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Résumé. — Nous présentons une étude théorique des corrélations temporelles de la lumiére en
régime de diffusion multiple dans un milieu désordonné. Nous considérons la situation ou le
fluide contenant des diffuseurs élastiques est en écoulement laminaire et stationnaire. Nous
établissons une formulation générale du déphasage de la lumicére diffusée en fonction du
déplacement des diffuseurs dans la limite de faible diffusion kf > 1. Ces résultats sont appliqués
aux écoulements de cisaillement et de Poiseuille aussi bien qu’a 'écoulement bouchon des fluides
non newtoniens. Enfin, la validité des approximations utilisées ez la possibilité d’extension de ces
résultats sont discutées.

Abstract. — A theoretical study of time dependent correlation functions of the multiply scattered
light in a disordered medium is presented. We consider the situation where the fluid containing
the elastic scatterers is submitted to a laminar and stationary flow. We establish a general
formulation for the phase variation of scattered light originating from the motion of the scatterers
within the weak scattering limit kf > 1. These results are applied to shear and Poiseuille flow as
well as to plug flow of non-Newtonian fluids. The validity of the approximations used and possible
extension of these results are discussed.

1. Introduction.

The last years have seen a strong revival of the interest in the problem of the scattering of light
by turbid media. New methods of investigation of the multiple scattering regime were
developed which gave rise to the prediction and observation of qualitatively new phenomena.
Among them, was the enhancement by a factor of two of the backscattered light within a
narrow cone around the direction of the incident light [1]. More recently, it was realized [2, 3]
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that it is also possible to get new insights about the time dependent correlation function of the
scattered intensity in the strongly multiple scattering regime in which the standard QELS
(Quasi Elastic Light Scattering) spectroscopy does not apply anymore. It was then possible to
study the dynamics of Brownian particles in dense solution at very short time scales. This
« Diffusing Wave Spectroscopy » [4] was subsequently applied to study the dynamics of
scatterers submitted to deterministic flow [5].

Our aim in this article is to discuss from a theoretical point of view the dynamical
correlation function of the intensity for a large class of deterministic flow within different
geometries. In section 2, we will give the general framework in which all these multiple
scattering calculations are done. Section 3 is devoted to general behaviour of the phase of the
correlation function for deterministic motions. Then, in section 4, we will apply these results
to the case of shear and Poiseuille flow as well as to the case of non-Newtonian fluids flowing
in a slab. Part of these results concerning the time correlation of the shear flow has already
been given in a previous publication [5]. In this paper, we present a general approach of th-
problem of the time correlation of the multiple scattered intensity and extend the previou.
results to more complex situations such as Poiseuille or laminar flow of non-Newtonian fluids.
We restrict ourselves to the geometry where the correlation is measured through a slab by
reflection or transmission.

2. General expression of the time correlation function in the multiple scattering regime.

Our aim in this section is to study the behaviour of the multiply scattered field and then to
derive a convenient expression for both the time dependent correlation function of the field
and the intensity.

Suppose that the incident electric field at point r; is E;(r;) and the subsequent multiply
scattered field at r, due to that source is Eg(ry, r2). In order to calculate E, let us consider first
a single scattering event on a particle of volume v described by a local fluctuation
se of the dielectric tensor. The scattered electric induction D satisfies the differential
equation [6] :

VD, + k°D, = —rotrot (8¢ - E;) M

27 . The solution of equation (1) at large distance Ry is:

A —

w
where k = — =
c

1 exp (ikRy)

Ds=4—;rotrot R, J d* 6¢-E;exp {— ik’ -r} 2)
v

where k' is the unit vector which indicates the direction of scattered field. We suppose now,
for the sake of simplicity, that 8¢ is spherical and we consider an incident plane wave
described by E; = & Egexp {ik-r}, where & is the incident unit vector. In the far field, the
relation between D, and E; becomes simply D; = ¢E; so that equation (2) gives:

8z -exp(ikRy)

E =—
s Eo 4 meR,

Jd3rf(’A(R’Aé)exp{i(k—k’)-r}. 3)

If the volume v of the scatterer is of order A 3 then the stationary phase approximation gives :

véz-exp (ikRy) ., ., ] ,
ESZ_EO—Wk Ak'ad)exp{i(k—Kk')-r} )]
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where r defines now the position of the scatterer. Equation (4) is made of two parts. One is
the phase factor exp {i(k —k’)-r} which describes the change of the phase due to the
scattering. The second part which is also a complex number but does not depend on direction,
is nothing but the asymptotic expression of the Green function G (k, Ry).

Suppose we have now a lot of such elastic scatterers in our system at points
Iy, Iy, ..., ¥ ,. This kind of dense solution is usually characterized by its elastic mean free path
f which describes the average distance between two scattering events. Usually f is much
larger than the average distance between scatterers. We now consider the weakly scattering
regime for which A < £. Then the distance travelled by the scattered field being very large, we
can use the asymptotic expression (4) as the incident field on the forthcoming scatterer. For a
given sequence C, of, say, n scatterings at ry, ry, ry, ..., T ,_5, I between ry and r, the scattered
field can be written : ‘

Es= A"(”o»"a en) ﬁ exp{_i(ki_ki—l)'ri—l _‘i(kl_k)'ro—i(k,_kn)"r} (5)

i=2

—

where #(rg, r, C,) is the complex amplitude of the field associated with the sequence
C,. The total electric field at point r is then obtained by summing over all the multiple
scattering paths C,. This derivation can be extended to the more general case of moving
scatterers r;(¢) so that the scattered field E; can be writien :

E(ro, 7, 1) = Y &(r, 7, €, (1)) & ©

€

where the bracketed term in equation (5) defines a phase factor &,(z). Moreover, let us
assume that the displacements r;(z) are small enough in order to neglect the second order
variation of the wavevectors k. The time correlation function of the field is therefore :

(E(ro, 1, 1) E*(r0, 1, 0)) = T (#(r0, 7, Co(1)) &% (1,7, €,,(0)) @O =27y (7

(3,,, Cp

The set of multiple scattering paths C,(#) at time 7 coincides with the set C,(0) at time
¢t = 0 (ergodic hypothesis). Then the amplitudes 4 are now stationary and independent of the
~hases 8,(¢). Moreover, the calculation of

Y (A1 C,) #£% (g, 7, €)Y

Co Cpr

can be done within the multiple scattering theory [7] and gives within the weak scattering limit
kf > 1, the Green function G (ry, r) = [4 wD |rg — 7|1~ ! of the stationary diffusion equation
in 3-dimensions. This Green function has a very convenient expansion [7] in terms of random
walk paths of length n: G (ry, r) = Z G (rg, 1, n). G (#y, r, n) is the Green function of the time

dependent diffusion equation where the role of the time ¢ is played by the number
n of steps of random walk. Equation (7) can then be written :

(E(ro,r, t) E*(r,1,0)) = Y G(ro,r,m) <ei(8"(t) - 8"(0))> . (8)

The (... ) which appears in equation (8) describes an average over all the diffusion paths of
length n and eventually an average over a possibly random motion [2] of scatterers
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r;(2). Finally, to compare with experimental results, we have to relate the field correlation
function given by equation (8) to the correlation function C,(rg,r,t) =
<|E (ro, 75 t) |2 | E(ro, 7, 0) |2> of the intensities. In the weak scattering limit, one can show [3]
that :

Carory 1) = | (E(ron 7, 1) E* (r0, 1, 0)) | ®)

then C, reduces to the calculation of equation (8). We clearly see now that the time
correlation function of the field needs two basic ingredients to be calculated. One is the Green
function G (ry, r, n ) which essentially describes effects related to the geometry of the system.
The second is <exp (i Ad (1)) ; (Ag,(t) = 8,(t) — 8,(0)) which depends essentially upon
the motion of the scatterers.

3. General expression of the phase for deterministic motions in the stationary regime.

We concentrate in this part on the general features of the phase {(exp (i Ad,(2))). One knows~
that :

(exp (i Ad,(1))) =exp ( i i"Mq) (10).
where M, is the g™ cumulant :
M= (g, ()5 My =1 [(Ad20) — (86,(D)]; -

Let us now consider the stationary flow [8]. The change of position Ar(R,,?) of the
v scatterer with time can therefore be written :

Ar(R,,1) =V(R,)!? (11)

th

where V is the local velocity. The position of the »™ scatterer is defined as follows:

v-1
R, = Z A;(0) & ; (v =1), where & is the emergent unit vector after i ® scattering and
i=1
A0)= R, —R;. R
scatterings.
From equations (5) and (6), the phase A¢,(¢) associated with a given multiple scattering
path ry, ry,...,r ,_,, ¥ can be written :

is therefore defined by the variables of previous (v —1°

—

v

Apa() = T K, [Ar(R,, 1) — Ar (R, 1, 1)] (12)

where we have neglected the phase variation associated with the first and the last scattering
events. According to equation (11), we can write equation (12) as :

n

Ad, (1) =kt } &,-[V(R,)-V(R, )] (13)

v=1

where &, is the emergent unit vector after the v scattering. Note that decorrelation only
occurs through the relative motion of particles. In the particular case of uniform flow, no
decorrelation occurs. The positions R, and R, of the v and the (v + 1_)th scatterers
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respectively are separated on average by a distance of the order of the elastic mean free path.
For the velocity field which varies slowly at length scale £ i.e. |VV ||/||AV || > { we can then
expand to first order the bracket in equation (13):

8, =—ki T A,(0) (6, V)G, V(R,)). (14)

By introducing the symmetric tensor A, (v) = (&, - &,)(¢, - &) with ¢,/ = x, y, z; the phase
A¢, () can now be expressed as :

8ot = —kt T A,(0) AT (v) (3,7 )z (15)

_ he average value (A¢,(¢)) over all the possible paths of length n is proportional to
(A,,(O) 4% (V)(axV)qg>. This average can be factorized since A"g(v) depends only on the

angles at » " scattering ; (Ag(v)) = % 8 40 while {(A,(0)) = ? by definition. (8,V )4 depends
only on the variables of the (v — 1)" scattering. Therefore :

n

(Adu(0) =~ 3 kb1 T (divV(R,)) . e

=1

The variation of the phase is then zero on average for incompressible fluids or when
0V )ex = (85V),, = (8,V),, = 0. This is the situation we will consider throughout this
article. Consider now A¢ (1) = — kt A,(0) Aq[(V)(axV)qg. The correlation function of the
elementary phase is :

(A, 8¢, = (k1)*(A,(0) 4,:(0)) (AY(r) A (»")) (3.7 )y (V) - (17)

But (A4Y(»)A4%(»")) o 5, 8,,8;p. Then the phases A¢, are independent random
variables of zero average so that the central limit theorem applies. \

In addition to this motion imposed by the fluid, the scatterers can also experience a
Brownian motion. The time correlation function associated with it was recently extensively
studied [2]. Here we are mainly interested in the deterministic motion of the scatterers. This
imposes to work at time scales such that the relative displacement of two scatterers is larger
than their Brownian displacement. This corresponds to ¢ > Dg/(I” typf )2 where Dy is the
Brownian diffusion constant, I',, a typical velocity gradient of flow and f the elastic mean
free path of light. In recent experiment [5] the characteristic values of the parameters are :
Dp=~10"%cm’.s™!, I, ~50s~" and f =~ 100 pm. Then the deterministic regime corre-
sponds to the time range ¢ = 40 ns. In the following, we wiil adopt these values for estimating
the various time scales.

4. Laminar flow in slab.

We consider a slab of width L perpendicular to the z-axis, within which flows a non
compressible fluid with a distribution of velocities :

VR) =TV, (x)e, (18)



476 . JOURNAL DE PHYSIQUE I N 4

V(R) obeys the Navier-Stokes equation with specified boundary conditions. According to
equation (17), the fluctuation of the phase is :

" av,\2
A 2 t - k2g2 t2 A*F 2 z .
(A62(0)) T (@ (5 (19)
LS o . .
Since % does not depend on é,, we can factorize in equation (19) the angular coordinates,
and calculate ((4™(»))?) = {cos® (8,) sin®> (8,) cos® (¢,)) = T1§ — for the isotropic
diffusion — so that : )
2 _Lpp < vV, \2
(Ad;(1)) = Ek t v; ) (20)

Within the diffusion approximation considered here, we can write :

VNN _ [ p YV 21
(%)) =] P (5 ) o @1

where P, , (x) is the probability density to reach the point x after » steps in a random walk
" involving n steps without touching the boundaries. The calculation of P, ,(x) is very
reminiscent of the related statistical mechanics of polymers as considered long ago by
Edwards [9] and de Gennes [10]. We will therefore only give the main lines of the calculation
in Appendix B. Then, if we know the Green function G (ry, ¥, n ) of the diffusion equation and
the density P, ,(x), the set of equations (8), (20) and (21) defines completely the field and

the intensity correlation functions. We will now apply it to the study of some characteristic
flow.

max

4.1 SHEAR FLOW. — The expression of the velocity in that case is V(R) = xé, so that
a V Vm X . . .
3 - La = I' is constant. From equation (20) we obtain for the fluctuation of the phast___
x
2 r\?
(a3w) =2( L) n @
S

1
v 30
pair of scatterers initially distant from ¢ to move a relative distance A due to a shear flow of
time constant I'~ ! 7 is then the decorrelation time and for ¢ = 7, the field correlation
function involves only a single scattering event. To enter the multiple scattering regime, we

must therefore consider times ¢z < 7. From equation (8) we obtain for the field correlation
function :

where we have defined 7' = KET. 7 (=70 ps) [5] the characteristic time needed by a

(E(rg,r, 1) E*(rg, r,0)) = i G (ry, r,n)exp{—n ( TL >2} (23)

n=1
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and for a slab of width L with the two points r; and r inside the medium, we can evaluate the
Green function G (ry, r, n) (cf. appendix A) so that:

w5 () [7E]
sinh [\/EL;I;]

(E(ro, 1, 1) E* (ro, 7, 0)) = LTT

V3

where x, and x are respectively the projections of ry and r on the x-axis. In these relations,
rp describes the point where the incident light coming from the source is impinging onto the
system, then [7] we will consider x;= /. Moreover in the limit 7 -0, we find

<|E (ro, )| > 1— _x_ which, indeed, coincides with the reflection coefficient for x = vi

1d with the transm1ss1on coefficient for x = L — y£. The coefficient y' introduced above
“depends on the boundary conditions we have chosen for the diffusion equation [7] ; but it is
always of the order of unity.
We are now in a position to calculate the normalized time correlation function both in
reflection and in transmission. The reflected part CR(¢) is obtained from equation (24),
taking x = y{ :

L

552 0-3)]

Ci() = (25
4
( —YT) sinh[\/gl‘i]
TS
In the limit L — oo describing a semi-infinite system, we obtain for ¢ < 7
c{‘(r)=exp{_y\/57i}z1_y\/57i. (26)
s s

The linear decrease of CR(¢) has to be compared with the case of pure Brownian motion of
1e scatterers for which the correlation function [2] is:

—

CR()y=1-1v \/f_—t, where 7 5!'=k?’Dg(=1ms).
0

The two laws in ¢ and \ﬁ define a characteristic time 7 * for which both correlations are equal.
This characteristic time is similar to the previous one since z* = Dg/(I'f)%. Beyond this
characteristic time, shear flow varying in 1 — ¢ is more efficient than the Brownian motion of
the scatterers. It may be interesting to note that the slope at the origin
ICRO | 43
ot (=0 - T

(Eq. (25)) and the definition of time correlation 7 are nearly the same (') as those obtained
by Pine et al. [5].

This expression

) The only difference resides in the factor \/g in their time correlation function instead of
3 here.
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The transmitted part CJ(¢) is obtained from equation (24), taking x = L — y{
sinh [y \/5 Ti ]

L
Ci(t)= % ——— "= 27
7smh [\/——(T ]

From -equation (27), two regimes have to be distinguished. For times

<7 A (7 ST = 7usfor L =10¢ ) , the normalized transmitted time correlation becomes :
kLT '\2
cl(=1- <_) 2. (28)
! /30

It is a surprising result ! In spite of the fact we are in a strongly multiple scattering regime,
C{(¢) given by equation (28) does not depend either on the mean free path £ nor on the
coefficient y describing the effect of the boundaries. It is therefore a very interesting regime
to study in order to obtain I'.

For times 7> ¢t > 7 7 Ve obtain instead :

Lt
i =2v3iZew |- VAT L. (29)
TS
Here again, it is worthwhile to notice that the exponential decay is driven by { and
7, which are independent quantities.
4.2 POISEUILLE FLOW. — A Poiseuille flow is characterized by the distribution of velocities :

max

V(R) = : (Lx —x%) &, (30)

where L is the width of the slab and x the projection of R on the x-axis. Then the velocity

V max
Lma . It must be noted that expression (30) take-—

into account the cancellation of the velocity on the boundaries of the slab at x = 0 and
x = L. The fluctuation of the phase is given by equation (20) which leads to:

(@80) =g RO -2 5 G+ 1§ (D oD

v=1

‘The qualitative difference between the Poiseuille flow considered here and the shear flow or
even the Brownian motion of the scatterers clearly appears here. In the previous cases, each
contribution of scatterers at the phase variation was independent of their positions. Now, in
Poiseuille flow as in more complex situations, the contribution depends on the positions of the
scatterers. Hence for each diffusion path of equal length » but geometrically different, oné
expects a different contribution to the phase variation. According to equation (31) the
fluctuation function (Ad: 2( t)) is obtained by an average over all diffusion paths of the saime
length n, starting at point x; and reaching the point x after » steps. We have then to specify
the probability density P, ,(x). Due to its dependence on the boundaries (cf. appendix B),
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the expression of (Ad),%(t)) will be different in reflection and in transmission. Using equation

(B2), we obtain :
_ 4 vin—v)
) =t \/——

NEES

and

o _dpvn-—v)
) =gt = —

so that in reflection we have :
t\2 8 {2 ¢
(A¢,f(t)>.—_2<7_—s> n[l-&-ﬁL—zn—Z /%Z\/ﬁ] (32)

—where the characteristic time 7, associated with the Poiseuille flow in reflection is the same as
for the shear flow i.e. defined by 77! = \/—13_0 kfI'. Equation (32) shows that (Ad2(?))
depends on the parameter n(f/L)~ It can be rewritten £/Lyp Where £ = {7 is the total length of
the random walk of » steps while £, = L Y{ is the typical value of the length of a random walk
crossing the slab of width L. To obtain the total correlation function in reflection, we must
now convoluate this result with the Green function G (7, 7, n ). For a semi-infinite system the
contribution of the short paths to G (rg, 7, n) with £ <€, is dominant, so that in reflection

equation (32) reduces to:
(A6 2(1)) z2<7i >2n (33)

which is formally identical to equation (22) obtained for the shear flow. Figure 1 shows the

1.0 =TT T T T T T T T
N.,
NTe.
N s
N Reflection
N Semi--infinite medium
0.8+ O i
- N
N\ .
Y A
N
< \\ .
~Z 0.6 S B
o X
0.4 i
Non—newtonian fluid (n* = 4)
~ - Non—newtonian fluid (n* = 9)
~— Shear and Poiseuille flow
0.2-4——-20ear and PO Y
0.0 0.1 0.2 0.3 0.4 0.5 0.6
X=t/Tg
Fig. 1. — Normalized time correlation function C,(x) for reflection for a semi-infinite medium versus

x = t/7, for v = 1. For this geometry, shear and Poiscuille flow give the same curve (see 4.2). Plug flow

2
of non-Newtonian fluid contributes to C,(x) with two values of n* = il7 ) .
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correlation function for the reflection in this approximation. Shear and Poiseuille flow are
identical since the light diffusion paths explore mainly the space near the plane of the incident
light. However for the short time the important light diffusion paths are large and can
approach the opposite plane of the slab. For this regime, the light will see the complete
velocity gradient profile and a difference between the various laminar regimes considered
here is expected. This complex regime calls for a special treatment which is in progress. The
identity between equations (22), (33) occurs only in reflection for the Poiseuille flow while in
transmission, the situation is somewhat different.

The probability density P, , (x) in transmission has been calculated in appendix B. Since,
2

in this case, the distribution of »n is peaked around the value ny = —2% , we consider the
w
approximation n = ny. Then we find a straightforward calculation (cf. appendix C) :
2 2
(Ap (1)) =2 ( L > <n+ T n0> G
Tp 3 -

for the expression of the phase fluctuation in transmission. The characteristic time
7, (=180 ps) associated with the Poiseuille flow 1is mnow defined by

o' =kl % (%— %) and the constant « is given by 0.093 approximately for
1

L/ =10 (see appendix C). The total correlation function is then obtained by using the
expression of the Green’s function in transmission (see appendix A) :

sinh ['y ﬁTip}
sinh [\ELT_’]

p

2 2
(E(ro,r, 1) E*(ro,7,0)) = exp [_ lgﬁnoi_z] X (35

Here %gain as for the shear flow (Eq. (27)) we can make the distinction between short time

<t < I Tp) or long time <t >7 Tp) regimes and write the normalized correlation function

CT(¢) in transmission as

,
CcT) =1-— <%+a> (1,‘75) z<%7p (36a)
p
Ty _ v? Lt Lt \? ¢
Cl(t)_2\/57—pexp{—\/§(?7—r)>—a(?7—l)>} Tra<t<T,.  (36)

In figure 2a is must be noticed first that shear flow decorrelates more efficiently than
Poiseuille and plug flow. The explanation is simple : instead of a constant velocity gradient for
the shear flow, Poiseuille flow involves a vanishing gradient in the central part of the slab
(this effect is still enhanced in the plug flow of non-Newtonian fluid — see below). In the
short time regime, we notice (as previously) that only the combination £+, appears which
depends neither on the mean free path £ nor on 7.

In that respect, besides the a-dependence, it is formally similar to the result (Eq. (28))
obtained for shear flow. It is then remarkable that at very short time the correlation function
is quasi-universal. This relative insensitivity to the different types of flow is seen in figure 2b
where the three types of flow are indistinguishable. This originates in the expression of the

p

|
|
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1.0000+ r
0.1000 -
< 0.0100 ]
S E
Transmission
L/t =10
0.00104 N
1 - Non—Newtonian fiuld (¢ = L/8)
— - Poiseuille flow
0.0001A—Shearflow ,
0.0 0.1 0.2 0.3 0.4 0.5 0.6
a) X=t/Tg
1.00000 T T T T
] Transmission |
0.10000+ LA=10 3
0.01000+ -
g E -
(.')- 4
0.001004 E
3 0.4 ~
3 0.00 0.06 0.12 AN
Xmt/7y i Xomt/7p 1 Xomt/7, M ]
0.000104 N -
- Non—Newtonian fluld (¢ = L/8) N
1 — - Poiseuille flow N
0.00001 4+—. She‘qr flow : : ) ; . : .
0.0 0.1 0.2 0.3 0.4 0.5 0.6
b) X=t/714: X=t/-rp P X=t/T,
Fig. 2. — Normalized time correlation function C,(x) for transmission in a slab of thickness

L =10f. The three curves are obtained for y = 1. We have @ =0.093 for Poiseuille flow and
B =0.043 for plug flow of non-Newtonian fluid. Shear flow corresponds to @ or 8 =0. a)
T1(x) versus x = t/7, exhibit the relative efficiency of the different types of flow to the decorrelation. b)

~—~C(x) versus reduced variables of each type of flow i.e. x = t/r;, x = t/7, and x = /7. This show the
functional difference between shear flow and the two others at long time. Insert: shows the same
behaviour of the correlation function for the three types of flow.

probability density P, ,(x)= % sin® [ wa ] as a first harmonic of the mathematical
series (B4) which reflects the dominant contribution of the long diffusion paths. But at long
time regime corresponding to (Lt¢/f ) >1, C I(¢) is driven by the part of the exponential
involving & and is therefore qualitatively different from equation (29) obtained for the shear
flow. The correlation starts to depend on the nature of flow as exhibited in figure 2b. This
av,
originates from equation (21). In shear flow case, e constant, keeping in (B4) only the
X
m =1 term so that @ = 0. In contrast, for Poiseuille and plug flow (see below), the integral in
equation (21) involves higher harmonics and therefore @ s 0. This new ponderation of the
velocity gradient brings about a characteristic time distribution as compared to shear flow.
This explains the relative positions of the curves in figure 2b where the correlations are
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expressed in reduced time variables #/7; and #/7,. Finally, it is worthwhile to notice again here
that the exponential decay of C[(¢) is also independent of £ and vy which appear only in the

prefactor yt/7,.

4.3 PLUG FLOW OF NON-NEWTONIAN FLUID FLOWING IN A SLAB. — Several fluids of practical
interest like the polymer solutions or colloidal suspensions are non-Newtonian fluids. Let us
recall that a non-Newtonian fluid has a shear viscosity which depends on the velocity. It was
shown first by Eyring et al. [11] that the viscosity of typical non-Newtonian fluid is well
described by the relation :
sinh™! [T aa—V ]
X
= 37
=" P (37
where 7, is reference viscosity and 7 a relaxation time.
We assume that the direction of flow is along the z-axis perpendicular to the boundaries ac
x = 0and x = L. The applied pressure gradient is assumed to be in the direction of the flow

and constant. The momentum balance equation for a steady flow is then given by :

) v, ap
&[" ax]—& (38)

where gg is the pressure gradient.
z

By integrating (38) with 7 given by (37) and assuming vanishing velocities on the walls

x =0and x = L, one finds :
. X . X
sinh [SZ]smh [6(1—1-)}(3

V(R) = Vmax 5 z
sinh? [ 3 ]

(39)

with :

7L op
- 2 No 0z . e

& describes the departure from the Newtonian fluid. For 8§ < 1, the fluid is nearly Newtonian
and in our case the velocity field is of the Poiseuille type (cf. 4.2). For & = 1 the fluid is non-
Newtonian and the velocity field gradient depends on x :

8V max sinh [6 (1 — 2 x/L)] _ psinh [8(1 —2x/L)]

I'(x) =
) L sinh? [8/2] sinh [§]

(40)

Vmax sinh [5]

5
with I' = )
L sinh?[6/2]

. .. . L \? o
Let us consider first the correlation in the reflection. Suppose that < 7 ) > n like in the

semi-infinite medium, the expression (40) is written as :

28V
F(x)z—Texp{—z—gf}. @1)
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Let us define ¢ = % , the characteristic length beyond which the velocity field is constant.
Then :

r(x = Fexp{——g} 42)

where I'is the velocity gradient at the boundary x = 0. To be in the multiple scattering regime
. . " L
we must verify the inequalities 1 < 8 = 57
In the limiting case ¢ =< £, the approximation of the slow variation of the velocity field at the

scale of £ is no longer valid. We will suppose therefore that ¢ > £. In this regime the total
phase correlation function is (see appendix D) :

(A 2(1)) =2<T_t >2n n<n* (432)
- 2
=2(ﬁ) = n* (43b)

where 7, is the characteristic time for the shearing flow since, in this regime, only the initial

gradient is relevant. The most probable value of » in order to travel a distance £ in a random
2

walk of step { is n* = %% Then :

PO @4)

this time 7* ( = 13 ps for & =6 £ and 7, = 70 ps) is the correlation time corresponding to n*

2
scatterings which decorrelate the electrical field by a factor exp {— ( L ) } at each step. For

s
n <n* the phase fluctuation function is proportional to the number of scatterings and
contains only the initial velocity gradient. Actually only this initial gradient contributes to the
correlation function in reflection. And the linear dependence on »n comes from the quasi-
linear dependence of velocity field. For n = n*, the velocity field is nearly constant and the
sradient vanishes. Then the fluctuation function becomes independent on n. For the semi-
~—infinite medium, one finds :

CR(1) =1 (;QF )2 f<r* (452)
~1-yV3L  rrct<r,. (45b)
TS

Equation (45a) presents the same behaviour than the equations (28), (36a) discussed above
for transmission. Hence & plays the same role as L in the transmission expression. Indeed,
because the velocity gradient acts only within a distance ¢ form the interface, C{(¢) decreases
as 2 at short time. All reflected diffusion paths longer than ¢%{ give the same contribution
(independent of the length) to the decorrelation.

In transmission, the total correlation of phase are given by the expression (D15) in the
appendix D :

CHONEEI R )2- fns m B | (46)
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where :

il = 2w (i )3/2k£’F 7
7T2§2 L
s

Tr (=270 ps for £ = L/8) corresponds to a characteristic time of the same type as

32
7, but with an average velocity gradient less than I" by a factor —2% ( % ) . In
7§

1+ 72

terms of this new time 71 one obtains an expression of C () very similar to the previous one
for Poiseuille flow :

sinh [y \/ii ]
7T

]exp{—B<Yl;—tT)2J. 48y~

C;r(t) = ——T—
sinh [\/5 L
Trr

5. Conclusion.

Let us summarize the main results of this article. We have developed a theoretical analysis of
the dynamical correlation of the light multiply scattered by a disordered medium. We
considered the case for which the scatterers have a dynamical deterministic motion imposed
by the underlying fluid in which there are immersed. In section 2, we have derived a general
expression for the time correlation function in the multiple scattering regime. It is based on an
expression for the scattered electric field written as a summation over all the possible random
walk paths of an accumulated phase. This phase describes the motion of each scatterer with
time. This approach was introduced and used by Maret and Wolf [2] in their study of the
Brownian motion of the scatterers. Here, we tried to give some more details about the
delicate transition between a description of the multiple scattering paths in terms of usual so
called path integrals to a description based on classical random walk paths weighted by a
phase term. We emphasize here that such an approach is derived within the weak scattering
limit & > 1 and describes the random walk paths as the Markovian process of a stationar,
diffusion problem.

All the relevant information about the characteristics of the flow is contained in the phase
variation A¢ () associated with paths of length n. Then in section 3, we have evaluated it
carefully for the case of stationary flow. We restricted ourselves to the case of incompressible
fluids for which the average (A¢ (7)) over the diffusion paths is identically zero.

In section 4, we have applied our general formula to some characteristic motions such as
laminar shear and Poiseuille flow in a slab. For each case, we have evaluated the time
correlation function of electric field both in transmission and in reflection. The behaviour at
short times in the strongly multiple scattering regime reveals to be quantitatively different
from the case of the Brownian motion. This is a signature of a deterministic flow. The case of
Poiseuille flow clearly marks a qualitative difference compared to previous cases. It is the
simplest case where the fluctuation (Ad) X t)) of the phase involves the exact position of the
visited scatterers instead of only the number n of the steps of the random walk. We had
therefore to introduce (in order to calculate the average) the probability density
P, ,(x) giving the probability reach the point x after » steps in a random walk of
n steps. Our evaluation of this very important function P, ,(x) was based on similar
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calculations used long ago by Edwards [9] and De Gennes [10] in statistical mechanics of
polymeric chains. Then, it gave rise to a marked differentiation between the expressions of
(A 3(t)> in reflection or in transmission and therefore for the corresponding correlation
functions. We have also shown that for all these flow, the transmitted correlation function at
very short times becomes independent of the elastic mean free path as well as from other
characteristics of disorder. We believe that this remarkable fact could be very helpful
expetimentally and it will be possible to obtain quantitative information about flow even
under conditions of strong multiple scattering. :

In section 4, we considered the case of plug flow of non-Newtonian fluid flowing in a slab.
Since within a large portion of the space the velocity field amplitude is constant, no dephasing
occurs and the range of the correlation function is increased beyond the Poiseuille flow value
as shown in figures 1 and 2.

Some of the results exposed here were already derived theoretically and tested experimen-
«ally [5]. This is the case of shear flow. But concerning for instance Poiscuille flow, we think

—.nat we developed a refined and powerful approach which extends beyond the cases where it
coincides with shear. It gives rise to new predictions which could be tested. More generally,
our approach of the problem might be the starting point for the study of more difficult
situations dealing with viscous, correlated or even turbulent flow.
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Appendix A.
Expression of the Green function of the diffusion equation in a slab.

We consider the geometry of an infinite slab of width L perpendicular to the x-axis and solve
the time-dependent diffusion equation :

:_’ZzDVzn(r,t) (A1)
. 2

where the diffusion constant D = 31— . Moreover we impose to the field n(r, t) the Dirichlet
T

" boundary conditions n(x = 0, ) = n(x = L, t) = 0. These boundary conditions are adapted
to the problem of propagation of light we consider here. Indeed, we assume that light is lost
for the medium when it arrives within one mean free path from the boundaries [7]. The Green
equation of equation (Al) is:

%—DVEG(rO,r,z)=3(r_r0)a(z) (A2)

with a source placed at r,. G(ry, 7, t) obeys the Dirichlet boundary conditions
G(rg,x =0,1) = G(rp, x = L, t) = 0. The solution of equation (A2) is:

] 2.2 02,2
G (o0 1) = g XD (- 94 D) T u0) b exp (- L) A

m=1

where p is the projection of r —r, on the y —z plane and x, and x are respectively the
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projections of ry and r on the x-axis. Finally, in equation (A3) the eigenfunctions

¥, (x) are given by :
¥, (x) = \/% sin <$ ) . | (Ad)

Due to our choice of the geometry and since we are considering only incident plane waves, all
the quantities we calculated are integrated over the cross-section. Thus, the Green function of
interest to us is:

. - 00
G(xo,x,t)=f 2@pdp G(p, x4, x, 1) . (A5)
0

In random walk theory, G (x, x, n) can also be considered as the probability density for a
Brownian particle starting at x, to arrive at point x after 7 steps, provided we make the chang-

n = t/7 in equation (AS). This is exactly the meaning we give to the quantity appearing in._-
equation (8), thus :

2 & . [MTX\ . [ mwx m? w22
G(xo,x,n)_zm;sm( T )sm(-—L—)exp{——Wn}. (A6)

In the limit L - oo, equation (A6) gives the well-known result for a semi-infinite medium :
3 3(x — x)° 3(x + xp)?

G(xgpx,n)y= [——  dexp{————" } —exp| -7 . A7

(% ) \/47rfzn { p< 4 nf? P 4 nf? (A7)

Appendix B.
Expression of the probability density P, , (x) in a slab.

In this appendix, our aim is to calculate the probability density P, ,(x) defined as the
probability for a random walk of n steps starting at point x, to reach point x after
v steps. This quantity was extensively studied in statistical mechanics of polymers by Edwards
[9] and De Gennes [10]. They considered exclusively the problem of non correlated
monomers so that the Green function of the underlying random walk has the property of a—
Markov process. It is then possible to break the random walk paths into pieces so that :

G(xp, %, V)G (X, x,n—v)
P, ,(x) = G o) (B1)

where G (x;, x,, p) is the Green function defined in equation (A6). In equation (B1),
P, ,(x) also depends on the initial and the final points (x, and x; respectively) of the n-steps
random walk. In evaluating P, ,(x) we then have to specify which conditions are used :

i) Reflection.
The point source x, as well as the escaping point x are within a mean free path

{ from the boundaries. Moreover, the distribution to P, ,(x) is dominated by the short paths
so that we can use expression (A6) to compute it in the limit of L — co. This gives :

4, 3n 312 B 3 nx? } ‘
P"’”(’”‘ﬁx[m] x| Y e d 2
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i1) Transmission.
For transmission we take xy = £ and x; = L — ? and we use equation (A6). Moreover, the
2

distribution of n in transmission is strongly peaked around n;= Then in the Green

2p2 .
T
function G (X, xp, ) appearing in equation (Bl) we retain only the m = 1 harmonic, all the
subsequent ones being strongly attenuated. Then, we can write :

n
exp(n‘)
0

Pn,u(x) =22:Sm—2<—¥—)

:2:1 (- 1y”+!sin (m,Lﬂf ) sin (m—z;g ) sin (m’LTrx ) X

m,

2
X sin (m_Z}f > X eXp {—”10 (m?—-m'?) — mnon } (B3)

'2
gives rise to an

i (m? — m'?) can be very small even for high harmonics but the term nm
Ry ny

exponentially small contribution unless m’' = 1. Thus, we obtain :

sin

. x
sin | —~ 2
2 ( L ) 2. marl . mmrx (m—1)w
== —_— —= - B4
P, ., (x) L—_(W——> Z sin ( 7 ) sin ( T ) exp{ ™ (/ )
which does not depend on n anymore for n = n,.

Appendix C.

Calculation of the fluctuation (A¢ ,f(t)} of the phase for Poiseuille flow in transmission.

From equations (20), (30) we have :
2 1, 2pr2ee [© x x*
<A¢n(t)>=ﬁk 02r*;: Zl 0P,,,,,(x) 1—4Z+4L_2 dx (C1)

~where the probability density is given in equation (B4). The expression of <A¢ ,f(t)) involves
the integral :

L 2
L sin (ZLf>sin (me)[l—4%+4%2]dx

:<%_7_T2_2)§ ) m =1 (C2a)
S 1= (= 1y 5mE m# 1 (C2b)

. 77_2(m2__1)2

so that:

(A (D)) =%k2£’21"2t2 (%_%);1qu_7_4F 5y __(_Wég_ LE(m)!  (C3)
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m (m*>-1) (m*=1)n
o = 1ty [ (R ) e (TR ) .

ny Ry

Since in transmission, we consider n = n,, the second exponential in the bracket is negligible
compared to the first one, thus defining :

m L
(m*— 1) go (EL_f)

@ 2
S = T [1- (- 1)) )exp(—u) ()

and
144 S(L/0)
o=
LA CERN)
we can rewrite (A¢2(¢)) as: —
2
(Ad7(2)) =1—15 (%-%){n+ “3“;10} k20212, (C5)
K

The series S(L/{) is obviously uniformly converging even in the limit ny; - oo and
lim  S(L/f) =0.04. For L/f = 10, S(L/€) = 0.0246 so that & ~ 0.093. Equation (C5) is the

L/g — 00
equation (34) used in the text.

Appendix D.

Calculation of the fluctuations <A¢,f(t)> of the phase for plug flow of non-Newtonian fluid
flowing in a slab.

The fluctuation of the phase is :

b v
(A2(0)) = k2021 Zf Pn,y(x)[ a;]zdx. (D1 —

Due to the sensitivity of P, , (x) to the boundaries, we will distinguish the reflection and in
transmission in the calculation.

1) Reflection.

2
Let us consider a semi-infinite medium (n < % ), the boundaries of the integral over
x in equation (D1) are @ =0 and b = 0. For the calculation, we use equation (42) for

z

and (B2) for P, ,(x). As defined in the previous appendix B, P, ,(x) is the probability

density for a random walk of n steps starting at point x, to reach the point x after
v steps. In reflection, the most probable distance L, between x and x, is defined as :

L? = dr(n—v)p (D2)
3 n
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the typical number of steps n* for a random walk over a distance ¢ with L, = £, is then:

2
n* =% ( ig; ) . Equation (D1) is written :

(apioy - et 5 L[

73
7TV=1LV 0

2
x2exp [— ix—z'— Z?x ] dx (D3)

we find [12]:
4k202T1%
—_————— X

53w
xz[

(AP 2(D)) =

+

(7

LV LV 2
J(1-o (%)) =[(%)]} @
~where @ (y) is the error-function.

When L, < ¢, means n <n*, equation (D4) becomes

(A62()) = k2T ¥ 4

!

(D35)

L
Equation (D5) appears as an expansion into the parameter ?V which is smaller than one in

this case. <A¢ 3(1)) is driven essentially by zero order term of the expansion, the others give
rise to a small contribution. Then, equation (D5) reduces to :

(@siwy =2( L) n (D6)

where 77! = —I——kfF is the characteristic time correlation in reflection. For L, =&,

V30

equation (D4) takes the following form :

(Ap2(1)) zlsi/;kzezpztz”’f [Lir (D7)

v =n* v

from equation (D2) and equation (D7) we obtain :

o2y ~2( 5 ) (D8)

where 7% = is the time correlation associated to the multiple scattering in a slab of

7-S

/ n *
width ¢, corresponding to the region within which the velocity gradient is non-zero. We can
resume :

(Ad2(1)) =2(TL )211 n<n* (D9a)

(A 2(1)) =2<T_’*>2 S (D9b)
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it) Transmission.

Now, the boundaries are a =0 and b = L in equation (D1). The probability density
P, ,(x) is given by equation (B4). The fluctuation of the phase is then :
K202 2 .n

2 —
(Ad (1)) = 3 smhz ] z

P, ,(x) sinh? [8 - g] dx (D10)

the expression of <A¢3(z)> involves the integral :

"L . 2w2¢3sinh [2 6] 1 12
P,,,,x31nh2[5—f]dx=—2 + = E,(m
J; v (X) : 3 ey 8; (m)

(D1’
m

L
(m +1) w2 (mi-1)ywtet o [#l
2L7? + 16 L* Sm[ L ]

E,(m) =[1- (- 1)"’]

_(mz—l)v}

The sum of equation (D11) over » from 1 to n, retaining the dominant term, gives :

z . 2 w2¢3sinh [23], 3¢3 .
Zl equation (D11) = 723 g nt o sinh [28]S(¢, L))  (D12)
L2

where :

o SO [mT_wf] Ey(m)

S, Lty =Y —7 o (D13)
m=3 gin [—] m-—
L S—
. L
which, for the greater value of ¢ ; &, = 50 tends to:
Hm  S(&mae L/E) ~0.0717
and for the smaller value &, = £, behaves as:
m  S(¢, L) =0.275 %,
Lif -
Let us call:
242
3 (1 + WLf >
B L) =p=— = L S¢ 1)) (D14)




N 4 MULTIPLE LIGHT SCATTERING IN LAMINAR FLOW 491

32 '
and 77'= 27 <% ) kfI the characteristic time correlation in trans-
2 42
30 (1 T ) :
1.2
mission, then the fluctuation of the phase can be written as:
. s N
(Ap (1)) =2 ( s ) {n+ B no} : (D15)
TT 3
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