal of interest [17–30]. Transport of a magnetically trapped
BEC above a corrugated microchip has been theoretically
studied recently [31]. The possibility of tuning random
on-site interaction has also been considered [32]. Using
Feshbach resonances, it is possible to switch off the interaction
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among bosons which will then be allowed to propagate
through a set of static impurities created by other species
of atom. This may lead to an experimental realization
of the Anderson localization transition. The corresponding
theoretical model has been proposed and analysed [26, 27] for
one-dimensional systems, i.e. in the absence of transition. The
other issue is to understand the interplay of interaction induced
nonlinearity and disorder on the Bose–Einstein condensate.
One-dimensional systems are especially interesting since the
effect of disorder is the strongest and such systems are
experimentally realizable. Experiments in this direction have
been performed recently [17, 18, 20] which show a suppression
of the expansion of the BEC cloud once it is released from the
trap.

In this paper we present a numerical study of the effect of
a disordered potential on one-dimensional condensates with
either attractive or repulsive interaction in the framework of
the mean-field approximation and compare between these
two cases. We use a highly efficient and fast converging
numerical scheme based on spectral renormalization. It is
particularly suitable for systems where both randomness and
nonlinearity are present. Another useful feature of our model
of disorder is that both its strength and its harmonic content
can be independently varied.

Studies of the propagation of a quasi-one-dimensional
BEC in a disordered potential have been carried out mostly in
the repulsive Thomas–Fermi limit [17, 18, 20, 22, 30]. We
also consider this limit and find numerical evidence that the
suppression of the BEC expansion after the release from the
trap is due to localization in momentum space around the
state k = 0, which becomes stronger for an increasing
strength of disorder. This suggests that the momentum
spectroscopy of disordered quasi-one-dimensional BEC may
provide important information about its transport properties.
In addition, we consider the Gaussian limit of a strong
confinement and the bright soliton solution for an attractive
interaction.

The interplay between these different types of interaction
and disorder leads to different kinds of stationary and time-
dependent behaviour of the density profile. We consider three
regimes that cover both the repulsive and attractive interaction
and where the system can indeed be well described within the
mean-field approximation. It is given by the Gross–Pitaevskii
equation with modified coupling constant [34] and it reduces
to a nonlinear Schrödinger equation whose solutions in the
absence of disorder have been thoroughly studied [36, 38–40].
We employ a recently developed numerical scheme based
on a rapidly converging spectral method [42–45] to study
stationary solutions of this nonlinear Schrödinger equation
in the presence of a disordered potential. Then, we look at
the time evolution of the stationary profile after switching off
the trap potential. Subsequently, we analyse our solutions and
compare them to those obtained in the absence of disorder.

The organization of the paper is as follows. In section 2,
we briefly review the stationary density profiles of an
effectively one-dimensional BEC in the absence of disorder
and in the mean-field regime. Then, in section 3, we describe
our numerical scheme and define our model of disorder. In

section 4, we present our numerical results for the Thomas–
Fermi limit. In section 4.1 we compare them to recent works
[17, 18, 20, 22, 30, 31]. In section 5, the effect of disorder
in the confinement-dominated Gaussian regime is discussed.
Both sections pertain to the case of repulsive interaction among
bosons. In section 6, we show the existence, for an attractive
effective interaction, of a stable bright solitonic condensate in
the presence of disorder and we study its dynamics. In the
last section we summarize and present the general conclusions
derived from our results.

2. Stationary solutions in the absence of disorder

2.1. One-dimensional repulsive Bose–Einstein condensate
in a trap

We review briefly the mean-field description of a quasi-one-
dimensional Bose gas with short-range repulsive interaction,
in a cylindrical harmonic trap along the z-axis, and in the
absence of disorder. Details are given in [35, 36]. The
Gross–Pitaevskii equation provides a mean-field description
of the three-dimensional interacting gas and it is given by

ih̄
∂�

∂t
= − h̄2

2m
∇2� +

1

2

(
mω2

zz
2 + mω2

⊥(x2 + y2)
)
�

+
4πah̄2

m
|�|2� (1)

where ωz and ω⊥ are respectively the harmonic trap
frequencies along the z-axis and the radial direction; az =√

h̄
mωz

and a⊥ =
√

h̄
mω⊥

are the corresponding harmonic
oscillator length scales. The interaction is characterized by
the s-wave scattering length a that is positive for a repulsive
interaction. For tight trapping conditions (ωz � ω⊥), all
atoms are in the ground state of the harmonic trap in the radial
direction and the condensate is effectively one dimensional.
Nevertheless, for a⊥ > a, the effective coupling constant
along the z-direction is still characterized by a and it is given by
g1d = 2ah̄ω⊥ [34]. The corresponding mean-field behaviour
is governed by the Gross–Pitaevskii equation,

ih̄
∂�

∂t
= − h̄2

2m

∂2�

∂z2
+

1

2
mω2

zz
2� + g1d|�|2�, (2)

where � is the condensate wavefunction along the z-axis.
We look for stationary solutions of the form �(z, t) =
φ(z) exp

(−i µ̃

h̄
t
)

where µ̃ is the chemical potential. The
corresponding one-dimensional density is ρ1d = |φ(z)|2.
The interaction strength may be expressed in terms of the
dimensionless coupling constant γ ,

γ = mg1d

h̄2ρ1d
, (3)

which is the ratio of the mean-field interaction energy density
to the kinetic energy density. For γ � 1, the gas is weakly
interacting and, in contrast to higher space dimensionalities,
in one dimension the gas can be made strongly interacting
by lowering its density. For larger values of the interaction
strength γ , the Gross–Pitaevskii equation (2) does no
longer provide a correct description, the gas enters into the
Tonks–Girardeau regime [37] and behaves like free fermions.
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Starting from (2), a dimensionless form can be achieved
that is given by

i∂t� + ∂2
z � − z2� − 2α1d|�|2� = 0, (4)

where the use has been made of rescaled length and time,
z → z

az
, t → ωz

2 t and � → √
az�. The dimensionless

parameter α1d, or equivalently the coherence length ξ , is
defined by

α1d = 2aaz

a2
⊥

= 1

2ξ 2
, (5)

and it accounts for both interaction and confinement. By
rescaling the chemical potential, µ → 2µ̃

h̄ωz
, we obtain for the

time-independent Gross–Pitaevskii equation the expression

µφ + ∂2
z φ − z2φ − 2α1d|φ|2φ = 0. (6)

Henceforth we shall express our results in terms of these
dimensionless quantities unless otherwise specified. We
mention now two limiting regimes of interest that can be
described by equation (6).

2.1.1. Thomas–Fermi limit. For a chemical potential µ̃

larger than the level spacing, namely for µ̃ � h̄ωz (i.e. in
dimensionless units µ � 1), the gas is in the Thomas–Fermi
regime. Thus the kinetic energy term becomes negligible. We
denote by ρTF and µTF the corresponding condensate density
and chemical potential. We have

ρTF = µTF − z2

2α1d

(µTF − z2). (7)

The number of bosons is given by N = ∫ LTF

−LTF
dzρTF, where

LTF = √
µTF is the Thomas–Fermi length. Eliminating LTF,

we obtain

µTF =
(

3Nα1d

8

)2/3

. (8)

2.1.2. Gaussian limit. The opposite limit µ̃ � h̄ωz

corresponds to a regime where the single-particle energy
spacing is larger than the interaction energy so that the gas
behaves like N bosons in a harmonic trap potential. Thus, we
have an ideal gas condensate with a Gaussian density profile.

As we shall see later, the effect of a disordered potential on
the condensate dynamics for both limiting cases is significantly
different.

2.2. One-dimensional attractive Bose–Einstein condensate

We also consider the case where the s-wave scattering length
a is negative. The effective interaction among bosons is thus
attractive. This situation can also be described by means of
equations (2)–(4). In the absence of confinement and for
α1d = −1 [40], equation (4), provided the total number of
particles N = ∫

dz|�|2 is less than a critical number Nc

beyond which the condensate collapses, admits a moving
bright soliton solution of the form

�(z, t) = √
µ

exp
(
i
(

Vs

2 z +
(
µ − V 2

s

4

)
t + φ0

))
cosh(

√
µ(z − Vst − z0))

(9)

where Vs and µ > 0 are respectively the velocity and the
chemical potential of the soliton and (z0, φ0) refer to the
translational and global phase invariance of equation (4). In
particular, if Vs = 0 and choosing for simplicity the gauge
z0 = φ0 = 0, then �(z, t) = φ(z) exp(iµt) with

φ(z) = √
µ sech(

√
µz), (10)

which satisfies the time-independent nonlinear Schrödinger
equation

−µφ(z) + ∂2
z φ(z) + 2|φ|2φ = 0. (11)

The chemical potential µ is proportional to the square of
the inverse width of the soliton. Such a soliton has been
experimentally observed [38] and theoretically studied [39]
for cold atomic gases.

3. Numerical method for disorder and nonlinearity

3.1. Spectral method

We start by considering the dimensionless time-independent
Gross–Pitaevskii equation

µφ + ∂2
z φ − z2φ(z) − Vd(z)φ − 2α1d|φ|2φ = 0, (12)

in the presence of a disorder potential Vd(z). Upon
discretization, this potential is defined at each site of a lattice
and it is given by the product of a constant strength Vm times
a random number ω which is uniformly distributed between
0 and 1. This model slightly differs from the one usually
used, where the disorder potential has a Gaussian distribution
[41]. However, Anderson localization does not depend on such
characteristics of the disorder potential. Using a Gaussian
approximation with mean σ (the lattice spacing), the disorder
potential can be written as a continuous function

Vd(z, ω) = ωV (z) (13)

with

V (z − z′) = lim
σ→0

Vm exp

(
− (z′ − z)2

σ 2

)
. (14)

A disorder potential generated in this way varies rapidly over a
length scale of the order of a lattice spacing. We wish however
to use a smoother potential more appropriate for the description
of typical disorders generated in experiments [17, 20]. To that
purpose, we consider the discrete random variable ω defined
at each lattice site and we remove from its Fourier spectrum
all wavenumbers that are above a given cutoff kc = 2π/λc.
The inverse Fourier transform ω(λc) = ωc provides a random
potential that varies on length scales larger than or equal to λc

and which can be formally written as

V c(z) = Vm

∫
dk eikz

[
e−( k

kc
)M

∫
dζω(ζ ) e−ikζ

]
, (15)

where M is a large enough number. The new random variable
ωc(λc, z) thus generated is different from ω. While the average
value of ω is, by definition, equal to 1/2, we obtain, for
example, that for kc = 6, the average value of ωc is about
2 × 10−2. Typical examples of such slowly varying potentials
obtained by changing λc are given in figures 8(a), (c) and (e).
The disorder potential V c = Vmωc(λc, z) that we consider is
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thus characterized by two quantities: its strength Vm and the
scale λc of its spatial variations. Equation (12) rewrites
µφω + ∂2

z φω − z2φω − Vmωc(λc, z)φω − 2α1d|φω|2φω = 0.

(16)
The local density for a given realization of disorder is ρω(z) =
|φω(z)|2 and the number N of bosons is determined by the
condition N = ∫

dzρω(z). By direct inspection of the different
terms that appear in equation (16), we see that disorder effects
are obtained either by comparing them to interactions, i.e., by
comparing the disorder length scale λc to the coherence length
ξ defined in (5). If the ratio λc/ξ is small, disorder is strongly
varying spatially and its effect overcomes that of interactions.
We also compare the effective disorder strength Vmωc to the
chemical potential µ. This can be achieved by defining the
local dimensionless random variable

s = Vm

µ
ωc. (17)

We will consider its average over configurations denoted by
〈s〉. The parameter s allows us to compare the chemical
potential and amplitude of disorder potential barriers. This
parameter, as we shall see, plays also an important role in the
study of the time evolution of the density once the trapping
potential is released. It is a measure of the spatial extension of
the cloud as a function of time. Finally, we consider boundary
conditions for equation (16) obtained by demanding that for a
given realization of disorder, φω(z) vanishes for |z| −→ +∞.

We now turn to the description of the numerical method
used to solve equation (16). The fact that it is random
makes it very challenging for conventional numerical schemes
to be implemented. The numerical scheme we use here is
based on the spectral renormalization method that has been
recently proposed by Ablowitz and Musslimani [45] (see also
[43, 44]) as a generalization of the Petviashvili method [42].
Spectral renormalization is particularly suitable for this type
of problems for its ease to handle randomness. Consider, for
a fixed realization, the Fourier transform

φ̂ω(k) = F[φω(z)] =
∫

dzφω(z) e−ikz. (18)

By Fourier transforming equation (16) we obtain

φ̂ω(k) = 2α1dF[|φω|2φω] + F[z2φω(z)] + F[V c(z, ω)φω]

µ − k2
.

(19)
Generally, the solution of this equation is obtained by a
relaxation method or a successive approximation technique
where a given initial guess is iterated until convergence is
achieved. However, this relaxation process is unlikely to
converge. To prevent this problem, we introduce a new field
variable ψω(z) using a scaling parameter pω,

φω(z) = pωψω(z), φ̂ω(k) = pωψ̂ω(k). (20)
Substituting into equation (19) and adding and subtracting the
term rφ̂ω(k) (with r > 0) to avoid division by zero, we obtain
the following scheme,

ψ̂ω
(m+1)

(k) =
( r + µ

r + k2

)
ψ̂(m)

ω − F
[
z2ψ(m)

ω

]
r + k2

− F
[
V c(z, ω)ψ(m)

ω

]
r + k2

− 2α1d

∣∣p(m)
ω

∣∣2 F
[∣∣ψ(m)

ω

∣∣2
ψ(m)

ω

]
r + k2

,

(21)

where p(m)
ω are given by the following consistency condition,

∣∣p(m)
ω

∣∣2 =
〈
ψ̂(m)

ω , (µ− k2)ψ̂(m)
ω −F

[
z2ψ(m)

ω

]−F
[
V cψ(m)

ω

]〉〈
ψ̂

(m)
ω ,F

[∣∣ψ(m)
ω

∣∣2
ψ

(m)
ω

]〉 ,

(22)

where the inner product in the Fourier space is defined by

〈f̂ , ĝ〉 =
∫

f̂ ĝ dk.

We have checked that the above method generally
converges much faster in comparison to the method like
imaginary time propagation. Also the condition and
dependence on the initial ansatz solution is much less
forceful than in comparable methods, such as Newton’s search
algorithm.

3.2. Time-dependent evolution

To describe the time evolution of the stationary solutions, we
use a time splitting Fourier spectral method that has been
described in detail elsewhere [46]. We describe it briefly with
a comment on its limitation.

After switching off the trap, the time evolution is governed
by the equation

i∂t�ω(z, t) = −∂2
z �ω(z, t) + Vmωc(λc, z)�ω(z, t)

+ 2α1d|�ω(z, t)|2�ω(z, t), (23)

with �ω(z, 0) = φω(z). Equation (23) is solved in two distinct
steps. We solve first

i∂t�ω(z, t) = −∂2
z �ω(z, t), (24)

for a time step of length �t and then

i∂t�ω(z, t) = Vmωc(λc, z)�ω(z, t)

+ 2α1d|�ω(z, t)|2�ω(z, t), (25)

for the same time step. The first of these two equations, (24),
is discretized in space by the Fourier spectral method and time
integrated. The solution is then used as the initial condition for
the second equation (25). The commutator between the two
parts of the Hamiltonian that appears on the right-hand side
of (24) and (25) is disregarded in this process. The resulting
error is significant if this commutator is large compared to
other terms in the equation. This is the case if the disordered
potential strongly fluctuates (which is not considered in the
present numerical work). Note that, by definition, this method
ensures the conservation of the total number of particles.

4. Thomas–Fermi limit

4.1. Stationary solutions

Stationary solutions to the Gross–Pitaevskii equation (12) in
the Thomas–Fermi limit are obtained by iterating equations
(21) and (22). Then, we compare these solutions with
those obtained by directly considering the Thomas–Fermi
approximation in the presence of disorder. This comparison is
displayed in figure 1.
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0
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z

|φ
ω

|2

V
c

TF
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Figure 1. Behaviour of the condensate density |φω|2 obtained from
the Thomas–Fermi approximation and from the Gross–Pitaevskii
equation for a spatially rapidly varying disorder such that λc ≈ 2ξ .
The average disorder is kept much below the chemical potential
(µ = 30), so that 〈s〉 � 1. We have taken α1d = 1 and a number N
of bosons equal to 80.

Generalizing the Thomas–Fermi approximation (7) so as
to include the disorder V c, we obtain for the corresponding
density the expression

ρTF(z) = µ − z2 − V c

2α1d
, µ � z2 + V c = 0,

µ < z2 + V c. (26)

The density is thus expected to present local maxima and
minima that follow those of the disordered potential.

While the typical number of speckles of the disorder
potential used experimentally [17, 20–22] varies widely
between 6 (LENS [17]) and 40–50 (Orsay [20]), the speckle
size, in all the experiments, is much larger than ξ and much
smaller than the Thomas–Fermi size of the condensate. To
account for this experimental situation, we consider in figure 1
a strong disorder that fluctuates on a length scale λc comparable
to ξ , but much smaller than the size of the condensate, thus
leading to several local minima and maxima of the disordered
potential within the size of the cloud.

We observe that the deviations from the Thomas–Fermi
solution become larger as λc decreases, i.e., for larger spatial
variations of disorder. This behaviour can be understood by
considering the following expression for the density ρω:

ρω = (µ − z2 − V c(z))

2α1d
+ ξ 2

(
∂2
z φ

φ

)

= ρTF + ξ 2

(
∂2
z φ

φ

)
(27)

which follows straightforwardly from equation (16). In this
expression, the second term on the rhs, also known as the
quantum pressure term is a correction to the Thomas–Fermi
density whose origin is the zero point motion of the bosons
in the condensate. This correction is proportional to the ratio
(ξ/λc)

2. It becomes larger for a decreasing λc, namely for
a relatively larger effect of interactions driven by ξ . Thus
a stronger disorder introduces more appreciable zero point
motion of the bosons so as to reduce the interaction energy

1.5 3 4.5
0.80

0.95

µ<s>

<L
ω

>

(a)

0 4 8
0

4

λc/ξ

µ
<s

>

(b)

λ
c
=7ξ

λ
c
=2.34ξ

λ
c
=1.41ξ

λ
c
=ξ λ

c
=0.78ξ

Figure 2. (a) Plot of the width 〈Lω〉 averaged over disorder, as a
function of the average strength µ〈s〉. 〈Lω〉 is expressed in units of
the corresponding extension in the absence of disorder. For a given
value of λc, we average over 200 realizations of the disordered
potential. The quantity 〈s〉 defined through equation (17) is
calculated by averaging over these 200 configurations for each λc.
The behaviour of µ〈s〉 as a function of λc

ξ
has been plotted in part

(b). Such calculations have been done for five different values of λc,
the last one being less than the coherence length ξ for which the
validity of the mean-field theory is questionable. We have taken
µ = 30 and α1d = 1. (b) The plot showing the change of µ〈s〉 as the
cut-off λc changes for the values used in the part (a).

cost. In other words, the behaviour of the static Thomas–Fermi
condensate in a random potential is such that the disorder
potential becomes smoothened by the repulsive interaction
[22, 33, 47]. In a recent work [47], such smoothening of
disordered potential in the presence of an interaction term
has been analysed perturbatively using a parameter essentially
similar to

(
ξ

λc

)2
. It is thus interesting to compare figure 2

in [47] with our figure 1, but after noticing some important
differences between the models of disorder used in these two
works. In [47], the disorder potential is either positive or
negative with zero average, whereas in our case it is strictly
positive and thus corresponds to potential barrier only and not
potential wells. Moreover, quantum-mechanical bound states
formed in potential wells contribute to the set of basis states,
whereas in the present case, that possibility does not exist. The
parameter σR that determines the average speckle size in that
work, is different from λc which appears to generalize it [47]
(see footnote 6 of [47]) for a random potential.

Another feature of disorder is the spatial extension of the
cloud defined, for a given disorder configuration, by

Lω =
√

z2 − z2 (28)

where we have characterized the spatial distribution of the
cloud by its moments,

zn =
∫

dzznρω(z)∫
dzρω(z)

. (29)

In figure 2, we have plotted the configuration average 〈Lω〉
of the spatial extension as a function of the average strength
µ〈s〉 (see equation (17)). The average spatial extension of the
cloud in the Thomas–Fermi limit is a decreasing function of

5
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the ratio λc/ξ , i.e., it decreases when interactions are getting
larger than the spatial variation of disorder. We shall see
that this behaviour holds also beyond the Thomas–Fermi
approximation. In figure 2(b), we show how µ〈s〉 varies
with λc.

The evolution of the disordered ground state has also been
studied as a function of the interaction strength [22, 48].

4.2. Time evolution

We now study the time evolution of the previous stationary
solutions while switching off the trapping potential, but
keeping the disordered potential. The problem has been
studied experimentally in [18, 20, 21] and theoretically in
[18, 30, 49]. In the experiments [19, 22], the BEC was
prepared within the trapping and random potentials, but its
expansion has been studied while switching off both of them.
This led to the observation of sharp fringes in the resulting
density due to interference between different parts of the
condensate. These conditions differ from the case we consider
here.

We recall that our disorder is characterized by its strength
s in units of the chemical potential µ and by the length scale
λc of its spatial variations. The latter quantity is analogous to
the disorder correlation length defined in [20]. It is important
to stress that in the Thomas–Fermi regime, the time evolution
is very sensitive to the existence of potential barriers of height
larger than the chemical potential µ. If such a barrier exists,
say at a point z0, then we observe that the density ρω(z)

vanishes for z � z0 at any subsequent times so that the cloud
becomes spatially localized. Then, the average parameter
〈s〉 is no longer relevant since it may be smaller than unity
although some barriers may be larger than µ. We thus need to
characterize the disorder by means of higher moments. For a
smooth enough probability distribution of the random variable
Vmωc, which is the case we consider, it is enough to consider
the variance δωc defined by δωc = (〈(ωc)2〉 − 〈ωc〉2)1/2 and
the parameter

δs = Vm

µ
δωc (30)

which sets the width of the distribution of potential barriers. In
some of the cases we consider, the peak height of the disordered
potential is twice as high as Vmδωc

. A specific feature of the
one-dimensional disorder is that it is always very strong in
contrast to higher dimensional systems for which the cloud
may always find a way to avoid large potential barriers thus
making effects of disorder comparatively weaker. We have
studied numerically the density profile ρω(T ) after a time T
for different spatial variations of the disordered potential. A
first general observation is that for small values of λc, i.e. for
strong spatial fluctuations, the spatial expansion of the cloud
is inhibited, and the cloud remains localized in finite regions
that depend on the local landscape of the disordered potential.
In figure 3 we present the time evolution of the density at
the centre (high density) and on the edges (low density)
[20, 49, 51].

After the trap potential is released, the density peak at the
centre, which corresponds to the highest value of the stationary

Figure 3. (a) and (c) Time evolution of the density at the centre and
the edge for a strong disorder ( 〈s〉 = 0.23, δs = 0.185 and
λc = 12ξ ); (b) and (d) time evolution of the density at the centre and
the edge for a disorder characterized by 〈s〉 = 0.095, δs = 0.076,
λc = 2ξ, µ = 30 and α1d = 1 for all figures. The horizontal and
vertical axes are the same for all plots and are shown in alternative
pair of figures. The black line in each figure represents the
disordered potential which is rescaled and its origin shifted by the
same amount in all figures.

density, gets lowered at an initial stage of the expansion.
The interaction energy remains larger than the kinetic energy
so that the density profile near the centre still follows the
Thomas–Fermi shape, but with a reduced chemical potential.
The spatial variation of density fluctuations corresponds
approximately to that of the disordered potential (of the order
of λc). At the edges of the cloud, the density is lower so that
the kinetic energy term takes over the interaction term and it
is almost equal to the chemical potential µ of the condensate
at t = 0. Thus, the characteristic scale of spatial variations of
density fluctuations at the edges of the cloud is the coherence
length ξ which is smaller than λc. This is displayed in figure 3
which depicts the time evolution at the centre ((a) and (b)) and
at the edge ((c) and (d)). Particularly the features of figures 3(a)
and (b) which correspond to stronger but smoother disorder,
are in broad agreement with the result demonstrated in
figure 8 of [21].

In figure 3(a), we show that after a time T, the centre
of the cloud follows the potential landscape and varies on a
larger length scale than the edge of the cloud. The other limit,
λc � ξ , shown in figures 3(b) and (d), displays relatively less
difference between spatial variations of density fluctuations at
the centre and at the edges of the cloud.

Figure 3 also describes how the matter wave behaves close
to a single potential barrier placed either at the centre or at
the edge of the cloud. In figures 3(a) and (b), the central
cloud becomes localized due to the presence of a potential
barrier. The density modulation is driven by the local potential
landscape, rather than by any interference effect. It has been
pointed out in [18, 30] that the height of a single defect should
vary like the energy E of the incoming wavepacket over a
distance short compared to its de Broglie wavelength in order
to allow for quantum effects to dominate and eventually lead to
Anderson localization. The potential used in our computation
does not satisfy this criterion. To fulfil it, one needs a disorder
with higher δs and lower λc. However under such conditions,
the mean-field Gross–Pitaevskii approximation is questionable
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Figure 4. Evolution of the density in the k-space. Horizontal and
vertical axis labels are identical for all the plots and are shown in (a).
Part (a) corresponds to a strong disorder as defined in figure 3(c).
(b) Weaker disorder fluctuating on a smaller length scale as defined
in figure 3(b). (c) No disorder and (d) optical lattice:
(〈s〉 + δs) sin 2πz

λc
. The values of 〈s〉, δs and λc are those used in

figure 3(c).

and the use of the discrete nonlinear Schrödinger equation will
be more appropriate.

We have studied in figure 4 the time evolution of the cloud
density in momentum space and compare it to the cases without
disorder and in the presence of an optical lattice. Figure 4(a)
shows a strong localization in k-space for high values of δs.
This is to be compared to the case of figure 4(d) (optical
lattice). This strong localization occurs around the k = 0
state. On the other hand when disorder fluctuates on a shorter
scale λc (with a smaller δs), a significant fraction of the density
still occupies higher momentum states and the corresponding
localization in momentum space is less pronounced. Thus, a
measurement of the momentum spectrum [50] of a quasi-one-
dimensional BEC in a disordered waveguide can shed light
on the nature of localization of the cloud. It has been shown
[49] that in the low-density tail of the expanding BEC cloud,
each Fourier component having a low enough momentum
becomes exponentially localized with a momentum-dependent
localization length due to destructive interference. This signals
Anderson localization. Such a behaviour shows up also for a
two-dimensional condensate [51] and two distinct time scales
can be identified over which the expansion of the cloud takes
place, the first stage being dominated by nonlinearity and the
second by disorder and thus more likely to show Anderson
localization. In a recent experiment [52], an expanding highly
elongated BEC has been imaged and reproducible interference
fringes have been observed before the BEC gets fragmented
into phase-incoherent pieces. However this interference
pattern has been attributed to the overlap of different pieces of
the expanding BEC with distinct velocities and not to multiple
scattering and Anderson localization.

In the above discussion we have only considered the time
evolution of the mean-field ground state. Small fluctuations
around the mean-field solution and Anderson localization of
Bogoliubov quasi-particles have been considered in detail by
the Orsay group [53].

Figure 5. (a) Time evolution of the spatial extension Lω(t) of the
cloud as defined in (28) for a given configuration of the disordered
potential but for different strengths Vm and length scales λc. 〈s〉, λc

and δs are indicated against each plot. Lω(t) is expressed in units of
its value at t = 0. (b) Corresponding time evolution of the ratio R
defined in (31).

After studying the time evolution of the density, we
consider other properties of the cloud that characterize the
suppression of its spatial expansion. In figure 5(a), the spatial
extension Lω defined in (28) is plotted as a function of the
dimensionless time ωzt . We observe that Lω(t) saturates to a
value which depends on the average strength 〈s〉 of the disorder
in qualitative agreement with the experimental findings [21]
and others.

In order to characterize this saturation, we define the ratio,
denoted by R, between the average kinetic and interaction
energies of the cloud by

R = 2ξ 2

∫
dz

(
∂φω

∂z

)2

∫
dz|φω|4 . (31)

In the stationary Thomas–Fermi approximation, the kinetic
energy is almost negligible as compared to the interaction
term, i.e., R ≈ 0. As the cloud expands, the interaction energy
becomes gradually converted into kinetic energy and this ratio
increases until it finally saturates. This shows up in figure 5(b).
For a larger disorder, this increase of the ratio saturates more
rapidly and the slope of R(t), which indicates how fast the
interaction energy is converted into kinetic energy, decreases.
Particularly the lowest plot corresponding to a large disorder
shows a rapid saturation of R due to a strong localization
in momentum space. Since the edge of the cloud involves
mostly kinetic energy, the behaviour of R is dominated by
the expansion of the central region. When the expansion is
stopped by a potential barrier, the corresponding loss in kinetic
energy is proportional to the height of the potential barrier.
This explains the oscillations of R that appear in the presence
of disorder.

5. Gaussian limit

In this section we study effects of disorder on bosons that
are condensed in the ground state of a harmonic oscillator
potential. In that case, the solutions of the Gross–Pitaevskii
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Figure 6. Stationary profile of the condensate density in the
presence of disorder. The corresponding values of the average
disorder strength 〈s〉, λc and δs are given in the inset.

equation without disorder are different from those obtained in
the Thomas–Fermi limit, and are given by Gaussian profiles
centred at the origin.

5.1. Stationary solutions

Like for the Thomas–Fermi regime, stationary solutions of the
Gross–Pitaevski equation (16) in the presence of both trapping
and disorder are characterized by the average strength 〈s〉 and
the length λc. By changing the disorder strength we obtain
behaviours such as those displayed in figure 6.

Since interaction effects are negligible in the Gaussian
limit, the characteristic length of density variations is set by
the harmonic oscillator length az, and not by the coherence
length ξ as before, the latter being very large in that case.
In this regime dominated by confinement, we observe that
the shape of the density profile depends weakly on disorder
in contrast to the Thomas–Fermi limit, for which this profile
follows the variations of the disorder. This is particularly
apparent in figures 8(c) and (d), where disorder varies over
a length scale smaller than the width of the density profile
without leading to fluctuations of this profile.

The density profile is well approximated by a off-centred
Gaussian shape,

ρω(z) = A exp

(
− (z − z0)

2

L2
ω

)
, (32)

for a large range of disordered potentials (see figure 6(b)). The
amplitude A and the width Lω are related to each other through
the normalization. The average width 〈Lω〉 is a decreasing
function of the disorder strength µ〈s〉 defined by (17) as
represented in figure 7. Thus, the net effect of disorder is
to spatially localize the bosons inside a narrower Gaussian.

5.2. Time-dependent solutions

The behaviour of the stationary condensate density profile in
the presence of disorder in the Gaussian limit differs from
that obtained in the Thomas–Fermi limit. This difference

0.06 0.12 0.18
0.955

0.985

µ <s>

<L
ω

>

Figure 7. Behaviour of the disorder averaged width 〈Lω〉 of the
stationary density profile in the Gaussian limit as a function of the
average disorder strength µ〈s〉. The width is normalized by its value
in the absence of disorder. For a given value of λc, the width is
averaged over 200 realizations of the potential. The values of λc are
those used in figure 2 and, in units of the harmonic oscillator length
az, they range between 0.55az (lowest point) and 5az (highest point).
We have used µ = 2 and 2α1d = 0.01.

shows up also in the time evolution of the density of the cloud
after switching off the trapping potential. The short time
expansion of the Thomas–Fermi cloud strongly depends on
disorder, whereas in the Gaussian case, it does not. Moreover,
in contrast to the Thomas–Fermi case, the zero point motion
of the bosons is appreciable. The time evolution of the
condensate density after switching off the trap is presented
in figure 8 for different strengths of disorder.

We first note that on the same time scale, the density
at the centre of the cloud decreases more rapidly than
for the Thomas–Fermi case (figure 3). This results from
the non-negligible kinetic energy of a Gaussian cloud and
the weaker interaction between bosons. Figure 9 displays
the time evolution of the average spatial extension 〈Lω〉 of the
cloud defined by (28) and the ratio of the average kinetic and
interaction energies defined in (31). These two figures outline
the difference between Thomas–Fermi and Gaussian time
evolutions in the presence of disorder. The spatial extension
in figure 9(a) does not show any saturation over comparable
time scales, though it grows at a lesser rate with increasing the
strength of disorder. Correlatively, the ratio R in figure 9(b)
grows at a much faster rate and it takes a longer time to
saturate. We can summarize these observations by saying
that though the cloud expansion is indeed prevented by the
disorder potential in the Gaussian regime, the suppression is
weaker than in the Thomas–Fermi regime and it happens on
longer time scales.

6. Soliton solutions for an attractive Bose–Einstein
condensate

Having discussed the behaviour of repulsive interacting bosons
in the presence of disorder, we now turn to the case of
an attractive solitonic condensate in similar situations. As
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Figure 8. Left (a), (c) and (e) Plot of the disordered potential. The
potentials in (a) and (e) vary on the same scale, whereas the
potential in (c) varies on a smaller scale. The corresponding values
of 〈s〉, λc and δs are respectively (0.14, 8az, 0.025), (0.25, 1.66az,
0.0846) and (0.31, 8az, 0.105). Right (b), (d) and (f) time evolution
of the density corresponding to the potentials plotted on the left.
The initial stationary value of the density is denoted by ρω(0) and
ρω(T ) is computed at the time T = 25/ωz. We have used µ = 2 and
2α1d = 0.01.
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Figure 9. (a) Time evolution of the spatial extension Lω(t) of the
cloud for disorders of different strengths Vm and length scales of
variation λc. The disordered potentials are those used in figure 8 and
the corresponding parameters are indicated (〈s〉, λc, δs) in the inset.
Lω(t) is expressed in units of its value at t = 0. (b) Corresponding
time evolution of the ratio R is defined in (31).

we shall see, the change of the nature of the interaction
modifies the behaviour of the soliton solution with disorder
as compared to the previous cases of Thomas–Fermi and
Gaussian condensates. In contrast to equation (6) describing
a repulsive interaction, equation (11) involves one free
parameter only (α1d = −1). As we have already mentioned,
a change in α1d only redefines the width of the soliton

0 33 5
0

1

2

z

ρ ω
(0

)

no disorder

<s>=0.05,λc=12ξ

<s>=0.12,λc=2.8ξ

<s>=0.19,λc=12ξ

Figure 10. Stationary density profile of a bright soliton in the
presence of disorder. The chemical potential is µ = −20 and
α1d = −1. The disordered potential is characterized by |s| (since
µ < 0) and λc. 〈s〉 is the average of |s|.

proportional to 1/
√

µ. In what follows, the width is always
kept less than ξ .

6.1. Stationary profiles

We start with the study of the stationary solutions of
equation (11) with the addition of a random potential, namely,

−µφ(z) + ∂2
z φ(z) + Vdφ(z) + 2|φ|2φ = 0. (33)

It is important to note that, in contrast to previous cases, there
is no trapping potential, so that in the absence of disorder,
the solution is translational invariant. Numerically, we start
with a randomly chosen initial guess which, once iterated,
gives a solution located around the initial trial function.
The overall shape of the stationary solution turns out to be
independent of disorder, meaning that this shape can still
be fitted with a function of the type Assech(Bs(z − z0)),
where As and Bs = 1/Lω are respectively the amplitude and
the inverse width of the soliton. This feature appears clearly
in figure 10 where the profile of the bright soliton has been
plotted for several realizations of the potential. But, both
the width and the amplitude depend on disorder as shown
in figure 11 which displays the behaviour of the width for
an increasing strength of disorder. We have also checked
the dependence upon length scales λc. Those features look
similar to those obtained in the Gaussian limit. But they
are essentially different. Whereas the soliton profile results
from the comparison between kinetic and negative interaction
energies, the Gaussian profile is obtained from the comparison
between kinetic and confinement energies. This difference will
manifest itself in the time evolution of the solitonic condensate.

6.2. Time-dependent solutions

We now study the time evolution of the stationary solutions
obtained previously, and not initial solutions given by (10)
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Figure 11. Disorder averaged width 〈Lω〉 of the stationary profile of
a soliton as a function of the strength of disorder. (a) Here (*), λc is
lowered which corresponds to stronger fluctuations of the disorder,
while Vm is kept fixed. (b) Here (×), the strength Vm of the
disordered potential is increased keeping fixed the spatial scale of
variation λc. 〈Lω〉 is expressed in units of its value in the absence of
disorder and, for each case, it is averaged over 200 realizations of
the potential. The average potential is characterized by |s| since
µ < 0. The values of λc are indicated in the figure. We have taken
µ = −20 and 2α1d = −1. (c) The plot showing the change of µ〈s〉
as the cut-off λc changes for the values used in
part (a).

unlike the case considered in [16]. For this purpose, we first
boost the soliton by giving it a finite (dimensionless) velocity
Vs = 5. In the absence of disorder, the soliton travels a distance
z = Vst over a time t without any change in its density profile.
In the presence of a weak and smooth enough disorder, we
observe that the soliton propagates retaining its initial (t = 0)

shape, over distances comparable to the non-disordered case.
A weak disorder potential has thus a negligible effect on the
soliton motion. For a stronger disorder strength (i.e., for a
smaller value of λc and a larger value of 〈s〉), the time behaviour
is displayed in figures 12(a) and (b). In both cases, the
soliton behaves classically and it becomes spatially localized,
i.e. that it bounces back from high potential barriers typically
higher than the kinetic energy. However, we do not observe
a significant change in the shape of the soliton. Its width
fluctuates as the soliton travels through the disordered potential
and bounces back and forth. When the strength of disorder is
higher, the soliton motion is clearly not linear (figure 12(b)).
This kind of motion can be qualitatively explained by
considering the soliton as a massive classical particle of mass
mN , where m and N are respectively the mass and the number
of atoms in the condensate. Deviations from the linear motion
result from the spatially varying force exerted on the soliton by
the disorder potential. This kind of description is valid as long
as the disorder potential remains smooth over the width of the
soliton. Similar behaviours have been discussed in the context
of soliton chaos in spatially periodic potentials [54], although
the physical origin is different from the case discussed here. At
the present stage of experiment [38], such a behaviour could
be verified by studying the time evolution of a bright soliton
in an optical speckle pattern.

Figure 12. Time evolution of a boosted soliton in the presence of
disorder. The chemical potential is µ = −20, the dimensionless
velocity at t = 0 is Vs = 5 and α1d = −1. The disorder potential is
characterized by |s| (since µ < 0) and λc. (a) Fastly varying disorder
with 〈s〉 = 0.12, δs = 0.162 and λc = 2.8ξ . (b) Stronger but slowly
varying disorder with 〈s〉 = 0.19, δs = 0.372 and λc = 12ξ .

7. Conclusion

We have performed a detailed numerical investigation of
stationary solutions and time evolution of one-dimensional
Bose–Einstein condensates in the presence of a random
potential. Stationary solutions which correspond either
to the attractive interaction bright soliton or to repulsive
interaction Gaussian matter waves with repulsive interactions
in the regime where confinement dominates, behave in a
qualitatively similar way. In contrast, the stationary solutions
that correspond to a repulsive interacting Thomas–Fermi
condensate depend strongly on the strength of disorder and
on its spatial scale of variations.

The time evolution of stationary solutions depends also
significantly on the regime we consider. Although transport
gets inhibited both for the attractive and repulsive interaction,
this occurs in a very different way. For the repulsive case the
centre and the edge of the cloud behave differently and both are
ultimately localized in a deep enough potential well. In the
interaction dominated Thomas–Fermi regime, the main part
of the cloud remains localized and edges that correspond to
low densities and correlatively weaker interactions, propagate
further away. A study of the corresponding momentum
distribution of the cloud indicates a stronger localization of
the matter wave in low momentum states for an increasing
strength of the disorder potential. On the other hand, a moving
bright soliton behaves very much like a single particle and it
bounces back from a steep potential with its motion reversed.
This behaviour of a bright soliton may be contrasted against
the behaviour of a dark soliton in the presence of disorder
which has been investigated recently [28].
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For the values of the disorder strength and the nonlinearity
we have considered, we observe a behaviour of solutions of
the Gross–Pitaevskii equation that are mostly driven by the
nonlinearity, i.e., by interactions. Disorder plays mostly the
role of a landscape within which a classical solution evolves
in time. We did not observe, for the relatively large range
of disorder and interaction parameters we have considered,
a behaviour close to Anderson localization, namely where
spatially localized solutions result from interference effects.
Since disorder is expected to be stronger in one-dimensional
systems, we may conclude that, for the currently accessible
experimental situations, Anderson localization effects will not
be observable [18, 22, 33] due to the strength of the interaction
term. Alternative setups are thus required in order to observe
quantum localization of matter waves, having weak or zero
interaction (e.g., by monitoring Feschbach resonances [26]).

The signature of Anderson localization in the nonlinear
transport of a BEC in a wave-guide geometry has been studied
in [31]. There, the transmission coefficient has been shown
to be exponentially decreasing with the system size below a
critical interaction strength. But the different types of disorder
and the matter wave density at t = 0 make a direct comparison
with these results difficult.
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