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Transport Properties

S. Roche, E. Akkermans, O. Chauvet, F. Hekking, J.-P. Issi, R. Martel,
G. Montambaux and Ph. Poncharal

Abstract. In this chapter, we first review the fundamental theoretical concepts of
mesoscopic transport for low-dimensional systems and disordered materials. Empha-
sis is put on the Landauer formulation of electronic transmission, weak localization
and Aharonov-Bohm phenomena, as well as Coulomb interactions through screen-
ing effects and Luttinger liquid model. A pedagogical effort is made to present the
currently established physics of quantum conduction in some analytical detail, en-
abling the reader to further deepen the understanding of more specialized literature.
In a subsequent part, the main theoretical features of quantum transport in carbon
nanotubes are elaborated, mostly within the non-interacting electron regime, that is
to date less controversial. The experimental part starts with a discussion of the com-
monly employed measurement techniques. Several transport experiments are then
analyzed, with a particular focus on device-oriented aspects (field effect, Schottky
barriers, etc). Finally, the main physical properties of nanotube-based composites
are outlined, followed by a presentation of our current understanding of thermal
properties of carbon tubules.

6.1 Quantum Transport in Low-dimensional Materials

6.1.1 Ballistic Conduction and Quantized Conductance
Drude-Sommerfeld Theory of Metals
Conductivity and Conductance

In ordinary metals, transport is conveniently described using Drude-Sommer-
feld theory [1]. In this theory, the conduction electrons (mass m, charge —e)
form a degenerate Fermi gas (Fermi energy Er). Momentum relaxation occurs
with a rate 1/7, where 7 is the mean time between successive scattering events.
The mean free path ¢ is the average distance over which electrons propagate
ballistically, i.e., without being scattered. It is given by £, = vpT, where vp =

v/2Eg/m is the Fermi velocity.
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In metals, the mean free path is usually long compared to the Fermi wave-
length Ap = 27/i/(mup). Hence the electron motion is quasi-classical on the
scale £, and can be described by Newton’s laws. In particular, an applied
electric field E will accelerate the electrons up to a time 7. Beyond this time,
scattering events completely randomize the electron momentum and destroy
all (quantum-mechanical) correlations. This is the central assumption of the
Drude-Sommerfeld theory. As a result the acquired momentum is on average
p = mv = —eE7. Introducing the current density j = —ngewv, where ng is
the electron density, we immediately obtain Ohm’s law § = op E where

noe?r

op = —— (6.1)
is the Drude conductivity. Equation (6.1) constitutes a local relation between
J and E: the current density at position r is determined by the value of E at
the same position 7.

The Drude conductivity is a material parameter: it does not depend on
the geometry of the sample. Often we write Ohm’s law as I = GV, where [
is the total current, V the applied voltage, and G the conductance. This is a
non-local relation: the total current I through the sample is determined by the
voltage difference applied to the sample boundaries. For a wire of length L and
cross-section S, we have G = opS/L. This implies that the resistance R = 1/G
scales linearly with L, and is inversely proportional to S, in agreement with
the usual rules for series and parallel addition of resistances, respectively.

Momentum Relazation; Residual Conductivity

Momentum relaxation occurs due to the fact that the electrons undergo scat-
tering events [2]. The most important mechanisms contributing to momen-
tum relaxation are electron-phonon scattering, electron-electron scattering
and scattering off static impurities. The first two mechanisms are inelastic:
they involve a change in both energy and momentum. Scattering off static
impurities is purely elastic: only the direction of the momentum changes.

At room temperature, inelastic phonon scattering dominates. The energy
acquired by the electron during the acceleration in an electric field is dis-
sipated during collisions to the phonons, leading to heating of the sample.
As the temperature T is lowered, phonons become less effective; the mean
free time and hence the conductivity rapidly grow, op ~ 1/T®. The temper-
ature dependence changes at low temperatures, where in principle inelastic
electron-electron collisions dominate (although this is often masked by im-
purity scattering). According to Fermi liquid theory (see Sect. 6.1.2 below),
7 ~ 1/T? such that the conductivity increases more slowly with decreasing
temperature, op ~ 1/T2.

The inelastic scattering time 7 diverges as T' — 0. Nevertheless, at the
lowest temperatures, the conductivity approaches a constant value op = 0 =
noe?7e/m. This is the so-called residual conductivity of the metal, and it is



due to elastic scattering off static impurities. The elastic mean free time 7,
defines the elastic mean free path £, = vpT.. On length scales larger than
£s, the electron motion is diffusive, with a diffusion coeflicient D = vpf./d,
where d is the dimension of the sample. Inelastic scattering still occurs, but
on longer time scales 7 >» 7.. The associated inelastic length is then defined
by the diffusive result Li, = v/ D7 > fo. As we have seen above, at the lowest
temperatures, this length is determined by electron-electron scattering events.

Mesoscopic Phenomena in Metals

In a mesoscopic sample (3,4], i.e. a sample whose characteristic size L is large
compared to the elastic mean free path /., but small compared to the inelastic
length L;,, electrons undergo elastic scattering only. The central assumption
of the Drude-Sommerfeld theory, stating that quantum correlations are lost
as a a result of scattering, becomes clearly questionable in this limit, In fact,
as long as the scattering is elastic, the electron phase memory is conserved
and the electron motion should be described quasi-classically on length scales
up to Ly,. For a mesoscopic sample this means in particular that the electron
follows classical trajectories through the entire sample, supplemented with
. a quantum mechanical phase, As a result, quantum-interference phenomena
can occur involving two or more trajectories with different phases. These
interference phenomena lead to corrections to transport properties; examples
are the weak-localization correction to the conductivity, the occurrence of
Aharonov-Bohm oscillations in small metallic rings and the universal sample-
to-sample fluctuations of the conductance.

In what follows, we will discuss a general approach, based on ideas due to
Landauer, that enables one to formulate the problem of phase-coherent trans-
port. We will express the conductance of a phase-coherent sample in terms
of its quantum-mechanical transmission properties [3,4]. This approach can
then be used to obtain the conductance in specific cases of interest. We will
see that conductance in the quantum limit obeys rules that are very different
from those known from Drude-Sommerfeld theory, The Landauer approach
also provides answers to important additional questions, For instance, if there
is elastic scattering only in the sample, one may ask where the dissipation
arises, We will also see what happens in clean phase-coherent samples with
L < £, Ly,. 1t turns out that even these ballistic conductors are still charac-
terized by a finite resistance. In Sect. 6.2, quantum-interference phenomena
will be analyzed in more details by means of an analytical description.

The Scattering Approach to Quantum Transport
Multi-Mode Quantum Wire

In order to set the stage, we start our discussion by considering a two-
dimensional quantum wire of width W (Fig. 6.1) in the ballistic conduction
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Fig. 6.1. Clean quantum wire of width W with two propagating modes

regime. Electrons in such a wire obey the two-dimensional Schrédinger equa-
tion
(o ” U ' Ev 6.2
[—% (w + 8—y5) + (x,y)] (z,y) = E¥(z,y) (6.2)
Here U(zx,y) is the potential confining the electrons to the wire. Supposing
free propagation in z-direction and an infinite square well confining potential
in y-direction, we can write the solution

W(m’ y) = Lpnk:(xvy) - eikzXn(y) (63)

where x,(y) = +/2/W sin[nm{y + W/2)/W] with n = 1,2,3,... These wave
functions vanish at the edges of the wire, i.e. for y = £W/2. The dispersion
of these electrons is E = E, (k) = h%k?/2m + ¢,, where €, = h?n?r?/(2mW?)
is the discrete spectrum due to confinement in the y-direction. From this we
see: for a given energy F < €1, k is purely imaginary and no propagating
modes are available in the wire. For ¢; < F < €3, we find one propagating
mode, corresponding to n = 1; generally speaking, for ey < E < ey41, N
propagating modes are found.

The group velocity of an electron in a given mode is obtained from the
energy dispersion in the usual way,

_ 1 dBa(k)

’Und:(E) = :t’l]n(E) = 'ﬁ T

=+\/2(E —e)/m  (6.4)
E .

Here + (—) refers to a right-moving (left-moving) electron, respectively. The
density of states per unit length (for one spin direction) for a given mode and
a given direction of propagation is

1 1

1
pn(E) = 271 dEn;/dk

B B 2mhv, ()

(6.5)

This means in particular that the product p,(E)v,(E) = 1/(27h) is a con-
stant. The electric current {per unit energy), carried by a given mode n in a
given direction at energy F is then given by

In,+(E) = —epn(B)vn,+(E) = Fe/(2rh) (6.6)

independent of energy F and mode index n. This equipartition rule is due to
the cancellation of the one-dimensional density of states and group velocity.
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Fig. 6.2. Generic two-terminal set-up

Landauer Formula

We now formulate the quantum transport problem using the generic set-up
depicted in Fig. 6.2 for a typical two-terminal transport measurement.
We distinguish three parts:

1. Reservoirs. The two terminals or reservoirs are the electron source and
drain. They are massive electrodes at thermodynamic equilibrium, kept at
temperature T" and electro-chemical potential p; (i = I, r refers to the left
and right reservoir, respectively). The electrons that are injected into the
sample from a reservoir ¢ are distributed over energy E according to the

Fermi-function 1

FB) = gmmyty

where 8 = 1/kgT is the inverse temperature. The reservoirs absorb all
incoming electrons, regardless of their energy. For a given reservoir, there
is no correlation between absorbed and subsequently re-injected electrons.

2. Perfect leads. Between the reservoirs and the sample, electrons propagate
along perfect leads, which are multi-mode quantum wires.

3. Sample. The sample contains only elastic scattering. It transmits an in-
coming electron with energy E in mode n of one of the perfect leads with
quantum-mechanical transmission amplitude £, ,,-(E) into mode n’ of the
other perfect lead (at the same energy E). The corresponding transmission
probability is T, ,,/(E) = [t n/(E)|?. As a result, the total probability that
an incoming mode 7 is transmitted is given by T,(E) = 3" _, Ty, n/(E).

(6.7)

In view of the above, the total current from left to right can be written as
I =2 / dES fu(B)L, + (E)To(E) (6.8)
n

and similarly for I ,. Here, a factor 2 is included to account for the electron
spin. As a result, the total current can be written as I = I, — Iy,

1= % [ABY (5B - fuB)T(E) (69)
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We write yuy, = Er + €V/2 and pu, = Er — eV/2, where eV is the bias voltage
- applied between the two terminals. Assuming eV is small, we can expand the
Fermi functions and obtain, in the low-temperature limit,

2
€
I = — n = .
Trthn:T (Ep) =GV (6.10)
where the conductance G is given by
o2
G= ﬁZ;:T,,(EF) (6.11)

This is the well-known Landauer formula that relates the conductance of
a sample to its elastic quantum mechanical transmission probability. Some
implications of this important result in various examples will be presented in
the next section.

Quantum Resistance Properties
Conductance of a Multi-Mode Quantum Wire

We start our discussion of quantum resistance properties by considering a
multi-mode quantum wire of width W, connected to two reservoirs with py =
Er+eV/2 and p, = Ex —eV/2. Let Exy < Er < Eny such that there are N
propagating modes at the Fermi energy Er. Since there is no obstacle in the
channel, T,(Ex) = 1 for n < N. For n > N, there are no propagating modes,
T,.(Er) = 0. Therefore, at small bias,

e? Ne?
I= ﬁV%:Tn(EF) =V (6.12)

and G = Ne?/mwh. A few remarks are in order here:

1. Each mode contributes an amount e>V/(rh) to the current: this is a direct
consequence of the aforementioned equipartition rule.

2. The total conductance is Ne?/(rwh), i.e. €2/(2rh) per mode and per spin
direction. This so-called unitary conductance is usually referred to as the
conductance quantum Gk = €2/(2mh) = €2/h. We see that even a perfectly
transmitted mode is characterized by a finite conductance.

3. The total conductance of the quantum wire is independent of the length L
of the wire. Thus the classical result G o« 1/L, implying the usual rules for
series addition of resistances, is violated for a quantum conductor.
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Fig. 6.3. Left: Quantum point contact. Right: Conductance quantization as a func-
tion of Wy

Conductance of an Adiabatic Quantum Point Contact

We next turn our attention to the set-up shown in Fig. 6.3. A narrow, two-
dimensional constriction or quantum point contact of width W, at the nar-
rowest point is defined in a two-dimensional electron gas (2DEG). We are
interested in the behavior of the conductance of the constriction as a function
of W().

We assume that the width W(z) of the constriction varies slowly with
x, on a scale R > W,. Furthermore the constriction is narrow: at most a
few propagating modes are present, meaning that Wy ~ Ap. This implies
that the electron motion along the z-direction can be treated quasi-classically
and scattering between modes can be neglected. We are thus faced with a
number of independent modes, each obeying the one-dimensional, effective
Schrédinger equation

R? d?
(=g 257 + Un(@)) ¥n@) = Biin(2) (6.13)
where U, () = e, () is a slowly varying potential: the discrete spectrum due
to confinement in the y-direction €, (z) = A?n2n?/(2mW (x)?) is z-dependent
due to the slow variation of the width W(z) along the channel. Whether or
not a given mode n is transmitted depends on the position of the Fermi
energy with respect to the maximum of U,(z), reached at x = 0 where
W(x = 0) = Wy. For Wy = 0, this maximum exceeds Ef for any n: all modes
are reflected. Increasing Wy from zero, we gradually lower the energy U, (0).
When Wy approaches the value nr/kp, the maximum U,(0) of the mode
n approaches Ef; tunneling can occur through the effective barrier U, (x).
At these values, the corresponding transmission probability T}, (Fr) increases
rapidly from zero to unity: tunneling occurs only within the narrow interval
V' Wo/kgR around nw/kp. The fact that the increase is rapid means that a
given mode is either completely transmitted or completely reflected. This is
in accordance with the physics of the quasi-classical limit R >> Ap: classically,
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there is no tunneling and an electron either passes the constriction or is re-
flected. Increasing Wy, we thus increase the number of propagating modes one
by one, at Wy = w/kr, 2r/kp, 3w /kr . ... Therefore, the total transmission
> Tn(Er) is expected to increase stepwise with Wy. The conductance also
increases stepwise, in units 2e%/h, see Fig. 6.3. This conductance quantization
has indeed been experimentally observed, see [5]. It corresponds to another
violation of Ohm’s law: changing the cross-section of a small conductor leads
to a stepwise, rather than a linear, increase of the conductance.

Conductance of an Aharonov-Bohm Loop

As it is well-known, for an electron in a magnetic field B, the canonical mo-
mentum is given by the replacement p — (p + eA/c), where A is the vector
potential with B = rot A. An electron propagating in a magnetic field thus
acquires an additional phase-factor: ¥y (r) = exp(i(k - r + [ eA.dr'/kc)).
Let us consider a clean one-mode quantum wire, forming a loop of area S,
threaded by a flux ¢ = BS (see Fig. 6.4).

L

N\

Fig. 6.4. Aharonov-Bohm loop

For an electron propagating around the loop, the additional phase factor is

e e e
%}{A'd'r=—i-_lz/rotA-dS=§/B'dS=27r¢/q§o (6.14)

loop

where ¢g = hc/e is the flur quantum. Hence, the total phase for an electron
propagating from left to right along the upper arm (length L) is given by
kL — m¢/¢o, whereas an electron propagating along the lower arm (same
length L) acquires a phase kL + w¢/¢o. The transmission amplitude for prop-
agation from left to right is thus given by

ter(Ep) = (elbrL+m@/90) 4 oi(krL=m¢/d0)) /o (6.15)

where kp = mup /A is the Fermi wave vector. As aresult, T'(Er) = [t¢(Ep)|? =
|eitkrLtmd/d0) 1 oilkrL—m6/00)|2 /4 = (1 4 cos2m¢/¢)/2. This is a periodic
function of the applied flux ¢, with period ¢g. Therefore, the conductance of
the loop, G = (2e2/h)T(Er), will be characterized by periodic oscillations as
a function of flux: these are the so-called Aharonov-Bohm oscillations.



Diffusive Quantum Wire

So far we have considered quantum ballistic conductors, with a total length
L smaller than the elastic mean free path l,. Consider now a two-dimensional
diffusive quantum wire longer than the elastic mean free path 4., but still
smaller than the inelastic length Li,, and connected to two reservoirs. We
assume that there are many modes, N = kpW/m > 1, which guarantees
that the electron states are not localized [3]. As we have seen in the previous
section, we expect such a wire to be characterized by its residual conductivity.
In terms of the conductance this means that we should find G = ooW/L in
this case. In order to verify this, we need to know the transmission coefficients
T,.(EF) for a diffusive wire. Let us present the expected residual conductance

G as

2
noe‘te W
m L (6.16)

Using the fact that the two-dimensional electron density ng = k2/(272), we
obtain

g:

e? 4,

Naively, one thus expects that T,,(Er) = £./(2L): each mode is transmitted
with a small probability o £./L. In fact this is incorrect; a more detailed
analysis shows that the transmission probabilities of a disordered wire are
random numbers, distributed according to a bimodal distribution [6]

1) =t
AV <)

The distribution is maximal for T = 0 or T = 1, other values of T are
in fact very improbable. In other words, a given mode has either trans-
mission 1 or 0. This is, once more, a quasi-classical result: a particle is ei-
ther transmitted or reflected. The average transmission per channel, however,
(T) = [dTTp(T) = £./(2L) is small. Unfortunately, no information con-
cerning the bimodal character of the distribution p(T) is contained in the
conductance as the latter depends on the average value of T}, only. In order to
obtain more information on p(T'), one could measure the fluctuations of the
current around its average value, i.e. the current noise [7].

We have seen that quantum transport in a phase-coherent conductor (typ-
ical size L smaller than the inelastic length L;,) can be formulated in terms
of a scattering problem. The formulation is essentially non-local: the total
current I across the sample is found as a function of the bias applied to the
terminals. As a result we find the nonlocal conductance rather than the local
conductivity. This reflects the fact that quantum-mechanical correlations are
maintained throughout a phase-coherent sample.

(6.18)
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The conductance is determined by the elastic transmission coefficient. As
long as scattering within the sample is elastic, it is clear that the dissipation
associated with electric transport cannot occur in the sample itself. Indeed,
the excess energy due to a finite applied bias voltage is dissipated in the
reservoirs. The elastic transmission probability is phase-sensitive, which opens
up the possibility of quantum-interference phenomena. As an example we
discussed the single-mode, ballistic Aharonov-Bohm loop; for the diffusive
multi-mode case, see Sect. 6.2. The various examples showed that simple,
classical rules concerning parallel or series addition of resistances do not apply
in the quantum limit. We also saw that ballistic samples, i.e. samples without
any elastic impurity scattering (L < £) are still resistive.

So far we have treated electrons as if they were non-interacting particles. In
reality electrons interact through Coulomb repulsion. According to the Landau
Fermi-liquid theory, the non-interacting picture remains correct under certain
conditions, even in the presence of interactions. We will review these ideas
briefly below, and then discuss that the conditions for Landau Fermi-liquid
theory to hold are sometimes violated in low-dimensional systems.

6.1.2 Coulomb Interactions
Fermi Liquid
Non-Interacting Electrons

As it is well-known, the ground state of a non-interacting Fermi gas is a
filled Fermi sea: all states are occupied up to the Fermi energy EFf, which is
a function of the electron density ng. Adding or removing particles therefore
simply leads to a shift of Ep. Excitations are induced by creating particle-hole
pairs: an electron of wave vector k is taken from the Fermi sea and put to an
empty state k’ outside. We have created two quasi-particles: a particle with
wave vector k’ and a hole with wave vector k. These particle-hole pairs form
a continuum of states that carry a momentum p = h(k’ — k) and an energy
E= k22

At finite temperature T, these excitations are created thermally, which
leads to the characteristic smearing of the Fermi distribution over a width
proportional to T'. However, the smearing is in typical metals always small
compared to the Fermi energy: this is why even at finite temperature the
physics of non-interacting electrons is determined by Fermi surface properties
only. An example is the specific heat of the three-dimensional non-interacting
electron gas, given by cy = 72k3Tp(Er)/3, which is determined by the density
of states at the Fermi level, p(Er) = mkp/(h?*7?). Another example is the
Landauer conductance G = 2(e?/h) Y, T,(Er), which is determined by the
transmission probabilities T5,( Er) at the Fermi level.



Landau Theory of Fermi Liquids; Screening in Metals

According to Landau, in the presence of repulsive interactions, the above

description remains largely intact as long as the interactions are weak and

short-ranged [1,2]. More precisely: there exists a one-to-one correspondence

between the eigenstates of the non-interacting and the interacting Fermi gas.
This hypothesis means that:

(1) The filled Fermi sea as a ground state persists in the interacting case;
(2) The concept of quasi-particles (particles and holes) persists in the inter-
acting case.

How do interactions manifest themselves? Consider a filled Fermi sea with zero
total momentum and one additional quasi-particle of momentum %k close to
the Fermi surface, k ~ kp. Now, let us switch on the interactions between
electrons. Since interactions conserve the total momentum, the quantity hk
cannot change. Moreover, by continuity, the minimum momentum %ikp needed
to create a quasi-particle cannot change either. Consequently, the energy has
to change following

2

2m*
We see that interactions renormalize the electron mass m — m*. More gener-
ally speaking, interactions lead to parameter renormalization, but the struc-
ture of the theory, and hence the behavior of various physical quantities re-
mains unchanged. An example is the electronic specific heat of the interacting
electron gas cy = w?k3Tp*(Er)/3: its temperature dependence is unchanged
but it is determined by the renormalized density of states p* = m*kp/(h2n2)
at the Fermi level.

As already stated above, in order for Fermi-liquid theory to hold, electron-
electron interactions must be weak and short-ranged. Coulomb interactions
are, generally speaking, strong and long ranged. In free space, a positive test
charge ¢ induces a potential ¢(r) = g/r. In metals it is the screening of this
potential by conduction electrons that makes the potential effectively short-
ranged. In fact, in a metal, a positive test charge g will attract a screening
cloud of negatively charged electrons around it, such that the potential drops
rapidly over a short distance. According to the quasiclassical Thomas-Fermi
theory [1,2], the resulting potential follows ¢(r) = ge="/" /r where rg ~ A is
the screening length. Screening is very effective in an ordinary bulk metal: the
electrons are relatively free and fast and will screen any charge inhomogeneity
from all sides on a short scale ~Ap. This is why Fermi liquid theory works
quite well for ordinary (clean) metals.

For weak, short-ranged interactions, a simple perturbative calculation en-
ables us to show that quasi-particles close to the Fermi surface are indeed long-
lived objects [1,2]. Consider the interaction between an electron outside the
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Fermi sphere (wave vector k1) with an electron within the Fermi sea (wave vec-
tor k2); these particles scatter into two states outside the Fermi sphere (wave
vectors k3 and k4). Momentum conservation implies that k1 + ko = k3 + ka.
With the help of Fermi golder rule, the inverse scattering time 1/7 of this
process is derived

1 2n
- = ? Z |U(|k3 - k1|)|26(Ek1 + Ekz - Eks - Ek1+k2—k3) (620)

r
k2,k3

Here k3 — k1 = q is the wave vector transferred between the particles by the
interaction; the corresponding matrix element is the Fourier transform of the
screened Coulomb interaction, U(q) = €2/[¢? + (27/r0)?]. Note that, due to
screening on distances beyond rg, this matrix element remains finite for small
values of ¢ < 1/rq, such that U(qg = 0) ~ e*r2 ~ €202 ~ e?/kZ. Further
calculations use energy conservation and the fact that the first electron is
close to the Fermi surface, k1 ~ kp. As a result we have k3 ~ kr and g = 0,
so that 2

L~ 0P B - B~ (BF) (6.21)

T EF
Here we used the fact that at finite temperatures, Fy, — Ep ~ kgT. We finally
obtain the temperature-dependent lifetime for Fermi liquid quasi-particles,
T ~ 1/T?, as anticipated in Sect. 6.1.1. Interaction effects can be described by
Fermi-liquid theory at sufficiently low temperatures, where this lifetime (and
the corresponding inelastic length) is long enough.

Weakened Screening in Low-Dimensional Systems

There are various situations in which the screening phenomenon is less effec-
tive and interactions become strong:

1. Metals of low dimensionality. In a two-dimensional electron system for
instance, electrons are confined to a plane. The screening cloud forms only
within this plane: there are no electrons perpendicular to the plane. As a
result, electric field lines can escape in this direction and give rise, within
the plane, to a residual long-range component of the interaction.

2. Low density systems. In order to understand when Coulomb interactions
between electrons are weak, the average Coulomb energy U has to be
compared with the average kinetic energy Ew. The average separation be-
tween electrons being Ap, U ~ €2/Ar, and the ratio U/EF is thus given by
U/Er ~ €2/(hvg). The Fermi velocity decreases with decreasing electron
density ng, hence the ratio U/Ey increases as ng is reduced. If the density
is so low that U ~ Ep, interactions can no longer be considered as weak
and Fermi-liquid theory usually breaks down.

3. Presence of impurities. As we have seen, impurities cause diffusive electron
motion on scales beyond the elastic mean free path. Diffusion is slower than
ballistic propagation, hence the formation of the screening cloud around



Fig. 6.5. Formation of the screening cloud in ballistic and diffusive systems

a charged inhomogeneity will take place on longer time scales in diffusive
systems than in ballistic systems (see Fig. 6.5). This reduces the efficiency
of screening in diffusive systems [8].

In these situations, the simple perturbative analysis presented in the pre-
vious paragraph is not correct and the Fermi-liquid description may cease to
be valid. Generally, this implies that interaction effects do not lead to simple
parameter renormalization; the entire structure of the theory changes and new
phenomena can occur. Below, two important examples are analyzed, namely
charging effects in tunnel junction systems and interaction effects in clean,
- single-mode quantum wires.

Tunnel Junctions and Coulomb Blockade
Coulomb Effects in Tunnel Junctions

Let us consider a tunnel junction, as depicted in Fig. 6.6. It consists of two dif-
fusive multi-mode quantum wires (electrodes), separated by a tunnel barrier.
The transport through such a junction is achieved through the phenomenon of
quantum tunneling: in order for a charge to pass from one wire to the other,
it must tunnel through the barrier separating them. If the conductance of
the wires is large, the total conductance Gr of the system will be determined
entirely by properties of the tunnel barrier:
2e2

Gr = = NT3(Er) (6.22)
where IV is the number of modes in the diffusive wires and T is the trans-
mission coefficient of the barrier at the Fermi energy. Since tunneling is a rare

tunnel barrier

electrode electrode

Fig. 6.6. Tunnel junction
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event, Tp(Fr) < 1. In principle, apart from the conductance, we can also
assign a capacitance, C, to the tunnel junction. As long as the dimensions of
the tunnel junction are large, this capacitance will also be large, and its ef-
fects on the transport can be neglected. However, as the size of the junction is
decreased, C decreases as well, and interesting new phenomena may arise [9].

Consider a single tunnel junction, biased by a voltage V. In view of the
above discussion, the junction will be polarized by a charge @ = CV. Trans-
port is achieved by tunneling of individual electrons with charge —e. Consider
such a tunneling phenomenon, which leads to a change of the polarization
charge by an amount —e. As a result, the difference AF in energy before and
after the tunneling event is given by

g @ Q-9 _e@-e/2)
2C 2C C
We see that AE is positive if Q > e/2, i.e. if eV > E, = €2/2C, where E,
is the charging energy. In other words, at low temperatures kT < E., we
expect transport to be blocked if the bias voltage is smaller than E.. This is
the so-called Coulomb blockade of tunneling.

In order to observe this phenomenon in practice, a few conditions should
be satisfied. Obviously, any energy scale entering the problem (voltage, tem-
perature, ...) should be small compared to E,. This implies working at low
temperatures, or, alternatively, with small junctions such that the capacitance
is small and the charging energy is large. Moreover, in order to observe the
charging effect, the charge imbalance (@ — e with respect to ¢ must survive
for sufficiently long a time. This implies a sufficiently opaque barrier, i.e.
Gr < €2/h, such that a second tunneling event will not restore the charge
Q. In addition, if the electrodes are good metals, screening is effective and a
fast redistribution of the charge will inhibit the Coulomb blockade. Thus, not -
only the barrier but also its direct environment must be sufficiently resistive
in order to observe the effect. Below we will study the effect of a resistive
environment in some detail.

(6.23)

Single Junction in a Resistive Environment

Consider a single junction, embedded in a circuit, as depicted in Fig. 6.7. The
tunnel junction ‘sees’ its capacitance C in parallel. Furthermore, the circuit
contains a resistor R, representing the metallic electrodes or any other addi-
tional external resistance close to the junction. The junction is voltage biased
by an ideal voltage source, kept at a voltage V. We can readily understand
the effect of R on Coulomb blockade using a simple argument based on the
uncertainty principle. Placing a resistor close to a junction with capacitance C
introduces a charge redistribution time of the order of the time constant RC.
According to the uncertainty principle, in order to observe Coulomb blockade,
charges should not redistribute on scales shorter than A/E;. Thus, in order
to observe the Coulomb blockade, RC > h/E., which yields R > h/e? as the
condition on R.
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Fig. 6.7. Single junction embedded in a circuit
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This simple estimate can be put on firmer ground, using a theoretical
description of the environment, see [9]. The central idea in this theory is that,
in the presence of a resistor, the voltage V across the junction does not equal
Vz but fluctuates, V(t) = V, + §V(t), the fluctuating part being due to the
Johnson-Nyquist noise induced by the resistor. In other words, the spectrum
of the fluctuations is given by the fluctuation-dissipation theorem [10]

(V(£)§VH'))e = hwRe [Z;(w)] coth (%) (6.24)

where Z;(w) is the total impedance seen by the junction,

_ R
" 1+iwRC

The electrons which tunnel through the barrier interact inelastically with these
fluctuations. The inelastic transmission through the barrier is characterized
by the function P(E): the probability to pass the barrier, thereby transferring
an amount of energy E to the environment. In general, the current through
the junction will be given by

Zt(w)

E
(V)= %T— (1 —ePeY) / dEmP(eV - E) (6.25)
where 8 = 1/kgT. The probability P(E) is determined essentially by the
above spectrum (6.24). A detailed discussion of this function can be found
in [9]. Here we will discuss the limiting case T = 0 only. In this case,
P(E) ~ E@R/Ex—1) at low energies. Here Rx = 1/Gx = h/e? is the quan-
tum resistance. As a result, according to (6.25), we expect a non-linear I — V'
characteristic, I ~ V2R®/Ex+1 In the absence of any resistance (R = 0) the
usual result I = GrV is recovered with no hint of Coulomb blockade. As R is
increased, a gap develops in the I — V curve. In the limiting case R > Ry,
one finds P(E) ~ §(E — E), leading to a complete blockade of transport,
I =0, at voltages below E./e.

It is not so easy to experimentally verify the presence of Coulomb blockade
in a single junction connected to a resistive environment. Diffusive quantum
wires are in general not resistive enough: their resistance is typically small,
R =1/G = h/(2Ne?) <« Rk. The corresponding gap in the I — V curve is
difficult to measure. It is not so easy to insert an additional big resistance
close to the junction. An elegant way to circumvent this problem consists of
using a second tunnel junction, as we discuss in the next section.
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SET Transistor

In order to prevent fast charge redistribution close to the tunnel junction, one
usually simply inserts a second tunnel junction. The so-called double junction
device obtained this way, and depicted in Fig. 6.8, is known as the single
electron tunneling transistor (SET transistor), a device pioneered by Fulton
and Dolan [9].

cigjm Cféim
1 c,
L,
: I —[ | I
| '
Vl V2

Fig. 6.8. The SET transistor

If the conductance of both junctions is sufficiently weak, Gr;, < e?/h
for ¢ = 1,2, the discrete number M of electrons inside the island between the
junctions is well-defined. This number can be controlled by an additional gate-
voltage Vj, capacitively coupled to the central island. Indeed, the electrostatic
energy of the central island containing M electrons is given by

(Cng - Me)2

UM)= 2C,

(6.26)
where C, = C1 + Cy + Cy, see Fig. 6.9a. At low temperatures and for small
enough bias voltages, the number of electrons inside the island remains fixed
(Coulomb blockade) unless Vj is tuned to one of a set of special values such
that U(M) = U(M + 1). This happens for CyV,/e = M + 1/2. At these
values of Vj, the charge of the island can be changed from M to M + 1,
leading to a finite value of the linear conductance G. This leads to the so-
called Coulomb oscillations, see Fig. 6.9b. Note in particular the periodicity
of these oscillations: if plotted as a function of eNy = CyV,, they are separated
by the electron charge e.

The SET transistor is an extremely useful device, which is not only used
in fundamental research, but has also found applications in various fields
of interest such as metrology (accurate electron pumps used as current or
capacitance standards) and applied physics {the SET as an electrometer or as
a thermometer).
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Fig. 6.9. (a) Charging energy of the central island as a function of N, = C,V, /e.
(b) Coulomb oscillations

Interactions in One-dimensional Systems
Peculiarities in One Dimension

The ground state of the non-interacting one-dimensional (1D) electron gas has
. quite remarkable properties. The Fermi surface is peculiar: it consists of two
points only, at —kg and kg. This implies that the particle-hole spectrum is very
different from its higher dimensional counterpart. Rather than a continuum
of particle-hole states, the low energy excitations occur in sectors, located
around wave vectors 0 and +2kp, see Fig. 6.10. No low-energy excitations
exist around kg, as this implies particles far from the Fermi surface, which
costs an energy of the order of at least Ep.

Here we are interested in long-wavelength excitations, involving particle-
hole pairs with small total momentum p = hq = A(k’ — k). We then find a
linear dependence of the energy on momentum:

h2
E= %(km ~ k%) = h|k/ — k|hkp/m = hup|q| (6.27)
F 4 / /
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Fig. 6.10. Particle-hole spectrum of a one-dimensional Fermi gas. The dotted circle
is the low-energy region of interest, where the dispersion is linear
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The nattre of a particle-hole pair, which consists of twe fermions, is bosonic.
It is therefore natural to write down the following effective bosonic Hamil-
tonian describing the low-energy, long-wavelength excitations of the 1D elec-
tron gas [11]: '

H =" hoylq|blb, (6.28)
q

Here the operators l;g and qu satisfy standard bosonic commutation rules like

[Bq,l;;,] = Jq,¢'- This Hamiltonian describes the low-lying excitations of the
1D electron gas in terms of an ensemble of harmonic oscillators, each with a
frequency wy = vrlq|. Below, rather than formally analyzing this bosonized
Hamiltonian, we will proceed in a more transparent way. We will understand
what the oscillating modes correspond to physically and see how interactions
affect them.

Form of the Interaction

We consider a single-mode clean quantum wire of length L, located at a dis-
tance Dy from a metallic substrate (see Fig. 6.11). We ignore the reservoirs for
the moment and consider spinless electrons for simplicity. As discussed above,
screening is ineffective in one dimension, hence the Coulomb repulsion between
electrons is, in principle, long-ranged. The presence of the substrate provides
screening of the interactions at distances larger than Dg. We assume that
Ar &€ Do < L: the interaction potential U(x) is short-ranged on the scale L,
but long-ranged on the scale Ar. The latter condition means that we can ignore
exchange effects, and restrict ourselves to a density-density interaction energy
of the form Us, = (1/2) [ dzda'n(z)U(x—2')n(z’), where n(z) is the electron
density in the wire at the point . On the scale L, U(x) is short-ranged, and .
we approximate U(x) = Upd(x). As a result Uins = (Ug/2) [ don?(z).

Charge Density Waves

We next consider fluctuations of the electron density in the wire. To this end,
the total density is written as n(z,#) = ng + dn(z, ), where ng = kg/m is the
1D homogeneous equilibrium spinless electron density and dn the fluctuating
part. It is a common practice to introduce the associated displacement field

quantum wire

° /

screening substrate

Fig. 6.11. Interacting quantum wire with a screening substrate



u(z,t) such that én(z,t) = —ngdu/dx. We also introduce the velocity v =
Ou/Bt, such that the 1D electric current density can be written as j = —ngev.
We seek the (classical) equation of motion of the field u.

If the density of the 1D electron gas is locally increased by an amount én
with respect to ng, a force will try to restore the equilibrium value ng. As
long as n is small, the force will be harmonic, i.e. o< dn. The origin of the
restoring force is two-fold: the pressure in the gas and the Coulomb repulsion.
For fermions, the pressure is given by P = A?wn3/3m; the associated restoring

force is
R2r2nZ 8én  R*m?nd 0%u

The Coulomb repulsion leads to the restoring force
d6n 8%u
- Uo‘-a‘r“ = nogﬁ (6'30)
Therefore, the equation of motion reads
0%y Rnlng| ,0%

We seek wave-like solutions of the form u ~ €l(9*=«“%) | that correspond to
charge density waves of the form dn ~ €(92=«%) The dispersion relation of
these waves is obtained immediately from (6.31),

2
m m

We see that the dispersion is linear, wqy = s|g|, characterized by a velocity

S_UF”1+7rh'uF = vr/g (6.33)

Here we used ng = kp/m and introduced the interaction parameter g =
1/+/1+ Uy/(whvr). For non-interacting electrons, Uy = 0, we have g = 1;
repulsive interactions decrease g such that g < 1. In the absence of interac-
tions, g = 1, we find s = vp. This corresponds to the results obtained at the
beginning of this section for the non-interacting 1D electron gas. A compari-
son with those results shows that the particle-hole excitations of momentum
p = hq and energy hu|q| in fact correspond to charge density waves with a lin-
ear dispersion w, = vr|q|. They propagate along the wire at the Fermi velocity
vp. We thus identified the physical origin of the bosonized oscillator modes. In
the presence of interactions, the charge-density wave picture remains largely
intact. Interactions mainly will renormalize the velocity vg — s = vp/g. As
a result, charge density waves propagate faster in a repulsively interacting
electron gas.
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Electrical Transport without Reservoirs

In order to study the effect of interactions on the transport properties of a
one-mode quantum wire, we first consider the response of the 1D interacting
Fermi gas (Luttinger liquid) without reservoirs to an external electric field
E(z,t) = &k ,e P21 This leads to an additional force —e&{x,t), that should
be added to the right hand side of the equation of motion (6.31). The solution
can be written as uy ,,e(**=“?  with

_eé'kyw 1
m  $2k? — (w + in)2

Uk,w = (6.34)

where the small imaginary part in has been added to ensure convergence.

We conclude that the current density obeys the relation Jrw = iwenoug , =
Ok,w&k,w With the conductivity [12]
e?ng iw
m s2k? — (w+in)?2

Tkw = (6.35)

The conductivity is a non-local quantity: it depends not only on frequency but
also on the wave vector. The non-local nature of transport is clearly seen upon
Fourier transformation to real space: we find j(z) = [dz'o(z — 2/,w)E(2')
meaning that the current at z generally depends on the values of the electric
field at different points z’. The scale for non-locality is determined by the
conductivity; as can be seen from (6.35), typical contributions come from
k ~ w/s, hence the scale is given by L, ~ 1/k ~ s/w. In the zero-frequency
limit, L, — oo, and non-locality persists over the entire length L of the wire.
We are interested in the real part of the conductivity, in the zero-frequency
limit,

me?ng

wlwoo = 6(k .
Re [0k w]woo — (k) (6.36)
Then, upon Fourier transformation,
dk _.
G= / 3¢ " Re [0k uwo = ge /R (6.37)
For ¢ = 1 we recover the familiar Landauer result ¢ = &2 /h for a non-

interacting, single-mode quantum wire with spinless electrons. However, ac-
cording to the result (6.37), the conductance of an interacting quantum wire
is suppressed in the presence of repulsive interactions.

Role of the Reservoirs

It is important to realize that the above result has been obtained in the absence
of electron reservoirs. In the presence of reservoirs, a different result is found.



According to the Landauer formulation, for a conductor coupled to reservoirs,
the conductance is proportional to the electron transmission coeflicient of the
wire. As long as the transmission is perfect, i.e. in the absence of any backscat-
tering, we expect that T(Er) = 1, and G = €2/h for a spinless single-mode
quantum wire. In the presence of Coulomb interactions this result should not
change: Coulomb interactions conserve momentum, and thus cannot induce
any backscattering. Therefore, we expect that T(Er) = 1 even in the inter-
acting case; hence G should be unaffected by interactions, G = €?/h. These
statements can be substantiated by more detailed calculations, see [12-14].

We conclude that a DC transport measurement on a clean interacting
quantum wire, well-connected to reservoirs such that the transmission coef-
ficient is unity, will not reveal any interaction effects. Below we will discuss
two possible ways to make interactions in the wire visible in a transport mea-
surement.

Transport at Finite Frequency

If a time-dependent bias voltage is applied at a finite frequency w, the electrons
perform an oscillatory motion within the quantum wire over a distance L, =
s/w. If w is large enough, such that L, is smaller than the length L of the
wire, the oscillating electrons are confined to the wire and do not ‘feel’ the
reservoirs anymore. At these frequencies, the presence of reservoirs can be
ignored and the conductivity is given by the result (6.35), which depends on
the interaction strength through the renormalized velocity s = vg/g.

There is a practical problem, though. The frequencies needed to achieve
the conditions L, < L are rather high; for L ~ 1 um and a Fermi velocity
~10° m/s, we have w > 10'! radian/s. It is difficult to perform transport
experiments at such high frequencies.

Alternatively, if the wire is capacitively connected to a side-gate, frequency-
dependent three-terminal measurements can be performed [15]. It turns out
that even at low frequencies, such that L < L, the frequency-dependent
side-gate conductance is modified by interactions. It has been shown that a
measurement of the frequency-dependent, out-of-phase part of the side-gate
.conductance at low frequencies can be used to determine the interaction con-
stant g directly.

Tunneling in an Interacting Quantum Wire

As we have seen in Sect. 6.1.2 in the case of Coulomb blockade, tunnel junc-
tions can be used to make interactions visible in transport phenomena at zero
frequency. As we will see, this is also true for interacting quantum wires.
Indeed, in the presence of a tunnel barrier, momentum is no longer con-
served, and the transmission coefficient will be suppressed, T'(Er) < 1, even
in the absence of interactions. It turns out that in the presence of interactions,
T(Er) becomes strongly energy-dependent and is further suppressed [16]. The
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Fig. 6.12. Tunneling into a one-dimensional quantum wire

physical origin of this effect is that the tunneling electron has to overcome a
Coulomb barrier in order to enter the interacting wire but the other electrons
in the wire have to be displaced first.

The theoretical analysis of this phenomenon is quite complicated, and
will not be discussed here. The main idea is similar to the one discussed in
Sect. 6.1.2. We introduce the transmission probability T'(e) for an electron
to tunnel into the quantum wire at energy E = Ef + € close to the Fermi
energy, thereby interacting with the charge-density excitations. It turns out
that this probability also shows a power-law behavior at low energies, T'(e) ~
€%, where the power exponent o depends on the interaction constant g and
on the precise set-up. This generally leads to a non-linear I — V' characteristic
such as I ~ Vo1 We will illustrate this below with some relevant examples.

We first consider tunneling from a Fermi liquid metallic reservoir to an
interacting quantum wire [17], see Fig. 6.12. In the left panel, tunneling occurs
in the middle of the wire and electrons can be displaced both to the left and to
the right to accommodate the incoming electron. Detailed calculations show
that T'(€) ~ €™ where a,, = (1/g+ g — 2)/8. In the absence of interactions,
g = 1 and the power «,, vanishes. The transmission coeflicient is a constant
and the current is given by I = Gz V. Increasing the interaction strength such
that g < 1, the exponent a,, grows, and tunneling is strongly suppressed at
low energies. This leads to a non-linear I — V' characteristic with [ ~ V&m+1,
In the right panel, tunneling occurs at the end of the wire, so electrons can be
displaced only in one direction in order to accommodate the incoming particle.
Indeed, the tunneling is more strongly suppressed in this case, T(e) ~ €%
where ae = (1/g — 1)/4. We see that ae > o, in the interacting case g < 1.

We finally consider the case where the tunneling occurs within the quan-
tum wire itself, due to the presence of an impurity. In this case T(¢) = €!/9-1,
and a = 1/¢g—1. In particular, this means that the wire becomes insulating at
the Fermi energy, i.e. for € = 0, which is a direct consequence of the repulsive
interactions. This effect is a possible explanation for the suppression of con-
ductance at low temperatures, experimentally found in disordered quantum
wires [13].



6.2 Quantum Transport in Disordered Conductors

6.2.1 Introduction: Phase Coherence, Mesoscopic Regime,
Physical Length Scales

This tutorial part describes in more detail some consequences of phase coher-
ence in disordered conductors in the diffusive regime, i.e. when the length of
the system is much larger than the elastic mean free path £.. It will be shown
how physical properties of phase-coherent conductors can be simply related
to the classical return probability for a diffusive particle. We shall mainly fo-
cus on weak-localization corrections, universal conductance fluctuations and
the density-of-states anomaly. We consider weakly disordered conductors, for
which the mean free path £, is much larger than the distance between elec-
trons: kpfe > 1, where kp is the Fermi wave vector. More details about this
topic will be available at [18].

Length Scales

A disordered conductor is described by four length scales: the sample® size L,
the mean free path £, which describes the elastic collisions, the Fermi wave
length Ap which depends on the density of electrons and the coherence length
L. This latter scale is very important because the effects we aim to describe
result from the phase coherent interferences of the wave functions and thus
disappear beyond L. Smaller distances define the mesoscopic regime. Here,
we shall mostly consider an electron gas in the following limits

Ap € 4 K LKL Ly (6.38)

which correspond to a weakly disordered (A\r < £c), mesoscopic (L < Lg)
metal in the diffusive regime (fe < L). When the disorder strength becomes
such that £, ~ Ap, the wave functions become localized on a typical scale
¢ called the localization length [19]. Here, we shall restrict the discussion
to the diffusive regime where £ — oo. In this regime, an electron propagates
diffusively because it experiences many elastic collisions while moving through
the sample. The typical distance covered by the diffusive particle in a time ¢
varies as r2(t) ~ Dt. The diffusion coefficient D is given by

_ UTe _ vrle (6.39)

b d d

Te = £ /vr is the elastic collision time and vp is the Fermi velocity. The diffu-
sive motion is thus characterized by a new time scale Tp, called the Thouless
time, which is the typical time for an electron to travel through the sample.
It is defined as 7p = L2?/D. This time scale corresponds to a new energy scale
E. named the Thouless energy:

LTf the shape is anisotropic, we define Lz, Ly and L..
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(6.40)

This energy plays a very important role in the description of transport and
spectral properties (see for example [20]). Finally, in the diffusive regime, the
phase coherence length L, is related to the phase coherence time T4, Which
accounts for the breaking of the phase coherence L2 = Dry.

Classical Transport

Although electrons behave like waves, physical properties like conductivity can
be calculated, in a first approximation, assuming that interferences between
electronic waves can be neglected. For the conductance, this leads to the
classical expression og = se?Dpy, which is known as the Einstein relation 1.
po is the average density of states per spin direction and s = 2 is the spin
degeneracy. For free electrons where € = A2k?/2m, the density of states pg
at the Fermi level can be written in any dimension d as a function of the
electronic density n
nd

- 2861:'

Po (6.41)

so that, from Einstein relation and (6.41), one recovers the usual expression
of the Drude conductivity [1]2:

nez're

oo = (6.42)

m

For a sample of length L and section S, Ohm’s law relates the conductance

G to the conductivity through: G = 0¢S/L. More generally, for an isotropic

system in dimension d: G = goL? 2. The conductance has the dimension of

¢?/h, and it is convenient to define a dimensionless conductance g = G/(e2/h).

Using Ohm’s law and the Einstein relation, the dimensionless conductance can
be rewritten as

2Remember that the density of states pg at the Fermi level can be written as

_ dAg mkp? w1
PO~ )i R A Top

where kr = /2mer /h and where Aq is the volume of the unit sphere in dimension
d:

_ nd/? An = 4
T T(1+4d/2) 273
Thus from Einstein relation, the conductivity and the conductance can be rewritten
as

Ad A2=7T A1=2

62 ICF a-1 Ad 62 d—2
gg = SAdX (ﬁ) Ze go = SWF(ICFL) ’CFee
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We have introduced the average spacing between energy levels, which is simply
related to the inverse of the density of states: A = 1/(poL?). Thus, the di-
mensionless conductance measures the ratio between the Thouless energy and
the interlevel spacing. Finally, one notes that the dimensionless conductance
can also be written as the ratio of two volumes

n

= sdAg————
9 d)\i;l‘_l’UFTD

(6.44)

{2 is the volume of the system and the significance of the volume )\g‘lvFTD
will become clear in Sect. 6.2.3.

Quantum Transport: Outline

Deviations from the classical Drude transport arise because of phase coher-
ence. In the following sections, we explain why phase-coherent effects are
small in the limit kg, > 1. Their influence is most important when the sys-
tem size is smaller than the phase coherence length Ly, which corresponds to
the mesoscopic regime. In the next section, the conductance is demonstrated
to be related to the probability for an electron to diffuse through the sample.
By looking at the structure of this probability, which is the product of two
quantum amplitudes, we study the conditions under which deviations from
classical transport may appear, using an intuitive trajectory approach. We
introduce the notion of quantum crossing which is the source of the quantum
behavior. In Sect. 6.2.4, the weak-localization correction is related to the tra-
jectories with one quantum-crossing and a loop. In Sect. 6.2.5, some relevant
solutions of the diffusion equation are presented, and used to calculate the
weak-localization correction in a few specific geometries. In Sect. 6.2.7, the
origin of the universal conductance fluctuations in the mesoscopic regime is
explained as being related to trajectories with two quantum crossings. Finally,
Sect. 6.3 concludes by a brief discussion on the role of the electron-electron
interactions for understanding the anomaly of the density of states appearing
at the Fermi level in a diffusive system.

6.2.2 Diffusive Electronic Transport, Transmission Coefficient
and Conductance

Classical Probability

One aims at describing the propagation of a particle of energy ¢ from a point r
to a point 7’. In quantum mechanics, this propagation is inferred from a prob-
ability amplitude, which is commonly expressed through a Green’s function
G(r,r"). We do not aim to develop the theory of Green’s functions. For our
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purpose here, it is sufficient to note that there are many possible scattering
trajectories from r to r’. Thus a Green function has the following structure:
it is the sum of the probability amplitudes corresponding to various multiple
scattering trajectories from 7 to 7/, each trajectory being characterized by an
amplitude and a phase proportional to its action [21]

G(r,r') = ZAj(r,'r') (6.45)
J

Now, one asks about the probability to find a particle at point 7’ if it was
initially injected at point =. Such probability to go from r to 7/ is given by
the squared modulus of the amplitude. From (6.45), this probability appears
as the sum of amplitude squared terms, plus interference terms which pair
different trajectories j and j'

G, )2 =D Ai(r, 7)) Ay (r,7') = S 14;(r, )P+ Y A (r, 7)) A2 (1)
53’ J J'#7

(6.46)
Since it is well known that in quantum mechanics, one must add amplitudes
instead of intensities, the interference term (the second term in (6.46)) can-
not be a priori neglected. However this second term describes interferences
between different trajectories j and j/. Each of the contributions in this sum
has a random phase which depends on the detail of the impurity configura-
tion. After disorder averaging, the second term cancels and the probability is
essentially given by the sum of intensities

G(r, 7P =) [4;(r,7)] (6.47)

J

Since all phase factors have disappeared, the remaining term is completely
classical. Indeed, let us assume that some event changes the phase of the
amplitude A;. The complex amplitude A7 gets the opposite phase, leaving the

probability unchanged. The quantity |G(r, /)2 = 3 ;|4 (7, 7")|2 ressembles
the classical probability and is the solution of a diffusion equation. We call it a
‘diffuson’. To be more precise, but without any proof, we define the probability
P(r,r',w) as

1
P(r,v,|w) = mGe(r, r)G:_,(r',r). (6.48)
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Fig. 6.13. Schematic representations of a Green’s function G(r,r') and of the
classical probability Pu(r,r') oc 3° ; 1A4;3(r,7")|2. The upper diagrams exhibit a few
collision events. They are not represented on the lower diagrams



The Green’s function and its complex conjugate are taken at different fre-
quencies One can check that this probability is correctly normalized, that is
Js° P(r,v,t)dr’ = 1, where P(r,r’,t) is the Fourier transform of P(r,r',w).
Starting from the Schrodmger equation in a random potential and after dis-
order averaging, it is possible to demonstrate that in the limit krf. > 1 and
for slow variations, the probability P(r,r’,w) defined by (6.48) is the solution
of a classical diffusion equation

(—iw — DA) Py(r,rv’,w) = é(r — 7") (6.49)

where D stands for the diffusion coefficient defined by (6.39). Doing this, we
have only considered classical contributions to the average. We will study later
the corrections to this classical probability.

Conductance

Our starting point to describe electric transport is the Landauer formalism.
We stay at a very qualitative level but this formalism is quite natural since it
expresses the conductance as a transmission coefficient through the disordered
sample. Consider a disordered conductor of length L and section § = W4
It is connected to perfect conductors (Fig. 6.14) which can be considered
as wave guides where free electronic waves propagate. In this geometry, the
transverse wave vectors of the eigenmodes (also called channels) are quantized
by transverse boundary conditions. One can define a transmission coefficient
Tup from an incoming channel o (ingoing wave vector k,) to an outgoing
channel b (wave vector kp). The Landauer formula is written as

- s-— ZTab (6.50)

To calculate the number of transverse channels, one considers that electrons
are injected at the Fermi energy, i.e. such that |k,| = |ky| = kp. The trans-
verse component is quantized in units of 27 /W, which imposes the number of
channels. In d = 2 and d = 3, their number is given by

k& kLS

(d=2) _ 2mkp (d=3) _ kyS
i = kW N = e =

= oW (6.51)
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Fig. 6.14. In the Landauer formalism, the conductance is related to the transmission
coefficient between different incoming and outgoing channels
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Fig. 6.15. The conductance is proportional to the classical probability to transmit
a channel a to a channel b (summed over channels). The object (called diffuson)
which represents this probability is the sum of contributions of paired trajectories

Now let us consider the structure of the transmission coefficient T,;,. It is the
square of an amplitude and it has, with minor differences, the same structure
as the probability P(r,r’,w). The main difference is the following: instead of
injecting a particle at a point 7 inside the sample, a plane wave k, is injected
from outside the sample. In particular, the boundary conditions have to be
properly treated. But, without entering into the details, it may be easily un-
derstood that, after disorder averaging, the average transmission coefficient
and consequently the conductance can be related to the probability to cross
the sample. More precisely for a 3d sample, one can show that the dimension-
less conductance reads

4
g= §NJ_UFP(0,L) (6.52)

where P(0, L) is the solution of the diffusion equation (6.49) with appropriate
boundary conditions. It is given by P(0,L) = ¢2/DL so that

4 L

9= §N_L T

which is equivalent to the Drude result (6.42-6.44). To obtain these results

quantitatively, there are some technicalities that are not described here [18].

What should be remembered is the message of Fig. 6.15: the conductance is

proportional to the classical probability to cross the sample. This is enough
to understand how coherence effects appear and develop.

(6.53)

6.2.3 Deviations From Classical Transport: Quantum Interferences

The diffuson is a classical object. It does not depend on the phases of the
complex amplitudes, and in the diffusive regime, it is the solution of a diffusion
equation. However, we may have to check whether no additional effects have
been left aside, when throwing out all the interference terms in relation (6.46).
It turns out that some of these terms have quite interesting consequences.
Indeed, quantum effets can appear when two diffusons cross, or when a
diffuson crosses with itself. The notion of quantum crossing is extremely im-
portant because it is the source of quantum effects. The diffuson being a



Fig. 6.16. Left: Crossing of two diffusons. Right: Detail showing that the volume
of the intersection region is proportional to )\dF_lle

classical object, coherence effects can only appear because of these quantum
crossings. They are at the origin of the weak-localization correction and of
universal conductance fluctuations. Let us try to get some intuition about
these crossing events.

Figure 6.16-Left illustrates that a crossing mixes four complex amplitudes
which belong to two incoming diffusons and pair them differently. The two
emerging diffusons are built with amplitudes A; and A4;, coming respectively
from each of the incoming diffusons. They have the same phase since they
follow the same path. The quantum crossing® is thus an object whose role
is to permute the quantum amplitudes. It is necessarily short range, because
trajectories have to be as close as possible to each other to avoid dephasing
(Fig. 6.16-Right). Since it appears between two successive collisions on impu-
rities, and since the phase mismatch between trajectories has to be smaller
than 27, one sees that the volume of this object is of order A& 1¢,.

It is important to evaluate the probability of occurrence of such quantum
crossings. This probability will be a measure of the contribution of quantum
effects. Since the volume of a quantum crossing is of order )\dF_lﬁe, a diffuson
propagating during a time ¢ can be seen as an effective object of length £ =
vrt and of ‘cross-section’ /\dF_l. Thus, it has a finite volume vF/\g_lt. The
probability of crossing of two diffusons after a time d¢ in a volume 2 = L?
is thus proportional to the ratio between the volume of a diffuson and the
volume of the system. As a result, the probability dpx (t) of the occurrence of
a quantum crossing for two diffusons after a time dt writes

M lypdt 1 dt
Ap UFdt 1 db

dpx (t) = 7] 97D

(6.54)
where (6.44) has been used to introduce the dimensionless conductance g-
Consider now an open system coupled to reservoirs. The time needed to travel
throughout the sample is the Thouless time 7p = L2/D. The probability of
crossing during this time is given by

™D A Lypr 1
DPx (TD) =/ dpx (t) = F_QLQ ~— (6.55)
0 g

3Such a quantum crossing is often called a Hikami box.
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This probability is the ratio of two volumes and it is proportional to the inverse
dimensionless conductance (6.44). Thus the probability of crossing scales like
1/g. Since, in the weak-disorder limit krl, > 1, g is large, phase-coherent
effects are small. The ratio 1/g'being a small number in a metal, this explains
why phase-coherent effects are weak.

There is also a very important feature to notice: when amplitudes are
interchanged at a quantum crossing, the paired amplitudes belong to different
channels. It is not at all obvious that they will stay in phase: assume that some
event changes the phase of the amplitude A;. As seen above, the complex
conjugate A} gets the opposite phase so that nothing happens. The same for
the Ay and A ;- However, after the crossing, since A; and Aj, follow the same
path, they have the same action, except if some perturbatlon has changed the
phase of one of them. So the new object formed after the quantum crossing
looks like a diffuson but it is more fragile: it is sensitive to dephasing and its
lifetime 74 is finite.

6.2.4 Weak Localization

We have seen that the classical probability P(r,r’ ,w) and the conductance
can be expressed as a sum of contributions of pairs of complex conjugated
trajectories. Since trajectories can have quantum crossings, they can form
closed loops (Fig. 6.17). It turns out that in such a loop (whose contribution
is not included in (6. 47)) the trajectories are time reversed. One trajectory j
and its time reversed j7 go in opposite directions. However, if there is time-
reversal symmetry, they have the same action and thus they have exactly the
same phase. This phase can be quite complicated because it depends on the
disorder configuration but it is the same for both trajectories. The contribution
of these loops do not cancel on average. If the end points are far away like in
Fig. 6.17, the contribution of these new trajectories is small, of order 1 /g, but
it leads to an experimentally observable effect: the weak-localization correction
to the conductance. This is a phase-coherent effect because only trajectories
of a size smaller than the phase coherence length Ly will contribute to this
additional term. Using the same type of argument as in the previous section,
let us evaluate the probability to have a loop for a trajectory which travels
through the sample. Since there is a quantum crossing, the probability is
small, of order 1/g. Moreover, it depends on the distribution of loops in the
disordered system. Let us call it Py (¢). The probability of traversing the
sample with a loop then reads

po(TD) = /0 " Pui(t) dpx (t) = ; /0 ” Rm(t)f—; . (6.56)

We also have to remember that because of decoherence in the loop, only those
with time ¢ smaller that 74 contribute. The resulting probability of having
trajectories with loops of time smaller than 7 is
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Fig. 6.17. Trajectory with a quantum crossing and a loop. In the loop, the two
propagations are time reversed

min{rp,7y) 1 min(rp,7¢) dt
wo(r) = [ Pus(dps() = ¢ [ Pu®) (657)
(] 9Jo D
where Py¢(t) is the probability to have loops of time t. This leads to a relative
correction to the conductivity (or to the conductance) given by

AG_AQ__
27 29 — i), (6.58)

The sign of the correction is negative because the trajectories j and j7 have
opposite momenta. This quantum correction to the classical Drude conduc-
tivity is called the weak-localization correction [22,23]. The phase coherence is
broken by inelastic events due to the coupling of the electrons to other degrees
of freedom or due to electron-electron interactions. Such coherence breakdown
is temperature dependent and can be phenomenologically described by a tem-
perature dependent phase coherence length L4(T) = /D74(T): trajectories
larger than Ly do not contribute to the weak-localization corrections.

As we have seen above, the amplitude of the correction is proportional to
Pyt (t), the distribution of loops. The number of loops of time t is precisely
given by the return probability, solution of the diffusion equation. We calculate
this quantity in the next section. Moreover (6.57) and (6.58) have a meaning
only in the diffusive regime for which ¢t > 7. (otherwise a loop cannot be
formed). The contribution of the return probability has thus to be integrated
between 7., the smallest time for diffusion, and the phase coherence time 74.
Replacing the bounds by exponential cut-offs, the weak-localization correction
can be cast in the form

e? [ —t/. —t/7ey At
AG = —2s— Ppi(t) (7™ —e7H7e)— (6.59)
h 0 ™D

In order to evaluate AG in various situations, we now study the diffusion
equation and its solutions.
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Fig. 6.18. Cla,ssu:al probability Pei(r, 7', t) and the quantum correction Pong(r, v, t).
When 7 # 7/, the correctlon is small because the probability of quantum crossing is
small. When r = 7', the two contributions are equal so that the return probability
is twice its classical value The pair of time reversed trajectories is called a cooperon

6.2.5 Diffusion Equation

Explicit calculation of the probability P (¢) requires the solution of the dif-
fusion equation. We now open a parenthesis devoted to the derivation of
some relevant solutions of this equation. As seen on Fig. 6.18, the probability
P(r,r',t) has two contributions, a classical one, P, (r,r',t), and a additional
contribution, Py (7, 7’,1), which contains a loop. The total number of loops
in (6.59) is precisely the integrated return probability

1nt /-Pmt 7' r, t (660) )

Classical Diffusion and Quantum Correction

In Sect. 6.2.2, we have seen that the classical probability has been derived
as the solution of a classical diffusion equation (written here for the Fourier
transform):

(% - DA) Pa(r,r',t) =8(r —r)6(t) . (6.61)
However, we have seen that the probability has another component which
results from trajectories with loops Py(r,7/,t). When r # 2’ this second
contribution is very small, in the order 1/g. When r = 7/, Fig. 6.18 shows
that it has exactly the same structure as the classical term. Thus the return
probability is doubled. The interference term is not a solution of a diffusion
equation (it is negligible when 7’ # r), but can be easily calculated when ' =
7. In this case, and if there is time-reversal symmetry, we have Py (r, 7, t) =



Py(r,r,t). However P(r,r,t) is phase sensitive. For example, it is modified
by a magnetic field. It can be shown that it obeys the following ‘diffusion-like’
equation [22,23]:

1.9 2ie A\ 2
+5¥—D(V+ > )

Pii(r, 7' t) = 8(r — 7')8(t) (6.62)

whose solution has to be taken at ' = r. The effect of the magnetic field is
described by a covariant derivative where the charge coupled to the vector
potential A is —2e. The doubling of the charge reflects the fact that the time
reversed amplitudes entering P,,; accumulate opposite phases. The scattering
rate 1/7, describes the breaking of phase coherence. We now consider a few
solutions of (6.61) and (6.62).

Solutions of the Diffusion Equation

The discussion of physical quantities like weak-localization correction requires
the solution of the diffusion equation in some simple cases. Thus a useful
quantity is the space integrated (dimensionless) return probability:

P(t) = / P(r,r,t)dr . (6.63)
Free Diffusion

The solution of equation {6.61) in the free space of dimension d is a gaussian
function. To obtain it, one starts from the Fourier transform P{q,t) of (6.61)
which obeys the equation

0
<8t + Dgq ) P(q,t) = 4(t) (6.64)
whose solution is )
P(q,t) = f(t)e DT (6.65)
so that the inverse Fourier transform P(r,r/,t) = [ -5 @ )d ela- (=) jg
roN 1 —|r—r'|?/4Dt
P("',T' ,t) = WC (666)

As a result, the typical distance reached by diffusion after a time t is given

v <R2(t)> = 2dDt, and the return probability to the origin after a time
t is obtained from (6.66) by taking r = r’. Precisely one gets P(r,r,t) =
1/(4wDt)#2, so that the integrated return probability P(t) in a volume {2, as
defined by (6.63), is

12

Py(t) = Pu(t) = (@rD0)e2

(6.67)
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2d Diffusion in o Magnetic Field

Consider the diffusion of an electron in a infinite plane placed in a perpendic-
ular magnetic field B. The classical probability Pe(r,7’,t) is not affected by
the field. To obtain its effect on the interference part Pipe(r,7,t), one has to
solve the covariant diffusion equation (6.62). To that purpose, we first remark
that Piae(r,7’,t) does not need to be calculated, but instead Pyt (t). To eval-
uate directly this quantity, one notes that the general solution of the diffusion
equation (6.62) has the form

P(r,r',t) = 0(t) Y (r)pn(r’)e™ Bnt (6.68)
n
where 0(t) is the step function and {E,,,} are the eigenvalues and eigen-

functions of the eigenvalue equation associated to (6,62)

. 2
- D(v,. + 2‘;“‘) Yn(r) = Enthn(r) (6.69)

From (6.68), we find that the integrated probability P(t) has the simple form

P(t) = 6(t) y_e 5t (6.70)

This relation is quite useful to calculate P,y (t) in a magnetic field. The eigen-
values E,, are solutions of an effective Schrédinger equation for a free particle
of mass m = /i/2D and charge —2e in a uniform field B. They are precisely
the Landau levels, namely

1\ 4eDB
where n is an integer. The degeneracy of these levels for an area S is
In = 3‘;—35’, while the integrated return probability Py.(t) is simply related
to > gne~Fnt that is
BS/o
int (£, = — : 72
Piuc(t, B) sinh(4rBDt/¢g) (6.72)

where ¢g = h/e is the flux quantum. In the limit B — 0, one recovers the
solution of free diffusion: S/(4wDt). For large times, Py (t, B) decreases ex-
ponentially with a characteristic time 75 = ¢g/47BD, which describes the
dephasing of time reversed trajectories, and can be associated to a character-
istic length Lp = 1/h/2eB (magnetic length).

Diffusion on a Ring or on a Cylinder

Consider now a ring of perimeter L pierced by an Aharonov-Bohm flux ¢. The
solution of (6.62) on such a ring is quite easy to guess. Starting from (6.66),



one sees that the return probability on a ring is the probability to return to
the original point without making a loop around the ring plus the probability
of return after one loop, two loops, etc. Then one should take (6.66) with
|r — ' = mL, and sum over all possible values of m. Moreover each turn
around the loop accumulates a phase 2 X 27¢/¢o. We obtain

L +o00

272
W D e LY/ADt cosdmme/do (6.73)

m=—00
Each harmonic of this expansion represents the return probability after m
loops around the ring. For a cylinder of height L,, the diffusion is free along
the z direction of the cylinder axis. The same argument as for the ring gives
immediately

Rnt (ta ¢) =

LL, ¥&
-Pint(t7¢):4ﬂ_Dt Z e~ ™ L*/ADt o5 dmep /o (6.74)

6.2.6 Back to Weak-Localization

The weak-localization correction is now computed in various situations.

Dependence on the Dimensionality

The weak-localization correction is proportional to the integrated return prob-
ability Pin¢(t). As a result it depends on space dimensionality d. Consider
a sample whose typical size L = 2%/¢ is larger than Ly. For time scales
smaller than 74, diffusion is like in an infinite medium and the return prob-
ability is given by (6.67), that is Py (t) = §2/(4wDt)4/2. Using the integral
(6.94), one obtains the conductivity correction expressed in units of the quan-
tum of conductance €?/h, in the limit Ly > £, namely for quasi-1D sys-

2
tems: AG = ~5%L¢, whereas for d = 2 (or d = 3), AG = —s%lu% {or

62

AG = S5 €£) [18,24]. The strictly 1D case is not considered here because

the diffusion approximation does not apply in this case. Instead, we consider
the case of a quasi one-dimensional wire of finite section S, in which the diffu-
sive motion is 1.D but which is 3d in the sense that its section is larger than the
Fermi wavelength, so that many transverse channels are opened to conduc-
tion. Then one uses the relation (6.59) with £2 = LS and Py (t) = L/V4nDt.
The 2d result corresponds to a strictly 2d gas. For a quasi-2D system with a
finite width a, the conductivity has to be divided by a.

Magnetoresistance

A very convenient way to measure the weak-localization correction is to study
its magnetic field dependence. Indeed, the magnetic field breaks time-reversal
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symmetry and suppresses the weak-localization correction. Since this correc-
tion is negative, its suppression leads to a increase of conductance or a negative
magnetoresistance, which is amongst the most spectacular signature of weak-
localization?. In a magnetic field, the weak-localization correction is still given
by (6.59) where Py, (¢, B) is the return probability in a magnetic field given
by (6.72). The weak-localization correction is then

e’D [ B/¢0 —t/Te —t/7,
AG(B) = —2s - /0 Snb4nBDi/ds (e —e )dt (6.75)

Using (6.95), the integral gives

AG(B) = — ¢ Ty(li B\ _g(l, 7 (6.76)
= "2zh | \2 " 4eDBrn, 2 " 4eDBr, '

where ¥(z) is the digamma function. This expression involves a characteris-
tic field By defined by By = ¢g /87rLi, corresponding to one flux quantum
through an area Li. The weak-localization correction disappears beyond this
field (i.e. when the time 7p is smaller than 74) which is in order of 1073
Tesla for Ly ~ 1 pm. The magnetoconductance G(B) — G(0) is the difference
between the weak-localization corrections AG(B) — AG(0) and it is given by

e? h 1 h
—s—|In|——57— -9 |[+-+—— .
“orh [n (46DBT¢) (2 * 4eDBT¢>] (6.77)

The magnetoresistance AR(B) o« —AG(B)/G2 is thus negative. In the limit
B < By, the expansion (6.96) gives .

s e2( B\? .

AG(B) — AG0) ~ ———| =] . 6.78
6(5) - 260) = 55 (&) (6.78)
The field dependence of the weak-localization correction has been studied very
carefully, in particular in metallic films as shown on Fig. 6.19 on a famous
example [25]. It is a way commonly used to obtain a precise determination of
the dependence 74(T").

Altshuler-Aronov-Spivak Oscillations on a Cylinder

One of the most famous experiments showing phase-coherence effect on trans-
port is the one performed by Sharvin and Sharvin [26] who measured the mag-
netoresistance of a cylinder threaded by a magnetic flux ¢. In this case the
return probability P (¢, ¢) is modulated by the flux through the cylinder and
is given by (6.73). Using the integral (6.98), one obtains the flux dependence
of the conductance AG of the cylinder of length L,:

“There is an additional contribution to the conductivity which results from
electron-electron interaction. It does not depend on the magnetic field.
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Fig. 6.19. Magnetoresistance of a Mg film, as a function of the applied field, for
several temperatures. The dots are experimental data, while the curves correspond
to (6.77). The time 7,4 is an adjustable parameter [25]

2 L L +oco
AG(¢) = —S%L—z In 7’3 + 21; Ko(mL/Lg) cosdmme/ o (6.79)

where K is the modified Bessel function. The amplitude of the oscillations of
period ¢o/2 decreases exponentially with the perimeter L of the cylinder and
becomes negligible when L > L.

These oscillations have been predicted by Altshuler, Aronov and
Spivak [27]. As shown on Fig. 6.20, the agreement between theory and exper-
iment is excellent (note the presence of negative magnetoresistance). Similar
oscillations have been observed in multiwalled nanotubes (MWNT) in a par-
allel magnetic field [28]. This strongly suggests that the MWNT are diffusive.

6.2.7 Universal Conductance Fluctuations

Another important signature of the coherent nature of quantum transport
is the phenomenon of Universal Conductance Fluctuations [29,30]. When a
physical parameter is varied, such as the Fermi energy, the magnetic field
(Fig. 6.21) or the disorder configuration, the conductance fluctuates around its
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Fig. 6.20. Left: Magnetoresistance AR(B) of a lithium film on a cylinder quartz
compared with (6.79) (dashed line) [26]. Right: Magnetoresistance of a MWNT in a
parallel field [28]

average value. In the mesoscopic regime, these fluctuations are reproducible
and provide the signature of the interference pattern associated to a given
impurity configuration. The width of the distribution is universal and of the
order of e2/h [29,30]

2

5G2 = (G%) — (G)? ~ (%)2 (6.80)

Here we aim to understand qualitatively why the fluctuations are universal,
using our picture of quantum crossings. The quantity §G? implies the correla-
tion between pairs of diffusive trajectories, with quantum crossings (otherwise
8G = 0). As each crossing has a weight 1/g, terms with one crossing would give
a correlation 6G%2 = G2/g o« Ge?/h. However, when summing the Landauer
formula over all outgoing channels, it can be shown that the contribution
with one crossing turns out to be negligible. The main contribution has two
crossings, as shown in Fig. 6.22. The variance 6G? is thus proportional to
G?/g? = (€?/h)? and is therefore universal.

Let us be more precise and try to estimate the variance of the fluctuations.
It is related to the probability to have two diffusons crossing the sample, with
two quantum crossings. The probability dpx x to have two quantum crossings
in the time interval [t, ¢ 4+ dt] resembles the probability dpg(t) to have a loop,
because the two crossings indeed form a loop. But the relative position of
the two crossings which has still to be chosen, gives an additional factor ¢
(Fig. 6.22):

_ 2
e (t) = (5%—(;”—*7> ¢ P(t)dt ~ = p(r)L Lt (6.81)

2
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Fig. 6.21. Reproducible fluctuations of the magnetoconductance in units of €2/, at
T = 45mK for Si doped GaAs. Top panel shows 46 plots as function of the magnetic
field, for the same sample after successive annealing. Each plot corresponds to a
disorder configuration and is called a magnetofingerprint. Middle panel presents
the average conductance versus field. The weak-localization correction disappears
beyond a characteristic field. Above the same field, the variance of the fluctuations
is divided by a factor 2 (bottom panel), corresponding to the destruction of the
cooperon [31]
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Fig. 6.22. The correlation function of the conductance implies the correlation of two
diffusons, with two quantum crossings. Lefé: A contribution where the loop forms
two diffusons. Right: A contribution where the loop forms two cooperons. The latter
contribution is suppressed by a magnetic field

and the relative fluctuation is proportional to the probability of having two
quantum crossings during the time 7:

§G2 1 min(rp,74) td
g / p(ytdt (6.82)
0

G2 ~ pyx(Tp) = 7 %
There are several ways to arrange quantum crossings (see Fig. 6.22). A careful
calculation gives:

2 2 [ € o —t/r, At
567 = 65" (& / t [Pu(t) + Pag(t)]e ¥/ 3L (6.83)
0 )

There is an equal contribution of loops with diffusons or cooperons. In a
magnetic field, the cooperon contribution is suppressed so that the variance
is reduced by a factor 2, as seen on Fig. 6.21c.

Universal Conductance Fluctuations in a Quasi-1D Wire

As an example, consider a quasi-1D wire of length L connected to leads.
First let us assume that the system is mesoscopic, i.e. L < L. The return

probability in this case is P (t) = Pa(t) = 5 a e~ D9t where the modes are
quantized as ¢ = nm/L, with n > 0. Equation (6.83) gives

1282 (€2 2 1
2 las” fe” =
6G° = por) (h) nE>0 o, (6.84)

so that the fluctuation of the conductance is given by a universal quantity,
namely independent of disorder [30]:

2
5G% = 2_52 ﬁ .
15 \ A
In the opposite limit of a macroscopic system, i.e. for L > Ly, P(t) can be
replaced by its expression (6.67) for an infinite system and one gets



(5G?) = 35 (%)2 (%)3

In d dimensions, this result is easily generalized to obtain: (§G2) oc (Lg4/L)*~¢

6.3 An Interaction Effect: the Density-of-States Anomaly

Up to now, we have neglected the interactions between electrons. In a metal
the Coulomb interaction leads to modifications in some physical properties
and the diffusive nature of the electronic motion plays an important role, in-
creasing the interaction effect. This can be understood qualitatively in the
following manner. The probability that two electrons interact is increased be-
cause electrons have a diffusive and not ballistic motion. The effective inter-
action between electrons is thus enhanced, since the probability to stay in the
interaction region is increased. The change in the related physical quantities
X(E) at energy scale E is proportional to the time spent in the interaction
region. Namely, it is proportional to the return probability in the interaction
region during the time h/E:

SX(E) AMlyp [ME
x ST a J

P(t)dt . (6.85)

For instance, there is a correction to the conductance, of the same order as
the weak-localization correction, but independent of the magnetic field, at low
fields. There is also an anomaly in the density of states which can be measured
by tunneling measurements. Here we briefly discuss the origin of this anomaly.
To that purpose, we use the Hartree-Fock approximation (for details, see [1]).
In this approximation the Schrédinger equation writes

occ

ibi(r) = o Ai(r) + V Z / U(r — )3 (r" )by ()i (")

(6.86)
Here, only the exchange term are considered. U(r—') is the screened Coulomb
potential. This non-linear equation should be solved self-consistently, but we
treat it as a perturbation. First of all, we evaluate the correction to the density
of states by calculating the shift of energy levels Ae¢;. The average shift of a
level ¢ at energy e is given by

occ

Z / T —1)$;(r")g;(r )¢*(T)¢1(T’)drdr (6.87)

where U(r) is the screened Coulomb interactions U(r) = Re <R with the
inverse screening length « given by x% = 8me?pg. The ¢; are the eigenfunctions
of the non-interacting Hamiltonian. One can show that the average of the
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product of four wave functions can be related to the classical probability
[18,32]:

BTGB = —z Pa(r v e ) (6.88)

for two levels ¢ and j at respective energies ¢ and €. The demonstration is
beyond the scope of this chapter. Replacmg the sum over occupied states by
an integral over energy (3_7°° = po f de’ ), one finds (the origin of energies
is taken at the Fermi level)

A, = -~ / de’ /U (r — 7" )RePu(e — € )drdr’ (6.89)

The interaction term varies on a length k! much shorter than £e, so that in
(6.89), the spatial integration can be factorized to obtain JU(r)dr = 1/2py,
so that the average energy shift is

1 0 ’ ’
A, = S0 /_oo de'RePy(r,r,e — €) (6.90)

Since, on the average, each energy e is changed into € + A, the distance
between two levels €; and e; becomes (ez — €1) [L + DA, /De]. This shift leads
to a change in the density of states given by 55 = —%A so that the correction
to the density of states due to interactions is related to the return probability

ép(e) = —%RePcl(r, r€) = 27r(2/ P(t) coset dt (6.91)
This correction depends on the diffusive nature of the electronic motion and

therefore on the dimensionality, through the dependence Py (t) given by (6.67).
From (6.97), one obtains

ed/2-1
dp(e) o (d - 2)_D117 for d=1,3 (6.92)
op(e) ox %ln €Te for d= (6.93)

6.3.1 Some Useful Formulas

/ —l—(e"ﬂ —edt=1Tr (1 - g) ['y%—l - 6%’1] ford<4 (6.94)
0

td/2
1 [ e_yt —e Zt 1 1

1 1
\I'(§+x) lnx+242+ -+ for - o0 (6.96)



* 1 —iw
/0 a7z° tdt = (1 - —> (W)t~ ford<4 (6.97)

/ —£-%¥dz = 2Ko(24/By (6.98)
0

6.4 Theory of Quantum Transport in Nanotubes

Electronic transport in carbon nanotubes has many different manifestations,
from the 1D ballistic behavior for metallic or even doped semiconducting
SWNTs, to quasi-2D fingerprints in weakly disordered MWNTs. Most of the
universal properties presented in Sect. 6.1 and Sect. 6.2 have been found in
experiments, demonstrating the richness of the field. However, in addition to
such quantum properties, common to other mesoscopic systems or nanowires,
carbon nanotubes also manifest unique transport features, such as upscaling of
the mean free path with nanotube diameter or anomalous conductance scaling
in defect-free incommensurate MWNTSs. This section is aimed at reviewing
both aspects, on the basis of recent analytical or numerical results.

6.4.1 Ballistic Conduction in Single-walled
and Multiwalled Carbon Nanotubes

Bandstructure and Conducting Channels

The conduction regime in nanotubes is said to be ballistic whenever the mea-
sured conductance does not scale with the system length, but rather depend
on the number of available quantum channels at a given energy (Sect. 6.1.1).
This occurs in case of perfect or ohmic contacts between and a metallic nan-
otube and metallic electrodes with similar work functions. In this regime, the
electronic conductance writes

6(8) = 2w Nu(B)

with N (E) is the number of channels at energy E. Band structure calcu-
lations allows to extrapolate on the expected energy-dependent conductance
spectrum. For all metallic nanotubes (especially armchairs), two quantum
channels are available in the vicinity of Fermi energy Er = 0 (for undoped
tubes), resulting in G(Er) = 2G, (with G = % the quantum conduc-
tance) [33]. At higher energies, the conductance increases as more channels
become available to conduction, but it still remains quantized. As an illus-
tration the electronic bands and conductance of the (5,5) metallic tube are
displayed on Fig. 6.23.

These values are the highest that can be expected in an experiment for such
a nanotube. Usually lower values are found since transmission at the interface
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Fig. 6.23. Energy dispersion of bands (leff) and quantum conductance as a function
of energy (right) for the (5,5) metallic nanotube

between the voltage probes and the nanotubes are not perfectly refiectionless
and partial backscattering along the tube axis (due to some topological or
chemical disorder) also reduces the conductance. Generally, one introduces
T,.(E), the transmission amplitude for a given channel, at energy F (Landauer
formula, see Sect. 6.1.1):

2e?
GE) =" > Tu(E).

n:l,Ni

Quantized conductance is associated with a ballistic conduction of elec-
tronic wavepackets in between voltage probe. To follow simultaneously the in-
trinsic conduction mechanism, together with the corresponding conductance
scaling, the Kubo formulation of the problem is appropriate. The Kubo con-
ductance of a nanotube of length Liype can be written as [34]

2¢?
g(EaLtube) = i3

lim Tr[6(E — H)D(t)]

tube ' 7

where §(F — H) is the spectral operator (whose trace gives the density of
states) and D(t) = (X (t)—X(0))?/t is the diffusion operator (X is the position
operator along the tube axis). The voltage-probe separation is in this case
given by Liype, and 7 is the associated relevant time scale that fixes the value
of the conductance. In such an approach, spurious effects of the contacts are
fully discarded. The ballistic regime denotes that the electronic displacement
scales linearly with time. The slope of the diffusion coefficient evaluated at
Fermi level (D(t)) g, = (X(t)—X(0))2/t gives the square of the Fermi velocity



Vp = 3GccY0/2R (Gec = 1.444 and yp = 2.7 — 2.9 eV). In the previous formula,
with Liybe = vpT, a linear time scaling of the diffusion coefficient is found,
i.e. D(t) ~ v&t, and owing to the value of the density of states is N, /27hvr,
the conductance is then recovered to be length independent

G =2N,€%/h

The Kubo formula thus enables to demonstrate directly that the ballis-
tic regime yields quantization of electronic conductance whenever metal-
nanotube contacts are reflectionless.

14 - (11,0) narotube
——— (11,0}=(12,0) junction
12 (12,00=(11,0)=(12,0) junction

G(G,; units)

-8 6 -4 -2
Energy (eV)

Fig. 6.24. Left: Illustration of a nanotube-based metal (12,0)-semiconductor (11,0)-
metal (12,0) heterojunction. Right: Corresponding conductance spectra for the single
nanotube (11,0) showing the exact number of conduction channels, together with
the conductance of the double-junction (12,0)-(11,0)-(12,0)

One should note that in most cases, the contact effects yield lowering of
the transmission coefficient across the interface. Indeed, even in the most fa-
vorable case, as shown in Fig. 6.24 for a nanotube based heterojunction, the
symmetry mismatch between electronic states of nanotubes with different he-
licities reduces the transmission probability [35]. This is general to all realistic
nanoscale junction between a nanotube and a metallic electrode.

6.4.2 Effects of Disorder and Doping
Conduction Regimes

To account for the effect of disorder on electronic transport of carbon nan-
otubes one must first notice that there is a subtle change of conduction
dimensionality as the diameter of individual shells or the number of inner
shells is increased. A typical instance is to consider a single vacancy (remov-
ing one carbon atom within the unit cell) and study its effect on the con-
ductance pattern. For a (4,4) tube, a tight-binding simulation (or an effective
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mass description) finds a broad dip around the charge neutrality point, which
corresponds to a transition from two to one quantum channels [36]. As the
diameter of the tube is increased the dip is narrowed until the modification of
conductance with energy becomies single valued. This corresponds to a change
of dimensionality. Whenever disorder within the tube (topological, dopants,
... ) is encountered, the conduction regime departs from the ballistic regime.
In the coherent regime, the presence of disorder produces elastic scattering
which eventually yield a diffusive regime. Expressed in our language, the dif-
fusive regime is related to a saturation of the diffusion coefficient of electronic
wavepackets
D(t > 1) = Lovp

where the mean free path £, is introduced, while 7, is the corresponding elas-
tic mean free time (7, = £,/vr). The conductance in the diffusive regime thus
writes G ~ N e2/h(€./Liupe)(see Sect. 6.2.2). Such a formula, however, com-
pletely neglects quantum interferences that produce localization, and yield an
exponential decrease of the conductance G(Liybe) = (h/2N 1 €?) exp(€/Liube),
as soon as Liype > & ~ N £, (&: localization length).

In this section we address separately, the demonstration of suppression of
backscattering in the energy window close to Fermi level, inferred from the
particular symmetries of eigenstates. An analytical expression of the elastic
mean free path is then derived within the Fermi golden rule and for diag-
onal Anderson-type disorder, an expression that is further extrapolated for
a chemical disorder given by a concentration of impurities (such as boron or
nitrogen). The effect of quantum interferences is finally addressed through the
study of Aharonov-Bohm oscillations of the magnetoresistance.

6.4.3 Absence of Backscattering in Undoped Nanotubes

The symmetry of eigenstates of graphite or metallic nanotubes close to
the Fermi level is very peculiar in the sense that under certain circum-
stances complete suppression of elastic backscattering is found. The origi-
nal demonstration of this property for carbon nanotubes is due to Ando and
coworkers [37]. First, one remembers that the eigenvalues at a k point in
graphite or in carbon nanotubes, are written in a general way as E(k) =
+704/3 + 2 cos(k.a1) + 2 cos(k.az) + 2cos(k.(a; — az)). At the corners of the
Brillouin zones, i.e. at the K-points, one gets E(K) = 0 with two degen-
erate eigenvectors (graphite or metallic tubes)

K.
Uk s(r) = Z eW(pz(r —74)+p.(r—rgp)) bonding state | K.)
¢ all cells
R
Uk o(r) = Zﬁ(pz(r —174) — p.(r —rg)) antibonding state | K_)
1)

Exactly at these K-points, one can estimate the amplitude of a scattering
event from a state | K} to a state | K_) as



(Ko 10| K-) = [drar (| rure)e | K-)
- / drdr’ (K 4 | 1) (uad(r — 14) +usd(r — rp))r’ | K_)
= 5 (walo? + 27002} +us {62 + 52202}

= %(uA —up) .

From this calculation one sees that if the disorder potential is long-ranged with
respect to the unit cell, i.e ug ~ up (conservation of pseudospin symmetry),
the term (K4 | U | K_) = 0, which means a disappearance of backscattering.
One can extend this special property to the low-energy range by considering
the eigenstates in the vicinity of K-points. Around some k point, the wave-
function can be written as ¥(k,r) = ca(k)p2(k,r) + cg(k)p2 (k,r) with

N 1 i
pi(k,7) = > e*p,(r—14—8)
Ncells P
1 R
~B ik.£
P, (k,r) = E e*p.(r—rp—4¢
( ) Vv Ncells ¢ ( )

One then has to compute in particular the factors

1 : o ’
Haalk) = g— D el EE) (pt | 3 | pAt)
cells g

Zenk(l t')@AllHlp >

e

Hap(k)

cells

It is readily shown that for instance (following the definitions of Fig. 6.25)
Hap(k) = (2OHIpE0) + e h o1 (pAO HIpE 1) + o= %2 (pA0[3|pB—)

= —oo(k)
BE) —a(k)) (b} _,
—’700((’(7) E(k) b2
with a(k) = 1 +e7ika1 4 g=ika2 apd k = K + 6k (K = (47/(3v3acc),0)).
One obtains a(k) = 1 + e™2i"/3¢10kz0/2 | ¢2im/3¢=18kya/2 and the problem is

recast to
E(6k) 3208ce (§k, + i0ky) \ (b1 _ 0
8%00ee (§k, — i0ky) E(3k) ba)

Thus the expansion around the K-points yields some particular linear dis-
persion relation given by E(6k) = =+hup|0k|, and since b?(6k, — idk,) =
b2(0k, + i8k,), the corresponding eigenstates can be rewritten as

in other terms
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Fig. 6.25. Representation of graphite lattice vector basis

1 e—iek) .
() = (rn, s, k) = —o— el(s(n)z+ky) 6.99
nai(r) = {r! ) 2Lube|Chh ( s (6.99)

taking 0k, + 10k, = k(n) + ik = |6kle!®* (6; = arctan(dk,/dks), s(n) =
2nm/|Ch|) and by setting the proper normalization factors (e.g. for a nanotube
with length Lyyne and helical vector Cp). To finally estimate the intensity
of backscattering in the vicinity of Fermi level, one needs to compute the
scattering matrix (n = 0,s,—k | T | n=0,s+k) with T = U + UGU +
UGUGU + . .. :

1 ~ 1 N

1 ~ ~
U+4 u d+....
e Y E R oMt

=U+Ux

By virtue of

11 (1_ u )—1
E—’HO—Z;{ E—H, E—Hy

:go(1+Ef{H0+(Ef{HO>2+...)

and by developing (n, s, —k | 7 | n,s,+k) on the basis of eigenstates one is
left with

. 1 i o—ify
(', K U |n sk = ———ee L{n_n/(k:—k')(eo’“,s) ( , )

vV 2Ltube | Chl §
1

(6.100)
= Up_n(k— k) (OO0 4 5 .
V 2L‘cubelcjhl T
If one considers the backscattering event for states on the same band close
to Fermi energy (E = E(k = K) = 0), and further assuming that the disorder




potential is a sufficiently smooth function of space (long range potential that
prohibits interband scattering), one thus gets

0,8,k |U | 0,5,—k) = Up(2k) (e ®=0) 1 1) = Up(2k) (6™ +1) = 0

This is also readily generalized to higher order terms, i.e. (0,s,—k | 7(E)® |
0,s,+k) =

1 ZZZ Uo(—k—kp)uo(kp—kp_l)...uo(kp—k)

(V 2LtubeCh)p (E —E&s, (kp))(E — €5, (kp—l)) s (E — &g (kl))

51k182k2 spkp

X (s|RIO-KIR ™ [0k, ]I5p) (sp—1 ROk, JIR ™ Bk, s Isp—1) - - - (51| R (B, JR ™ [6k]5)

where the rotation matrix R[0;,] is defined as

eiekp/Q O )

R[%,]:( 0 o ik /2 (6.101)

According to the symmetries of eigenstates, the product reduces to:
(sIR[BLIR ™ [B-r]|s) = COS(@‘—’“) = 0. Thus to all orders the backscattering
is suppressed in the low-energy range around the charge neutrality point for
metallic nanotubes. The applicability of such result is, however, restricted
to long-range disorder and for energy windows that shrink to zero around
the charge neutrality point as the diameter of metallic tubes increases. For a
more general and realistic description of disorder, a study of the mean free
path within the Fermi golden rule, as described hereafter, is necessary.

6.4.4 Nature of Disorder and Defects

Disorder in carbon nanotubes can be classified into two main categories. First,
topological defects that change the coordination number of a finite num-
ber of carbon atoms yield undoped disordered tubes. Vacancies have been
widely studied [36,38,39], as well as heptagon-pentagon pair (or Stone-Wales)
defects [40] that might additionally bridge nanotubes with different helici-
ties [41]. If n. is the density of such defects randomly distributed within the
tube, it is expected that at small concentration, the mean free path would
roughly scale as £ ~ 1/n.. Accounting for such defects in a tight-binding
description requires a careful geometrical parametrization of the Hamiltonian
energetics. Ab-initio calculations predict that the effect of a single vacancy, in
a short metallic tube connected to reflectionless contacts, is likely to produce
a dip in the conductance spectra roughly at —0.4eV away from the Fermi
level (charge neutrality point). The second kind of defects are substitutional
impurities. In particular, chemical substitutions of carbon atom by boron (B)
or nitrogen (N) atoms have been demonstrated. These impurities introduce
random scattering inside the nanotube but also produce charge transfer to
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or from the tube, resulting in a shift of the position of Fermi level. Semicon-
ducting tubes may thus become either p-doped (B) or n-doped (N), if their
diameters are sufficiently large to allow small enough bandgaps.

To mimick a substitution of C by N, one can consider the defect strength
as the energy difference between respective p, -orbital. For instance Ascny =
€p, (Carbon) — g, (Nitrogen) = —2.5eV whereas Aecp = 2.33eV.

Within a tight-binding implementation, one can establish a mapping
between the parameters for the Anderson-type disorder and a more re-
alistic description of substitutional impurities (characterized by their dis-
order strength and probability P). Both disorder descriptions can be re-
lated through their distribution function defined through a common variance
o ~ v/P(1 — P)|Aecn| = W/2+/3. This gives us a mapping between a ran-
dom site-energy modulation of strength W and a disorder defined by a certain
scattering strength (Aecn or Aecp) and by a given density of chemical sub-
stitutions (n. ~ P).

6.4.5 Elastic Mean Free Path
Derivation Within the Fermi Golden Rule

Under the approximation of weak disorder, one can treat disorder effects per-
turbatively and write down the Fermi golden rule (FGR) for a qualitative
estimation of the mean free path £, = vpr. First, one must derive the to-
tal density of states (TDOS) in the vicinity of Fermi level. Generally the
TDOS writes p(E) = Tr[6( E —H)] where the trace has to be developed over a
complete basis set. Assuming that the spectrum is structured by eigenstates
[#.(k)) corresponding to eigenvalues £, (k), one thus rewrites (note that the
k, are defined by E — E(k,) = 0)

p(E) = %Z/dk&(E —en(k)) = %Z/dkd(k — k) x

with 2 = (87%/a%v/3)/(27|Ch|™!) = 47|Cx|/v/3a? is the volume of k-space
per allowed value divided by the spacing between lines. The TDOS per carbon
atom is finally expressed as [42]:

-1

aen(k)
ok

2\/gacc
Eg) =
P(Er) 7Y0/Ch|
Therefore, the application of the FGR yields
1 2

2 -
——— = — (V1 (kp)| U |Wn2(—k Ex) X N;Ngin
S (B = | et (ke & ua(—he) | o(Er) x N
with V; and Nging, the respective number of pair atoms along the circumfer-
ence and the total number of rings taken in the unit cell used for diagonal-
ization. On the other hand, the eigenstates at the Fermi level can be written
as
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n=1

while the disorder considered here is an uncorrelated white noise distribution
given by

(pt(mn) | U | p?(m'n’)) = e s(random, m, 7)drmm’ s
(pB(mn) | U | p(m'n’)) = ep(random, m, n)dmm’ Snn’
(pt(mn) | U | pf(m'n)) =0 (6.103)

where ¢ g(random, m, n} and € 4(random, m, n) are the site energies of electron
at atoms A and B in position (m,n), randomly distributed within the inter-
 val [-W/2,W/2] following uniform distribution with probability P = 1/W.
By replacing such expressions of eigenstates in the previous form for elastic
scattering time, one finds

1 _2m1

= b
2Te(EF) h 4(\/N NR]ng N%R: EEA \/N NRlng NZ €B)

NRing

Thus if the disorder is described by random fluctuations of site energies
with uniform probability 1/W, with W the disorder bandwidth, the mean free
path can be finally analytically derived as [43,44]

2
by = 18;;02% Vvn2+m? +nm (6.104)

For a metallic nanotube (Np = 5, Ny = 5), with W = 0.2, one finds
£, ~ 560nm which is much more larger than the circumference length. As
shown in Fig. 6.26, numerical studies confirm the scaling law of the mean
free path with the nanotube diameter close to the charge neutrality point.
For semiconducting bands, the 1/W? is still satisfied, but mean free paths are
seen to be much smaller and do not scale with diameter [45].

In the work of Liu et al. [46], the electronic transport of boron-doped
nanotubes has been investigated experimentally. The concentration of boron
atoms with respect to carbon atoms was evaluated to be ~ 1% whereas the
diameters of tubes were estimated in the range [17 nm, 27 nm| and mean free
paths in the order of £, = 220 — 250 nm were inferred from weak-localization
theory. Applying (6.104) with the corresponding parameters, one finds a theo-
retical estimate of £, ~ 274 nm for the tube with diameter 17 nm, in agreement
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Fig. 6.26. Main frame: Energy dependent mean free path as a function of diameter.
Inset: 1/W2-scaling in agreement with the Fermi golden rule. Adapted from [45]

with experimental estimates. Ab-initio calculations can be also very useful to
address the quantitative effect of chemical impurities on both charge transfer
and elastic scattering in long nanotubes. In Fig. 6.27, the mean free path for
long metallic nanotubes doped with boron is reported as a function of doping
level and diameters, at Fermi energy. The FGR and mean free path increase
with tube diameter are correctly reproduced [39).

In low-dimensional systems, the relation between the mean free path and
the localization length is an interesting problem. Thouless [66] was the first to
derive a simple relation £ = 2¢, between both quantities in strictly 1D systems,
further noticing that in quantum wires with higher number of conducting
channels N, § ~ N ¢, [57). In metallic carbon nanotubes at EFp, one thus

expects to have a localization length given by ¢ = ﬁ;—;}ﬁ n? +m? 4+ nm that
also scales linearly with the tube diameter for low disorder.

6.4.6 Quantum Interference Effects and Magnetotransport

Applying a magnetic field is a powerful tool to unveil quantum interferences
effects as detailed in Sect. 6.2.4. In the presence of elastic disorder, the weak-
localization scheme can be illustrated for metallic nanotube. The magnetore-
sistance depends on the probability P for an electronic wavepacket to go from
one site |P) to another |Q), which can be written as
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Fig. 6.27. Scaling of the mean free path at Fermi level, for a B-doped (n,n) nan-
otube. Left: in the case of a (10,10) nanotube with various boron concentrations,
£, behaves like the inverse of the doping rate. Right: for a fixed concentration of B
atoms, £, is a linear function of the nanotube’s diameter

Py = 9 | Ai ]2+ AiAjei(@—as)
: i

with 4;e!* the probability amplitude to go from |P) to |Q) via the i-path.
Most of those terms, when averaged over disorder, vanish. In the special case
of a cylinder or nanotube, two paths returning back to the origin yield a
constructive contribution of quantum interferences, reducing the conductance
(weak-localization correction). Switching on a magnetic field removes time-
reversal symmetry of these paths, resulting in an increase of the conductance
or decrease of resistance (negative magnetoresistance). The second effect of
the magnetic field is to modulate the field-dependent resistance that becomes
¢o/2-periodic. Indeed, since the phase factors can then be written as (A the
vector potential)

ay = :i:% }{A.dr = i;—z fA.dr

the amplitude is then written |.4|2 |1 4 e!(*+~>-)|2 resulting in a cos(27¢/¢)
modulation factor. Below, the behaviors of field-dependent diffusion coeffi-
cients are shown for a (9,0) metallic nanotube, as a function of the mean
free path evaluated following the analytical formula [104]. By using the
Anderson-type disorder, the value of the mean free path can be tuned by
the disorder strength W, so that several situations of interest can be ex-
plored. First the weak-localization regime [27] is analyzed under the condition
le < |Ch| < L(Td,).

Figure 6.28 shows that the diffusivity increases at a low fields (negative
magnetoresistance) and that the periodic Aharonov-Bohm oscillations are
dominated by a ¢p/2 period, that is

D(T¢a ¢ + ¢0/2) = D(T¢1 ¢)
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Fig. 6.28. Main frame: D(74,¢/¢o) (in units Azfyo/h) for a metallic SWNT (9, 0)
evaluated at time 74 > 7o, for two disorder strengths, W/~v, = 3 and 1, such that
the mean free path (fe ~ 0.5 and 3 nm, respectively) is either shorter (dashed line)
or larger (solid line) than the nanotube circumference (|Cx| ~ 2.3 nm). The right-
hand y-axis is associated with the dashed line and the left-hand y-axis with the solid
line. Left inset: Time dependent diffusion coefficients for the corresponding disorder
values (ballistic motion is also shown for comparison with diffusive regimes). Right
inset: D(14,¢/¢o) for Lo = 3nm and L(ry) < 2¢. (dot-dashed) or L(7y) > 24
(solid line). Adapted from [55]

in agreement with weak-localization predictions. In contrast, when ¢, >
|Chrl, L(1g) < 2, the system is found to exhibit a positive magnetoresistance
associated with

D(T¢, ¢ + ¢0) = D(T¢a ¢)

(#o Aharonov-Bohm period). For the case £, > |Cy|, L(4) > 2¢, a negative
magnetoresistance and an Aharonov-Bohm period &, are obtained. To com-
pare with the experiment of Bachtold et al. [28], we use the analytical formula
for the mean free path (6.104) and with a reasonable value of the disorder pa-
rameter, we get £, ~ 104 x|C}| (|Cp| the circumference of the outer nanotube
in the experiment). The apparent inconsistency between the value of the mean
free path and the observation of ¢y/2 Aharonov-Bohm oscillations point out
that the interpretation of the experiments has to be elaborated with care, also
because the precise position of the Fermi level and contribution of inner shells
remain elusive.

6.4.7 Contribution of Intershell Coupling

Multiwalled nanotubes or bundles of single-walled nanotubes present addi-
tional geometrical complexity. Indeed, they are made from a few to tens of



shells with random helicities weakly coupled mainly through Van der Waals
intershell interaction. The intershell coupling has also been expressed within
a tight-binding scheme, which is believed to provide a good description of the
electronic structure of multiwalled nanotubes. In the standard model, still one
p -orbital per carbon atom is kept, with zero onsite energies, whereas constant
nearest-neighbor hopping on each layer n, and hopping between neighboring
layers are defined as [58-60]:

H=10 [Z |pi><pi|] -5 [Z cos()e™ " ) (P

i’j

where §;; is the angle between the pY and p’J_ orbitals, and d;; denotes their
relative distance. The parameters used here are: vy = 2.9¢V, a = 3.34 A,
8 = 0.45 A [59]. The difference between SWNTs and MWNTs stems from
the parameter 3, and the limit 8 = 0 corresponds to uncoupled shells. An
ab-initio estimate gives 3 ~ ~70/8 [60]. Besides, two kinds of multiwalled
nanotubes can be distinguished. The first class corresponds to periodic ob-
jects as exemplified by the (6,4)@(12,8)@(18,12) case (Fig. 6.29-Left). Con-
sisting of two semiconducting shells enclosed by a metallic one, there ex-
" ists a common unit cell for all shells, which is defined by a unique transla-
tional vector |T'| ~ 18.79A. In contrast, for the (6,4)@(10,10)@(17,13) tube
(Fig. 6.29-Right), the translational vectors along each shell are respectively
T 6,40y = 3vV19cc, |T(10,10)] = V30ce, [T(a713) = 3vV1679acc, which in-
dicates that there is no unit cell, because of incommensurability (ratio of
lengths of individual shell translational vectors are irrational numbers). These
two cases illustrate the possibility of obtaining either translationally invariant
intertube coupling or aperiodic coupling along the MWNT axis. The nat-
ural concern is to search for the related fundamental electronic (transport)-
properties intrinsic to MWNTs.

Fig. 6.29. Left: Commensurate (6,4)@(12,8)@(18,12) MWNT. Right: Incommen-
surate (6,4)@(10,10)@(17,13) triple-wall nanotube
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Commensurate Multiwalled Nanotubes

Commensurate MWNTs are periodic objects with a well-defined unit cell.
Bloch theorem applies and the bandstructure can be easily computed. Given
that shells only weakly interact, the conductance spectrum of the MWNT in
the ballistic conduction regime should be given as the sum of all conducting
channels at a given energy (as exemplified on Fig. 6.30). Consequently, one
excepts a very small intrinsic resistance at Ef for a metallic MWNT. As
discussed below, at certain energies, the intershell interaction might be at the
origin of a stepwise reduction of conduction channels.

Let us consider the generic MWNT made of coaxial metallic shells with
perfect commensurability, namely the armchair double-walled (5,5)@(10, 10)
and triple-walled (5,5)@(10,10)@(15,15) nanotubes. Such MWNTs have a
fivefold common symmetry. Their respective orientation might also possess
additional symmetry planes perpendicular to the tube axis. In that case, in-
terwall interaction does not modify the overall spectrum, which is a superpo-
sition of independent spectra. For instance, at the charge neutrality point the
conductance for the triple-walled will be G = 6G, (see Fig. 6.30). If, however,
the symmetry is lowered by misorienting (rotationally and translationally)
one nanotube with respect to another, then splitting of the degeneracy oc-
curs, and pseudogaps are formed [60,61]. The presence of pseudogaps in the
density of states has direct consequences on the total number of conduction
channels available at a given energy. As shown by Tomanék and coworkers [62],
the conductance in the ballistic regime might then be reduced in the vicinity
of Fermi level. Such modifications of the conductance in the ballistic regime
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Fig. 6.30. Conductance patterns of the (5,5)@(10,10)@(15,15) MWNT and its
constitutive shells



are singular to shell-conformation of multiwalled tubes. Associated with the
pseudogaps, charge redistribution can also be investigated [61]. One notes,
however, that such a strong effect of intershell interaction is specific to un-
symmetrical orientations of neighboring shells, but that is absent for other
commensurate walls such as (6,6)@(11,11) with no Cs; symmetry.

Incommensurate Multiwalled Nanotubes

The case of incommensurate shells is even more complicated to consider, since
no Bloch theorem applies in the strict sense. It is thus more difficult to an-
ticipate the consequences of intershell coupling, e.g. in terms of pseudogaps,
on the conductance of such aperiodic MWNT objects. It turns out that the
conduction mechanism in MWNTSs is quite sensitive to the value of 8 and to
the position of the Fermi energy. To illustrate specific patterns of electronic
motion in incommensurate tubes, it is instructive to follow the time dependent
evolution of an electronic wavepacket initially localized in the outer shell.

In a commensurate system, assuming a wavepacket initially localized on
the outer shell of the MWNT, a rapid redistribution of the weight of the
wavefunction on each shell is found to be given by a time scale 7; ~ Ayy/32,
following the corresponding Fermi golden rule. By increasing the amplitude
of B in the range [yo/8,70], the expected scaling form of 7 is checked nu-
merically [55]. For two electrodes separated by 1pm and assuming ballistic
transport with a Fermi velocity of 108 ms™!, the corresponding time flight
between electrodes is ~4500 £/-~y. This is two orders of magnitude larger
than 7 (for 8 = ~/8), and points towards an important contribution of in-
terwall coupling in experiments [63]. In contrast to commensurate MWNTs,
the redistribution phenomenon in incommensurate tubes is found much slower
with a higher redistributed weight from the outer to inner shells [55]. Such
efficient wave redistribution to inner shells seems consistent with the fact that
incommensurate systems are intermediate between periodic and disordered
systems. The behavior of the diffusion coefficient further allows to unveil that
the carrier motion might strongly depart from ballistic motion because of
multiple-scattering effects that develop along the conduction pathway. The
conduction is found to be non-ballistic, with \/D(t) x t ~ At" [45,55].

The coefficient 7 is found to decrease from 1 to ~ 1/2 by increasing ei-
ther 8 or the number of coupled incommensurate shells [55]. On Fig. 6.31,
the conduction mechanism is followed at specific Fermi energies, through
the time dependence of the diffusion coefficients, for the incommensurate
(6,4)@(17,0)@(15,15) and commensurate (5,5)@(10,10)@(15,15) MWNTs
[45]. Whatever the Fermi energy of wavepackets, the conduction mode remains
ballistic in the defect-free commensurate MWNT. In contrast for incommen-
surate systems, depending on the considered energy of charge carriers, the
resulting strength of hybridization between states lying on separate layers
may strongly fluctuate, with the occurrence of power-law behavior of D(t).
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This anomalous diffusion has subsequent effects on the length scaling of con-
ductance as shown on Fig. 6.31 (right frame). At the charge neutrality point,
wavepackets essentially remain confined onto the outer shell as they spread in
time, carrier motion is ballistic and a quantized conductance G = 4e2/h fol-

lows. In contrast, at the energy E = 1.5eV, G(L) ~ (2¢2/h)(L/Lo)™" , with
Lo (or 1) an energy dependent length (or exponent). Recent experiments on
boron-doped MWNTSs have reported on anomalous scaling of the conduc-
tance [64]. They found n ~ 1/2, which points towards a diffusive regime.
Similarly, an intershell resistance of ~10 kf2um has been experimentally esti-
mated in [65].

6.4.8 Role of Electrode-Nanotube Contacts

Two different kinds of metal/nanotube junctions can be defined, namely
a metal-metallic nanotube-metal or a metal-semiconducting nanotube-metal
Jjunctions. The latter ones are often subjected to Schottky barriers that forbid
electronic transmission at zero or low bias voltage, whereas the former present
several atomic-scale properties. Indeed, let us take |k,,) = > ekmPlp ) (or
lke) =32, e**P|onT)) as the propagating states with k,, (kr) the wavector
in the metal (or nanotube). We take |onT) the localized basis vectors, that
will have nonzero overlap with |¢,,) only for a few unit cells (p) defining the
contact area. The scattering rate between the metal and the nanotube can be
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Fig. 6.31. Left: time dependent diffusion coefficient for incommensurate/commen-
surate disorder-free MWNTSs (with 3 = «/8). Right: length dependence of conduc-
tance for two Fermi energies for (6,4)@(17,0)@(15,15). Adapted from [45]



written following the Fermi golden rule and will be related to

<km|Hcontact|kF> ~ 7, <Q0NT | @m) Z ei(km—kp)p
p

with Heontacy the coupling operator between the tube and electrodes. From
such an estimate various physical aspects can be outlined: first the factor '
is related to the chemical nature of interface bonding (covalent, ionic,...). In
the most favorable case of a covalent coupling, one expects an ohmic contact
resistance given by R. = h/2e?, whereas ionic bonding would mostly favor a
tunneling contact with resistance R, ~ h/(e%|y'|?). The factor {¢nT|@m) is
related with the geometry and contact configuration between the nanotube
and electrodes: end or side contacts, length of the contact area (see Fig. 6.32).
The last term is obviously maximized whenever wavevector conservation is
best satisfied, i.e. ~ §(k,, — kr). For instance, in the case of metallic armchair
tubes, larger coupling will be achieved for k,, =~ 27r/3\/§acc. Much smaller
metallic wavector will yield small coupling rate. The tunneling rate from the
metal to the nanotube is given by

1 2r
; ~ (kmchontact|kF>|2PNT(EF)pm(EF)

h

with pnt(Er) (pm(Er)) the density of states of the nanotube (metal) at Fermi
level. Note that these considerations are derived for a low-bias regime. For
higher bias voltage between voltage probes, the modifications of bands along
the tube axis might produce additional backscattering due to the perturbed
profile of available states [66]. Detailed ab-initio studies have recently revealed
that titanium contacts would achieve better transmission to metallic tubes
than silver or gold contacts [67].

6.4.9 Inelastic Mean Free Path

Electronic transport is also sensitive to inelastic effects either stemming from
electron-phonon scattering or weak electron-electron collisions. Again, the spe-
cial electronic structure of carbon nanotubes leads to unconventional behavior

RO ND s 10 DS D oy @YD

Fig. 6.32. Different contact configuration — end contacts (left), side contacts (right)
— between nanotube and electrodes
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as for instance observed in the temperature dependence of resistivity. Balents
and Fisher [47] demonstrate for instance that Umklapp scattering due to
electron-electron interactions yield a resistivity linear in temperature. Con-
cerning electron-phonon scattering, three important phonon modes yield con-
tributions to inelastic backscattering. As depicted in Fig. 6.33, a first process
is driven by acoustic phonons with low energy and small momentum. Within
the FGR, the scattering rate (with phonon emission) Te"liph(q) writes

?2_7;1 Z |(k+q, nq+1|ael—ph’ka nq)|25(5k—q_5k_hwq)(1+nq)(1_f(€k—q))f(€k)
k

with 2 the surface of the tube, L?el_ph the electron-phonon scattering operator,
while ny and f(ex) give the phonon and electron distributions respectively.
In metallic tubes, the acoustic torsional mode (twisting mode or twiston)
is made of pure circumference-directional deformation, while its velocity is
equal to that of the TA mode of the graphene sheet (w(q) = Viwist|q|).
A crude estimation due to such inelastic scattering gives Te_liph ~ Ax [k x
Z2(kT/2pMmv7,5)/hur with pps the mass density, and = the deformation
potential. It has to be noted that different from ordinary metals, the linear
temperature dependence of the electronic resistivity persists to well below the
Debye temperature, essentially because these phonon modes are heavily ther-
mally populated [48]. Now, with reasonable parameters, an inelastic acoustic
scattering time is found to be ~ 3.107!2s, with a subsequent inelastic mean
free path lej—pn = VFTei_pn ~ 2.4um for a 1.8nm nanotube [49,50]. A the-
oretical derivation has also predicted some helical-dependent contribution of
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Fig. 6.33. Schematic representation of main phonon contributions to backscattering
(acoustic, optical and zone-boundary modes)



electron-phonon backscattering and resistance value in the high-temperature
regime [51].

Optical as well as zone-boundary phonon modes also bring some important
contributions to backscattering, especially for nanotubes studied in the high-
bias regime. For single-walled tubes, recent experiments [50] have inferred
typical values of the electron-phonon mean free path in the order of 180 nm
for optical phonons, whereas zone-boundary modes yield £¢;—pn ~ 30-40 nm.
Note that all these inelastic scattering length scales are expected to increase
with the nanotube diameter [44].

Perebeinos, Tersoff and Avouris [52] recently proposed to investigate the
effect of inelastic scattering on conductance by following the semiclassical
Bloch-Boltzmann treatment of transport theory. The authors derive a phe-
nomenological law for the zero-field charge-carrier mobility p(T, dsupe) =
ft(300K/T).(dsube/1nm)®, exhibiting some specific temperature and diame-
ter dependences (here ji = 12000 cm?/Vs, and o ~ 2.25).

In contrast, other theoretical works have investigated the influence of struc-
tural lattice fluctuations on the elastic electron transport [53,54]. The super-
imposed contribution of phonon vibrations has been shown to yield quantum
dephasing [53]. For the case of optical phonon modes, the resulting conduc-
tance scaling spectrum shows pronounced modifications, making the use of
the semi-classical Fermi Golden Rule inapplicable for a rigorous description
of charge transport. Clearly, additional work is required to understand how
electron-phonon coupling and electrostatic effects jointly contribute to mod-
ulate the properties of nanotubes-based field effect transistors.

6.4.10 Electron-Electron Interactions

Carbon nanotubes have provided new possibilities to search for deviations
from the Fermi-liquid theory in low-dimensional systems. As discussed in Sect.
6.1.2, strongly repulsive Coulomb interactions likely restrict the range of ap-
plicability of the Fermi liquid approximation in describing transport proper-
ties. The theoretical possibility for Luttinger-liquid in metallic SWNTs has
been proposed when electronic transport through the nanotube-based device is
dominated by tunneling through a contact of low transparency. Additionally,
the energy of charge carriers should be close to the charge neutrality point,
where electronic bands are linearly dispersed. In this case, the interaction
parameter ¢ uniquely determines the power-law temperature-dependent (for
eV < kgT) and voltage-dependent (for eV >> kgT') tunneling conductances.
The generic form (14 2§2)~1/2 (U, the charging energy, A the single particle
level spacing) of g is, in this framework, directly related to the power-law ex-
ponents (o, or o, depending on measurement configuration), see Sect. 6.1.2.
Notwithstanding, while the single-particle level spacing is unequivocally given
by Avr/2Liube, the charging energy follows from the capacitive properties of
metal-nanotube junction as well as from the electronic structure. In some
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approximation [68], it can be derived from simple electrostatics, and the in-
teraction parameter will follow

1
' 862 Ltube Tz
= In —— .
g (1 + - n Rtube> (6.105)

with x the dielectric constant, and Ryype the tube radius. Taking Liybe/Riube
~103, one finds that the theoretical interaction parameter for a metallic
armchair nanotube is g ~ 0.28. Subsequently the bulk-tunneling and end-
tunneling exponents are respectively given by a,, >~ 0.24 and o, ~ 0.65 [68].
Some experiments have reported on similar behaviors and exponent val-
ues [69]. Interestingly, one notes that in the case of MWNTSs composed of
N metallic armchair shells, a certain screening of interactions occur since
the exponents are renormalized by a factor 1/N (ay,/N and o./N) which is
equivalent to an increase of g that tends to 1 in the limit N — co (Fermi-
liquid regime) [70]. This also underscores the consequences on the transport
properties with the change of dimensionality from the SWNT to the MWNT
case.

Following theoretical predictions by Eggert [71], recent STM experiments
have provided strong evidence for non-Fermi-liquid properties of metallic nan-
otubes [72]. In this work, the tunneling properties of electrons from a metallic
tip to a metallic tube deposited on a gold substrate have evidenced that the
Coulomb interactions are strong enough to induce charge-spin separation, al-
though screening by the metallic substrate also results in some reduction of
the predicted interaction strength.

This is illustrated in Fig. 6.34, where a tight-binding calculation shows
the two standing waves with different wavelengths caused by separate spin
and charge bosonic excitations. The slopes calculated near the K-points
+8.8 cm™! and +11.9 cm™! correspond to larger charge mode group velocity
of ~vr/0.55, whereas the spin-mode velocity remains similar to the Fermi
velocity vr obtained for non-interacting electrons.

The deduced values for the g-parameter is thus ~0.55, much smaller than
the predicted value given by the unscreened coulomb potential (g ~ 3). This
clearly evidences the screening phenomenon caused by the underlying metallic
substrate, and that can be substantiated by replacing in (6.105) Lupe by a
screened length (found to be ~1.4R;,be in experiments [72]).

6.5 Measurement Techniques

A measurement of the electrical properties of an object, as diverse as it seems
(with temperature, magnetic field, gate voltage, etc), always reduces to our
ability to measure simultaneously the injected electron flow (current) and the
resulting potential drop (voltage) in the sample. The simplest measurement
that can be done is that of the classical electric resistivity of a material. This
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Fig. 6.34. Fourier transformed mas of dI/dV (density of states) as a function of
electron momentum k, and sample bias V. Ovals near the Fermi levels indicate the
corners of the brillouin zone nearest (green) or second nearest (orange) to the I'-
point. Red curves give the energy dispersions of the (19,7) tube by tight-binding,
whereas superimposed color lines indicate the Luttinger-liquid result. Adapted from
[72] by courtesy of S. Eggert

requires to measure the resistance R = U/I and to know the exact geometry
of the sample used. As we will see later, the second point is not as trivial as
it seems.

6.5.1 Classical (Macroscopic) Approach
Two-Probe Measurement

On a macroscopic sample, the so-called 2-probe resistance measurement is still
often performed. The injected current and the voltage drop are measured using
the same lead on a versatile apparatus (ohm-meter) (Fig. 6.35a). Knowledge
of the sample size allows straightforward calculation of the resistivity with the
hypothesis of a uniform voltage drop across the sample. However, the main
draw-back of this set-up is that the voltage drop in the lead is included in the
total voltage drop, so the sample resistance is over-estimated. Of course, low-
resistance leads can bring these effects to extremely small values. However,
another effect can appear: a poor contact between the lead and the sample.
Poor (or bad) contact can simply result from surface oxidation. In the two-
probe configuration the voltage drop at the contact is also included in the
whole measurement.

Four-Probe Measurement

To avoid this problem, physicists use the 4-brobe measurement technique.
Two independent circuits are considered: one to inject the current, the second
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R i

Fig. 6.35. Left: Two-probe measurement overestimating of the resistance drop in
the sample. Right: Four-probe measurement configuration (current through volt-
meter is negligible)

to measure the voltage drop (usually between the current-injection leads)
Fig. 6.35-Right. The only practical condition is to have a high impedance
voltmeter (high compared to the sample resistance). In this set-up, as no
(or very little) current is passing through the voltmeter circuit, the injected
current is, to a great accuracy, the current that flows through the sample,
regardless of the lead and contact resistance. The measured voltage drop is
the genuine voltage drop across the points 2 and 3 of the sample (contact and
lead resistance effects are negligible because the current through the voltmeter
is minute). Calculation of the sample resistivity is now also simple, provided
that the distance between lead 2 and 3 is accurately known.

Importance of the Contact Size

The contact size of the lead that is injecting the current is irrelevant provided
the contacts have a sufficient distance from one another, i.e. the electron flow
is uniform in all the sample by the time it reaches the inner contacts (Fig. 6.36-
Left). However, in the case of a strongly anisotropic material (as graphite or
MWNT), this condition might not be automatically reached (Fig. 6.36-Right).

In contrast, the size of the voltage probe contact must be as small as pos-
sible: large contact area can induce errors in the resistivity calculation if the
metal used for the contact pad has a lower conductivity than the sample. Fig-
ure 6.37 depicts, in an exaggerated fashion, such an effect. Getting a contact
area negligible compared to the distance between probes is easy to achieve on
a macroscopic sample (20pum gold wire for the probe, 5 to 10 mm, between
the two probes), however, as we will see, mesoscopic samples are much prone
to such problems.
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Fig. 6.36. Left: Isotropic material, current flow is homogenous on the sample even
if injected from a single entry. Right: For anisotropic material, non-homogeneity in
current flow can extented far from the injection point

Fig. 6.37. Voltage probe with low resistivity on highly resistive sample. The po-
tential drop is no longer uniform along the sample

6.5.2 Experimental Problems on Mesoscopic Samples
Choice of the Contact Type and Realization

The sample we are now looking at is of micrometer dimensions. First, we have
to compare the size of the available electrode to the sample size: if our sample
is smaller than the electrode width technically available in the laboratory,
there are only two-probe measurements to consider. We will first have a short
tour of the actual techniques, from the most crude (and cheap) to the most
refined (and expensive). The objective is not to explain technical details but
to give an overview of what can be made, how difficult it is and what the
advantages are.

Direct Evaporation

The simplest way to realize a metallic contact is to evaporate a metal film
(usually gold, but other choices are possible [67]) over the sample after part of
it has been shielded from the evaporator. This technique has been successfully
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used by de Pablo et al. [73] on MWNT. They used 4 um tungsten wires for
a mask. As a result, both end of the MWNT were buried in metal and a
two-probe transport measurement was achieved (Fig. 6.38).

buried
MWNT

TV/Au Contact

800 nm

Pad
glass

bare MWNT

Fig. 6.38. Result of a direct evaporation on a MWNT deposited on a glass substrate.
The central part of the MWNT has been protected by a 4 um tungsten wire

This technique is inexpensive (tungsten wire of 4um diameter costs about
2Euros/10 cm, while an evaporator can be home made). The problem is that
only large samples can be processed in that way as 4 um is the limit of what
can be manipulated with tweezers on a table top.

Lithographic Processes

In a lab equipped with lithographic facilities, sub-micron electrodes can be
processed. The width is limited by optical diffraction. Depending on the facil-
ities, a width of 300 nm can be obtained with the desired pattern. If a specific
mask has to be made, the cost can increase substantially. Electron beam litho-
graphy allows even lower widths to be processed [74], see Fig. 6.39. The cost
for the mask can easily reach a thousand Euros depending on complexity. In
the case of the electrode on top approach (see next section), the experimenter
must make sure that the lithographic process (resin, exposure, dissolution,
etc) does not alter the sample.

Focus Ion Beam (FIB)

In this set-up, a metallic ion beam is extracted from a metallic source, focused
and deposited in a controlled way on the substrate. Widths are in the 10nm
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Fig. 6.39. Three 100 nm wide electrodes on top of a SWNT bundle (electron beam
lithography). Note the relative width between the probes and the sample

range (16 nm with gallium in the FEI Dual Beam System 620). This setup
can be implemented on an existing scanning electron microscope. The cost
is heavy: about 400000 Euros for a complete FIB installation (example on
Fig. 6.40).

Sample on Top Versus Electrode on Top

As sub-micrometer patterns are always made on top of an insulating flat
surface, two routes are possible: the sample can be deposited first, located
and the electrode further deposited on top, or the electrode pattern can be
made (or bought) before and the sample deposited afterwards. In the case of
a rigid sample, the two methods should be essentially equivalent. However,
in the case of soft and deformable samples, the electrode pattern can induce
distortions that alter the sample transport properties (see Bezryadin [76]).
The sample-on-top configuration has the strong advantage that one can
buy ready-to-use patterned substrate with the required electrode spacing. The
problem is usually to obtain intimate contact between the sample and the
electrodes as only Van der Waals forces are playing a role. Spot-welding tech-
niques have been used to increase the contact quality in some cases [77]. The
electrode-on-top configuration seems better in several aspects. First, there is
no or little distortions of the sample when the contacts are deposited. Second,
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Fig. 6.40. Nanotube contacted with tungsten lead made by FIB lithography [75]

the contact is essentially of better quality (that of course depends on the sam-
ple preparation). In both techniques, the ability to position and/or locate the
sample with required accuracy is a compulsory step. This stage is crucial in
several aspects: one of them is the inherent risk of sample damaging during
the process. First, risk occurs when the samples are produced in large quan-
tity and must be dispersed over the surface. Dispersions are often achieved
through combined chemical (surfactant) and mechanical (sonication) action.
For carbon nanotubes, which are chemically and mechanically extremely sta-
ble samples, it has been demonstrated that surfactants can substantially affect
the transport properties [63] and that sonication is a convenient tool to cut
them into pieces [78]. In that respect, however strong the sample seems, tests
must be carried out to check that theses processes are reversible (surfactant
can be washed away) and non-destructive for the sample. Second, risk ap-
pears when the sample is manipulated to be positioned onto a specific place
after deposition [79]. Once again, potential damaging of the sample must be
considered.

Measurement of the Voltage and Current

Now that our sample is contacted, some amount of current can be injected
and a measurement of the voltage drop can be achieved. We will discuss the
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nanotube bending defects

Fig. 6.41. Long SWNT deposited on top of Pt electrodes (top). Occurrence of
bending defect near the electrodes (bottom). Adapted from [82]

(almost ideal) case where the sample is long enough to be used in a four-probe
configuration, with the electrodes on top of the sample and assuming that
the contacts are fairly good. It seems now that the resistance of our object
is simply the ratio of the measured voltage drop to the measured current.
Unfortunately, several problems can occur. First, as was said at the beginning,
the width of the electrodes that pick-up the voltages must be small compared
to their distance. This might be difficult, if not impossible (see Fig. 6.40).
Solutions to this problem consist of assuming that the measured voltage drop
occurs between the end of the first electrode and the beginning of the second.
Secondly, it has been known since 1898 [80] that when two metals of different
work functions are put into contact, a contact potential appears between them.
This effect is well known in semi conductors (p-n junction). The same effect
holds for metal/semi conductor junction (better known as Mott or Schottky
Barrier). Between metals, the depletion width is negligible, so this barrier is
usually considered to be completely transparent to the electrons. i.e. a metal
electrode will eventually inject electrons in a metallic sample, even if their
work functions did not match. But what happens to the conduction electron
of the mesoscopic sample if a large metal electrode disturbs its band structure
as in Fig. 6.39.

Krstic et al. [74] have observed the effect of an electrode laid on top of
a nanotube bundle on its transport properties and concluded that the mere
presence of this electrode disturbs the transport. A proposed solution is to
use for the electrode a metal with a work function that matches the studied
sample [81]. Despite its advantages, it seems that the four-probe method is not
well suited for mesoscopic samples. The coupling between the sample and the
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FIB electrode SWNT
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Fig. 6.42. Drawn at the same scale, the narrowest metal electrode that can actually
be made with FIB (about 10 nm width) on top of a SWNT (1.4 nm diameter). Work
function difference can disturb the band structure over non-negligible distance and
alter transport properties

electrode is not as simple as it seems, since differences in work function will
locally alter the band structure with important consequences for extremely
sensitive systems (such as one dimensional transport). For a more detailed
discussion, see Datta [4]. Then how to process it? Two alternative approaches
have been envisioned, both based on the two-probe configuration.

The first alternative is to use local probe-techniques such as electrostatic
force microscope (EFM). While current is driven through the sample, a tip
probes the potential drop along the sample [82]. Influence on the transport
properties seems minute and can be controlled by approaching the probe while
monitoring the effects on the two point transport. The measured potential
drop can be linked to the resistance. The second approach consists of using
several samples of identical cross-sections and different lengths with the same
contact method or to vary the distance between electrodes on the same sample
(one side is usually fixed) [63,83,84]. If the contact contribution is the same,
the only change can be attributed to the intrinsic sample resistance. The major
challenge resides in the difficulty to realize reproducible (and comparable)
contacts.

Reproducibility of the Measurements

The point of this section is not to look for a resistance variation on a single
sample (which we expect to be stable, except for variation of temperature,
humidity, magnetic field, etc), but from the sample to sample reproducibility.

As discussed previously, measuring several samples of different length in
a two-probe configuration might be an alternative to the four-probe method.
From a theoretical point of view, identical nanoscopic objects, contacted in
an identical manner, should have identical behavior. Identical is not exper-
imental, objects are produced with defects and some dispersion in size. To
illustrate this point, we will study the very simple case of the gold break-
junction experiment: Two clean pieces of gold in contact are pulled apart.
A thin short-lived gold wire is created. The width is so small that transport
quantification is obtained. This experiment is well documented [85] and trans-
port quantization is known to occur in this mesocopic system. However, if we
observe a single event (Fig. 6.43 right), nothing special is usually observed. In
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Fig. 6.43. Two traces of gold break junction, plotted on the same time scale. The
first one (upper part) exhibits two clear plateaus while no clear quantification is
visible in the second one

other cases, clear plateaus, that coincide with quantized transport, are roughly
observed (Fig. 6.43 left). So in one experiment quantization is observed, but
not in the other. What to conclude? Simply that observations based on a sin-
gle event might not be representative. Only statistical approaches (repeated
experiments on several samples) have a physical meaning.

In the above case, the object was clearly defined: a pure, well con-
tacted, gold wire. Fluctuations were mainly due to the geometry of the
sample and some random scattering (contact, crystallographic defects in the
wire, etc). Now imagine what could happen if the object itself is not well
defined (defect densities, shapes, size), prepared through different processing
(surfactant, sonication, AFM-manipulation, spot welding on contact, etc) and
measured with various methods. Of course one can expect the results to be
different (see [86] as an example of how the result vary).
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Calculation of the Resistivity

If eventually we succeed in pulling some numbers out of these tricky exper-
iments, can we compute the resistivity? What was simple for a macroscopic
object is no longer easy. First let us take a large semiconducting mesoscopic
sample: a regular line 80 nm wide, and 5 nm thick, distance between electrode
2 um. Assuming that we have extracted the value of 10k for its ‘resistance’,
what about its resistivity? If the above numbers are correct, then p is 2 pQm.
Unfortunately the above mentioned numbers are only known to a limited accu-
racy. Even in the best case: height measured with AFM (Ah = 0.1 A), width
and length by high resolution Scanning Electron Microscope (Az = 1nm),
lead to a 3% error (2.03 umQ.m to 1.97 umQ.m). Things get worse for smaller
objects like nanotubes given that their cross-section is not well defined. The
diameter of a SWNT is typically 1.4nm, but its wall thickness can be esti-
mated from 3.4 A (from interlayer distance in HOPG) down to 0.66 A (carbon
atomic radius). Here differences can reach a factor 5 (for resistivity, but also
for current density).

200 am

Fig. 6.44. Left: EFM record of the potential drop along a SWNt bundle. Right:
Experimental setup. Adapted from [87]

6.6 The Case of Carbon Nanotube

6.6.1 Study of Some Experimental Measurements

As we have seen, four-probe experiments are maybe not always the best suited
approach for mesoscopic objects. In the case of carbon nanctubes, it is note-
worthy to remark that four-probe experiments have usually failed to point out
the extremely long electronic mean free path that occurs in these systems.

Measuring the Voltage Drop Using EFM Techniques

In the experiment by Bachtold et al. [87], the electrostatic potential is mea-
sured along a SWNT bundle connected on its two extremities while a voltage



6 Transport Properties 407

drop is applied. The recorded voltage drop leads to a bundle resistance per
unit length p; below 1.5 kQ/um. This gives a mean free path longer than
1 pm at room temperature providing there is only two conducting nanotubes
(in this 2.5 nm high, 2 pm long bundle). Note also that, using the same ex-
perimental setup, the authors found individual MWNT to be a dissipative
conductor (voltage drop is linear along the nanotube).

Extracting the Intrinsic Resistivity by Reducing
the Inter-Electrode Gap

Individual MWNT were used in these setups [63]. One side of the nanotube
is connected to a conductive fiber, while the other side is dipped into lig-
uid metal. The resistance is monitored while the distance between contact is
continuously reduced.
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Fig. 6.45. Left: TEM picture of a measured individual MWNT. Right: Measured
two-probe resistance versus depth. From a simple model, one can the extract contact
resistance (14k$?) and the intrinsic nanotube resistance (p, = 14 ,Q/pum)

An analysis of one simple trace led to the conclusion of a mean free path
longer than the system (p; > 14Q/um, see [63] for detailed calculation).
However, on a single measurement, one cannot distinguish between an highly
conductive nanotube and a classical contact resistance (about 14k} at the
fiber side) or a small contact resistance and a reduced transmission in the
nanotube due to conductance quantification (transport quantification within
the nanotube). To discriminate, the experiment has been repeated over 40 to
50 different nanotubes (i.e. different diameter and fiber-connected length). The
contact resistance always turns out to be in a 13-15k() range, unexpectedly
stable in regard to the studied variety of MWNT (only from diameter, the
contact resistance should have changed from a factor 2 to 3). This statistical
result let the author consider that this ‘contact resistance’ is intrinsic to the
nanotube and is actually a signature of the transport quantification within
the nanotube.
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6.7 Experimental Studies of Transport in Nanotubes
and Electronic Devices

6.7.1 Introduction

Nanotubes and other nanostructures form new classes of materials with re-
markable and unique properties for electronics and optoelectronics applica-
tions. Their electrical properties are often distinct from those of their bulk
counterparts, due to the confinement of the electronic states and the surface
contributions. The nanostructures are often made by self-assembly, which is
compatible with large-scale production, and they present dimensions cover-
ing a length scale that is not easily achievable by the conventional top-down
approaches. The first comprehensive electrical studies on carbon nanotubes
were performed in 1997 [88,89).

This section presents a selection of experimental studies and aims to review
some of the important electrical properties of metallic and semiconducting
carbon nanotubes. First, we will discuss the scattering mechanisms in metallic
carbon nanctubes. Second, we present the recent results on the field-effect
transistor based on individual SWNT. Last, we review the general properties
of the 1D Schottky barrier at the metal-nanotube junctions and describe the
operation of a nanotube Schottky-barrier transistor (SB-CNFET).

6.7.2 Electrical Transport in Metallic Carbon Nanotubes

The unperturbed transport in metallic carbon nanotubes takes place through
a limited number of sub-bands close to the charge neutrality point. In this
region, the 1D dispersion relation for the nanotube can be approximated by
E (k) = Erth-vp (k — kr), where kr = £(2/3) - 7/a is the Fermi wavevector
for armchair nanotubes and the lattice constant a = 2.46A. The situation
around Er is schematically illustrated in Fig. 6.46.

In total, four sub-bands contribute to the conductance of the nanotube
with both positive and negative slopes at —kp and +kp. This 1D nanotube
band structure limits the various scattering events at finite temperature. That
is, the 1D confinement allows electron motion in only two specific directions
along the length of the nanotube. This constraint along with the requirements
for energy and momentum conservation severely reduces the phase space for
scattering.

As illustrated in Fig. 6.46, only few processes are possible. These are essen-
tially mediated by impurity, electron-phonon scattering or electron-electron
(e-e) collisions. The impurity scattering is an elastic event while electron-
phonon and electron-electron scattering are inelastic by their nature. More-
over, inter-band scattering involving higher-energy sub-bands can also take
place, but the probability of this process is very weak since the energy sepa-
ration with the other sub-bands is large (of the order of the electron volt).
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Fig. 6.46. Band-structure diagram showing elastic (1) and inelastic (2—4) backscat-
tering in a carbon nanotube satisfying energy and momentum conservation. Process
(1) is for impurity scattering and (2) involves the emission of an acoustic phonon
with small energy and momentum transfer. Processes (3) and (4) show the emission
of an optical phonon for low and high momentum transfer, respectively. Process (5)
is an e-e scattering process as described in the text

The number of scattering events in a carbon nanotube segment of length
L is therefore limited. They can be probed by two-terminal resistance mea-
surements as a function of temperature according to:

d h 1 1 1

Rgt = R() + d‘?‘ . T = @L (L—O + Le_ph + L@_g) (6106)
Lo, Le-pn and L._. are the mean free paths for impurity, electron-phonon
and electron-electron scattering respectively. In absence of collisions, i.e. in
the ballistic regime, we expect conductance quantization and no temperature
dependance. In that case, (6.106) is reduced to : Ry, = h/4€2.

The intrinsic properties of a single carbon nanotube are difficult to mea-
sure because of the 1D nature of the nanotube and the strong perturbation
introduced by the contact leads. This point is discussed below. In principle, it
is possible to discriminate between the different scattering mechanisms using
a careful analysis of R vs. T curves.

Impurity Scattering

The scattering of an electron by an impurity involves another state that is
at the same energy but of opposite momentum direction (see process 1 in
Fig. 6.46). This is backscattering and it leads to a residual resistance that is
higher than the resistance of a pristine nanotube.

Phonon Scattering

Scattering with phonons, such as in processes 2-4 in Fig. 6.46, is an inelastic
event where backscattering occurs with the emission (or the excitation) of
a phonon of energy Epn = hcpnkpn, where ¢y, is the phonon velocity. Here,
E,n depends on the available phonon modes in the nanotube. For example,
acoustic phonons have a broad energy spectrum for scattering at low energy
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while optical phonon scattering can be neglected for energy transfer of less
than 100meV [90,91].

Electron-Electron Scattering

This scattering has typically little impact on the resistance of a conductor, but
it is expected to be more pronounced for 1D conductors. The case of carbon
nanotubes is special because of the linear dispersion around Ep. The modes
are crossing at Er and backscattering as in process 2 in Fig. 6.46 can also be
promoted by e-e scattering, although its probability remains weak. Electron-
electron collision can also take place with its counterpart being scattered in
the reverse position as in the process 5 (Fig. 6.46). In this case, the total
momentum and energy is conserved.

Temperature Effects

While impurity scattering has no (or very little) temperature dependence, the
total initial and final states for e-e collisions increase with temperature (or with
electric excess energy, i.e. bias). As a result, the electron-electron scattering
time increases linearly with temperature (i.e. 7., oc 7~') [92]. The tempera-
ture dependence of the electron-phonon scattering rate follows the same trend,
i.€. Te—pn o T71 [93]. As a result, the R vs. T curves for a SWNT is expected
to be linear for both electron-electron and electron-phonon backscattering ac-
cording to Le_, = vpTe_; and (6.106). Therefore, the basic scattering mecha-
nisms can hardly be discriminated on the basis of the trend seen in the R vs.
T plots. However, it is reasonable to assume that electron-phonon scattering
dominates at room temperature. The arguments are discussed in [48,92-96].
Complementary investigations of the resistivity using bias voltage dependence
provide further details on the relative contributions. As it is today, there are
still unanswered questions about the backscattering mechanisms observed in
carbon nanotubes. To illustrate the current status in this area, three impor-
tant examples are given below.

Experimental Evidences of Electron-phonon Scattering

There is strong evidence that the elastic mean free path in SWNT reaches
several microns in length at room temperature [98-101]. This conclusion comes
from cumulated evidence acquired on rope and on individual SWNTs from
both laser-ablation and CVD growth techniques. In fact, the measurement
of the scattering length is difficult because the contact electrodes introduce
significant barriers along the current path (invasive probes). In general, R
vs. T' curves show a resistance that increases with decreasing temperature,
a behavior that is not expected for scattering with either impurity, electron
or phonon. It is therefore important that we understand the impact of the
contacts and find ways to optimize the contact configuration. An example
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Fig. 6.47. Left: SEM image of a single-wall carbon nanotube rope attached with a
combination of top and bottom gold contacts. Right: Four-terminal resistance with
temperature obtained with bottom contacts for current drive and top contacts for
voltage probe. Adapted from [101]

of unperturbed R vs. T curve with the expected linear response is shown in
Fig. 6.47.

‘ It was obtained using a special four-terminal measurement [101]. Here, the
contact electrodes are connected to a nanotube rope. The current probes are
directly in contact with the bottom of the rope while the voltage probes
make contact to the top-most nanotubes of the rope. Thus, the current
bias is applied to the bottom nanotubes and the weak tube-tube interaction
forces the current to pass only at the bottom of the rope [101]. In this config-
uration, the voltage probes do not perturb the bottom nanotubes and allow
to measure the voltage drop across the current carrying nanotubes without
introducing backscattering. The measurement gives a weak linear dependence
of the resistance with temperature and a positive slope dp/dT of 2.4
x 10 Qm/K. This result presents a clear signature of weak electron-phonon
scattering in the nanotubes [101]. The characteristic length for electron-
phonon scattering from this experiment is Le_ph X N = 11um, where N
is the number of metallic nanotubes directly contacted by the bottom elec-
trodes. NV is estimated to be between 1 and 3 nanotubes, which gives an elastic
mean free path between 3 and 11 um at room temperature.

Yao et al. have shown that the scattering length in SWNTs depends on
the electron excess energy, eV, which is given by the applied voltage across
the carbon nanotube [96]. At high bias (up to 5V), they observed that the
current saturates at about 20mA (Fig. 6.48) and the whole IV curve can be
fit by a simple function: R = Rg + V/Iy, where Ry is the low-bias resistance
of the device and Iy is the extrapolated saturation current.

Two possible candidates can be invoked to explain this behavior: electron-
electron and electron-phonon collisions. However, scattering with optical or
zone-boundary phonons is theoretically more likely to lead to the current sat-
uration at Iy [96]. The key point here is that the electron is first accelerated
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Fig. 6.48. High-bias I — V' characteristics of a metallic single-walled carbon nan-
otube. The right inset re-plots the data as V/I versus V, while the left inset shows
the schematic of the phonon emission model. Adapted from [96]

under the applied field inside the nanotube because of the weak scattering
with acoustic phonons. Then, it backscatters as soon as it reaches enough en-
ergy to emit an optical or zone-boundary phonon. This situation is illustrated
in the inset of Fig. 6.48. In the steady state, the forward moving electrons trav-
els across the nanotube with an excess energy Fopy above that of backward
moving ones. With this, the saturation current Iy is given by

4e? ([ e
I = — 107
° h <E0pt> (6 )

Under these conditions, the mean free path L._p, for backscattered
phonons is the distance an electron must travel in the electric field to gain an
excess energy that is equal to the phonon energy:

c L
Eopt V
where L/V is the electric field along the SWNT. The dominant scattering
mechanism at high bias has therefore a mean free path that scales inversely

with applied voltage. A substitution of (6.108) into (6.106) leads to a relation
that grasps the physics of scattering at large bias

Lopt = (6108)

h h
= L, L+ deBop, |4 (6.109)
Here the acoustic phonon scattering is neglected for the obvious reasons ex-
plained below. In this model, an optical phonon of Eyyy = 0.16eV leads to
the saturation of current at 25 mA. This value is consistent with the onset
estimated for the optical phonons in SWNTs [96]. Other experiments [97]
performed on nanotubes-based field effect transistors, and showing ballistic

Ry
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Fig. 6.49. Four-probe I — V and time resolved I curves for two segments of a
MWNT. Segment A is electrically broken in high vacuum, while segment B is broken
in air. Before failure, both segments have nearly identical T — V characteristics in
vacuum (segment B in vacuum shown as dashed line). Vacuum breakdown occurs
in segment A at 2.2V and 235mA. At this high power, the breakdown proceeds to
completion in less than 1 ms. In air, segment B exhibits a much slower breakdown
initiated at a lower power. Adapted from [102]

conductance at low bias, have reported values of the inelastic mean free path
in the range of 10 nm for high voltage situations.

Current Saturation and Breakdown

Carbon nanotubes can withstand remarkable current densities, exceeding
10° A/cm?, in part due to their strong carbon-carbon bonding and the rel-
atively weak electron-phonon scattering. However, at high enough currents
nanotubes ultimately fail. The breakdown of the nanotube can occur because
significant dissipation takes place at high field through the optical phonon and
inter-band scattering. Figure 6.49 presents such a dramatic event observed
with two segments of the same MWNT (14 nm diameter) in air and in vac-
uum [102]. In both cases, the IV curves saturate at a current I, that is much
larger that the saturation values for SWNTs. In fact, Iy for MWNTs is sam-
ple dependent and the breakdown is never below the point of inflection in the
IVs. This observation suggests that the onset of saturation and the eventual
breakdown process are linked to a common dissipative process, most likely in-
volving the excitation of high energy optical or zone boundary phonons [102].
Moreover, the threshold power for breakdown in air is lower, probably due to
the rapid oxidation of the outermost carbon shell. AFM images indicate that
MWNT breakdown usually occurs midway between two electrodes, which is
precisely where dissipative self-heating will produce a peak temperature.
More detail of the failure process is shown in the inset of Fig. 6.49. The cur-
rent vs. time plot shows abrupt drops of current indicating that the MWNT
thinning occurs with the loss of individual carbon shells. This also suggests
that the steps in I(¢) are due to shell-by-shell failure of the MWNT. Similar
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thinning has been seen by in-situ transmission electron microscopy [103]. The
value of each step is somehow close to the current saturation (25 mA) observed
in individual SWNTs and does not change much as the process goes on. The
origin of the steps is therefore linked to the saturation current observed with
individual SWNTs. Therefore, the current saturation seen before breakdown
in MWNTs involves several shells carrying a maximum of current I. In addi-
tion, as discussed by Yao and coworkers [96], the scattering with the optical
phonons seems to be the origin of the overall behavior presented in Fig. 6.49.

6.7.3 Nanotube-Based Transistors

Prototype field-effect transistor devices with carbon nanotubes (CNTFET)
have recently shown performance exceeding that of the best silicon-based
metal-oxide-semiconductor FET (MOSFET) [104,105]. This surprising result
has also been confirmed by other groups [106,107]. Then, why a CNFET is
able to outperform the best silicon MOSFET? Early experiments [108] on
SWNT FETs demonstrated that they behave much like conventional MOS-
FETs. However, there are some important differences: (i) the carbon nanotube
is 1D and the scattering probability is weak. As a result, CNFETS of less than
a micron in length are likely to operate in the ballistic regime, which is not
the case for silicon MOSFETS even for 10 nm devices. (ii) The nanotubes are
made of chemically satisfied carbon atoms and no dangling bond is present
at the surface. Therefore, there is no need for careful passivation of the in-
terface between the nanotube channel and the gate dielectric, i.e. there is
no equivalent of the silicon/silicon dioxide interface. These properties make
the one-dimensional transistor action in nanotubes unique and interesting.
Last, doping, as used in microelectronics, is not yet an option for the op-
timization of CNFETs. As a result, a Schottky barrier is often present at
the nanotube-metal contacts. Therefore, most of the CNFETSs are Schottky
barrier transistors [109].

Top-Gate Nanotube-Based Transistors

Early nanotube FETs used a non-local back-gate with the nanotube being
contacted by noble metal electrodes. This arrangement gave large contact
resistances and poor characteristics [108,110,111] . Since then, significant im-
provements in the performance of CNFETS have been achieved [105,106]. New
structures are now built with top-gate geometry and they resemble, in many
respects, to conventional silicon MOSFETSs. An example of the characteristics
of a top-gated CNFET is shown in Fig. 6.50. This CNFET is contacted with
titanium electrodes and the gate is made of Al separated by 15nm of gate
oxide (SiO2) [105]. First, a very large improvement was observed compared to
the early nanotube devices. This is mainly due to the scaling of the dimensions
(mostly the gate oxide thickness) and the adoption of a better device geom-
etry. A comparison of key parameters has been made and suggests that the
performance of CNFETs exceed the best conventional Si MOSFET [104-106].
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Fig. 6.50. Output characteristics of a high performance carbon nanotube field-

effect transistor. The gate is placed on top of the nanotube and separated by 15 nm

oxide thickness. The inset shows the sub-threshold characteristics of the transistor
highlighting the 6 orders of magnitude ON-OFF ratio. Adapted from [105]

Nanotube-Metal Schottky Barrier

The CNFETs measured in air, as in Fig. 6.50, are usually p-type, i.e. the
tubes conduct holes upon applying a negative gate voltage and they show no
evidence of electron conduction even at very large positive gate voltage. In
addition, the ON state of CNFETSs in air show ohmic I'Vs at small source-
drain voltage. This is a clear indication that the metal-nanotube contact has
no (or only little) effect on the injection. This situation changes when the
devices are annealed in vacuum. This step removes the adsorbed oxygen and
yields to a reversible transformation of the CNFETs from p- to n-type. An
example of such a transformation is presented in Fig. 6.51.

Initially, a p-type CNFET (1) is annealed in vacuum and transformed into
a n-type device (2). Then, oxygen is slowly introduced into the chamber and
IVs are acquired at intermediate stages of the transformation [112]. The in-
termediate stages (e.g. curve 3 in Fig. 6.51) are ambipolar, i.e. the tube can
conduct both electrons and holes. This transformation can be easily rational-
ized by considering the presence of barriers at the contacts. Each situation is
presented in Fig. 6.51. In air, the Fermi level at the metal-nanotube junction
is closer to the valence band of the nanotube. This leads to hole conduction
and p-type behavior. The annealing step changes the line-up of the bands at
the junction and lowers of the barrier for electron injection. This modification
at the contacts also introduces an increase of the barrier height for hole injec-
tion, leading to an n-type CNFET. The intermediate stage, however, simply
occurs when the contact Fermi level is around mid-gap. This special situation
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Fig. 6.51. Inter-conversion between p- and n-type CNTFETs using vacuum an-
nealing and oxygen exposure and the related band diagrams. n-type CNTFET are
obtained by annealing a p-type CNTFET in vacuum at 700 K for 10 minutes. The
gradual convertion of a n-FET (2) back into a p-FET (1) is done by oxygen exposure.
Adapted from [112]

gives similar barrier height (i.e. half of the bandgap, E,) for electron and hole
injection and the device is ambipolar.

6.7.4 Ambipolar Carbon Nanotube Transistors

The ambipolar CNFET is particularly interesting in that it allows us to ex-
plore in depth the properties of one-dimensional (1D) metal-nanotube junc-
tions. The contact situation for the ambipolar device is perhaps the worst
since it involves a mid-gap alignment of the Fermi level and therefore the
barriers for electron and hole injection are the highest (Eq/2 ~ 300meV).
Surprisingly, the IVs at room temperature are ohmic (see Fig. 6.52) as if
there was no (or little) barrier at the metal-nanotube junction [113].

This behavior is unique and not seen in Schottky barriers at 3D metal-
semiconductor junctions. The temperature dependence of the IV curves for
the ambipolar device in the hole accumulation region are presented on the
right panel of Fig. 6.52. The results are essentially the same for the electron
accumulation region. The data for both electron and hole injection gives very
small barrier heights using a conventional thermal activation plot (Arrhenius
plot) [114]. The number is at least 20 times lower than expected (~15meV
instead of ~300meV) barrier height, which is obviously wrong. Therefore,
the injection process across the Schottky barrier involves another mechanism
which is more likely to be due to tunneling across the barrier. In fact, the
barrier in 1D is so thin that the junction is quasi-transparent for carrier tun-
neling, i.e. there is a very efficient injection through the barrier. The shape
of the barrier is triangular with some non-uniformity at the bottom. More-
over, it strongly depends on the gate field (see an example of calculation in
Fig. 6.53) [115]. As a result, the injection of carriers may become very asym-
metrical depending on the conditions at the contact.



6 Transport Properties 417

Hole ' + Electron
Accumulation] Depletion ! Accumulation
10° v i 73
' 80k ¢ d 3
107 ' . Thermal assisted '!.' ]
[ 10 F tunneling E 1
s 60 F :: 3]
10° .

Gy (S) (V4 =1V)

0.0
Vys(V)
Fig. 6.52. Left: Sub-threshold characteristics of an ambipolar nanotube field-effect
transistor. Right: Characterization of the Schottky barrier for the ambipolar transis-
tor (L = 800 nm) as a function of temperature. The I'V curves in the hole accumu-
lation are ohmic at room temperature, which is consistent with only small barrier.

This is surprising since the barrier is estimated to be around 300 meV, i.e. much
higher than kgT. Adapted from [113]
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Fig. 6.53. Calculation of the Schottky barrier near the metal-nanotube contacts.
Conduction-band energy plot near the contact shows a thin triangular shape barrier
for gate voltage of 4 and 10 V. Tunneling current is modulated by the change of the
barrier shape under the gate field. Adapted from [115]

The properties of the metal-nanotube Schottky barrier are useful and in-
teresting. In particular, they allow the simultaneous injection of electrons and
holes when large drain bias are applied to an ambipolar CNFET (the cur-
rent is balanced at 2Vy = V,). This effect results in polarized infrared emis-
sion peaking at the bandgap of the carbon nanotube [116]. The ambipolar
CNFETs are currently the smallest electrically driven optical source ever
made.

Schottky Nanotube Transistor: Operating Mode

The nanotube transistor characteristics resemble those of the conventional
MOSFET, but the underlying physics of operation is very different. The
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Schottky barrier at the contact is hard to eliminate and there is no good
scheme to dope locally the nanotube in the contact region. Moreover, the
presence of a contact barrier is hard to identify from the IV curves. In fact,
the transistor action for CNFETS is usually limited by the injection process
at nanotube-metal contact. They have been shown to be Schottky barrier
transistors (SB-CNFETSs) [109].

The main question is why the characteristics of the SB-CNFET resemble
those of a regular MOSFET? To answer this, we need to consider in detail the
band evolution under the influence of the gate and the drain fields. The output
characteristics of a SB-CNFET is schematically illustrated in Fig. 6.54.

source

F 3

vds

Fig. 6.54. Left: qualitative band diagram describing the operation a Schottky bar-
rier nanotube field-effect transistor in the ON state. Right: the corresponding output
characteristics for two arbitrary gate voltage. Adapted from [117]

The dark gray regions highlight the band close to the metal contact. The
Fermi level at the contact is somewhere inside the bandgap of the nanotube.
Here we assume that no scattering takes place in the nanotube. The ON state
operation of a p-type SB-CNFET goes as following: region i: Iy (current at
the drain) changes linearly with V; (drain bias) since the tunneling barrier is
thin on the source side. That is, the gate field is strong on the source side (the
device is ON) and determines the shape of the barrier. Region ii: I; becomes
non-linear because the situation on the drain side approaches the flat band
condition. This is because the drain voltage is getting close to the gate voltage
and the drain to gate field is gradually vanishing. Region éii: I; saturates when
the barrier in the drain region vanishes. This saturation is NOT the pinch off
of the channel as usually observed in conventional MOSFET [118]. A change
of the gate bias will have the effect of shifting the current up or down because
it has a direct effect on the thickness of the source contact barrier. As a
result, the current in all three regions is affected by the gate. Last, in this
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band scheme, the bulk of the nanotube channel has no effect on the IVs.
Thus, the nanotube channel is not limiting the current of the SB-CNFET.
This implies that the intrinsic properties of the nanotube are NOT probed by
the SB-CNFETSs unless the contact barrier is eliminated.

6.8 Transport in Nanotube Based Composites

6.8.1 Introduction

As shown in previous sections, their electronic properties lead at a nanoscopic
level to fascinating phenomena such as quantum box effects, Coulomb block-
ade, ballistic transport, and so on. On the other hand, it is also possible to
take advantage of these properties at the macroscopic scale, by embedding
the nanotubes into a matrix, i.e. by building a composite. Here we focus on
the transport properties of composites where the matrix is a polymer and the
nanotubes act as loading particles or fillers. These composites are sometimes
referred to as extrinsic conducting polymers. The fillers which are commonly
used are carbon blacks, metallic nanoparticles, organic needles. Indeed the
mechanical properties of CNT make them even more interesting than the
conventional fillers. Potential applications of these heterogeneous materials
are transport layers in organic devices such as LED or solar cells, electrostatic
shields, electromagnetic shields.

We first introduce some basic concepts relevant for the transport properties
of heterogeneous systems, followed by a short survey of the published works
regarding CNT based composites. Section 6.8.2 is devoted to the transport
mechanisms. The last two sections are concerned with non-linear transport
and magnetotransport. Since very few works on CNT based composites is
published, their properties applied to CNT mats (buckypaper, pressed pellets,
etc.) are briefly discussed.

6.8.2 Transport in a Heterogeneous Medium
Basic Percolation Theory and Effective Medium Approach

We consider the situation in which a volume fraction p of conducting particles
with conductivity oy are embedded into an insulating matrix. Indeed, when
p = 0 the composite is an insulator while it is conducting if p = 1 with conduc-
tivity op. In between, a finite conductivity (0 < o(p) < og) is obtained when a
continuous conduction path connects both sides of the sample. Assuming that
the particle-to-particle contact is electrically transparent and that the fillers
are randomly dispersed into the matrix, the transition between the insulating
to the conducting state occurs above a threshold fraction p.. This topologi-
cally driven transition is referred to as the petcolation transition. Percolation
theory has a broad range of applications. A comprehensive introduction is
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given in [119,120]. This phase transition is second order and as such, critical
behavior is expected close to the percolation threshold p.. Within this theory,
above and close to p., the conductivity of the composite obeys the power law:

o = aol(p — pe)/(1 — pc))° (6.110)

The conductivity exponent 3 depends only on the dimensionality of the system
(B ~ 2.0 in 3D) while p, also depends on the network coordination. In 3D and
for randomly dispersed conducting spheres, p. ~ 0.16%. Smaller thresholds
are obtained when the fillers are non-spherical. In this case, it was suggested
that the excluded volume has to be considered instead of the actual volume
of the fillers [121]. This results in a percolation threshold following & x p a
constante, and ¢ = L/r being the aspect ratio of the filler. Alternative models
can be used to describe the electrical properties of composites [120]. Far from
pe and close to 1, it has been shown that the effective medium theory which
gives o o p nicely describes the evolution of the conductivity [122].

Application to Nanotube-Based Composites

Several groups have reported on CNT-polymer composites (SWNT [123,124]
or MWNT [125]). Quite generally, a percolation-like transition is observed
with reported thresholds that vary from 0.02% to 10%. This broad range of
Pc values originates from the sample preparation but p,. also depends on the
experimental setup used for conductivity measurements. Because of the very
high aspect ratio of CNT, transverse or sandwich geometry leads to finite size
effects that lower p..

In PMMA/SWNT composite films, typical values give p, ~ 0.3% and
B ~ 2.1, whereas oo ~ 83 S/cm [124]. Using the excluded volume concept, this
small p. may be explained by an aspect ratio of & ~ 100 while the exponent 8
is in agreement with transport in 3D. When p tends to 10%, effective medium
theory applies, and gives a room temperature conductivity of the SWNT mat
of the order of 0g. Measurements on a pressed pellet (i.e. ap =1 composite)
gives the same order of magnitude.

6.8.3 Transport Mechanism

Very few reports have been published regarding the transport mechanism
in CNT based composites. Here, we summarize what is usually discussed in
extrinsic conducting polymers.

6.8.4 Localization and Hopping

In most cases, the charge carriers are localized on the fillers with a localization
length §. For SWNT fillers, the carriers originate from metallic tubes, and
transport occurs via tunneling or hopping (phonon assisted tunneling) from
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one filler to another. At the microscopic scale and low temperatures, hopping
is described by a transition rate I" between two sites given by:

7 A
I'=vpexp (—?’" - EB_T> (6.111)

r is the distance between the two sites, and A is related to their energy
difference. Pure tunneling obeys (6.111) without the A/kgT contribution.
The macroscopic conductivity is obtained by optimizing all I" that defines a
temperature dependent conduction path. Without interactions between the
carriers and assuming a constant density of states p(Er) at the Fermi level,
optimization leads to Mott’s variable range hopping (VRH) [126]. The VRH

conductivity follows:
T 1/(d+1)
— | = 6.112
() (6.112)

where d is the dimensionality and Ty « 1/p(Ep)é%. This temperature de-
pendence is widely observed in buckypapers or SWNT mats (with d = 3)
[124,127]. The VRH model gives § in the order of a few tens of nanometers,
if one considers the metallic SWNT p(Er).

O X exp

6.8.5 Coulomb Interactions and Coulomb Gap

Charging a metallic particle requires one to overcome the Coulomb charging
energy E, which scales with 1/s where s is the typical particle size. The
charging effect is important when the fillers are nanoscopic such as in cermets
[128]. It is quite similar to the case of VRH in presence of Coulomb interactions
where a soft Coulomb gap Acg digs at the Fermi level during the transport
process [129](Acg = €3v/(p(Er)/(epmma + 4mp(Er)E?)3, eppma the PMMA
dielectric constant). This process leads to o oc exp[—(To/T)'/?] where Tp is
related to Agg (respectively to E.) and to & (or s). Such a temperature
dependence in PMMA /SWNT composites has been observed below 50 K [124],
and was attributed to the digging of a Coulomb gap of magnitude Acg ~
10meV. Loading the composite more and more leads to a partial (mutual)
screening of the charging energy, and thus to a disappearance of the charging
effects in p = 1 sample. Mott’s VRH is thus recovered at high p fraction.

When E, is small, as for example in carbon blacks (CB) or carbon fibers
loaded composites, Sheng et al. [130] have proposed that transport occurs via
direct tunneling between adjacent fillers. However, the tunneling probability
is modified by the thermal noise which induces fluctuations of the tunneling
barrier. This fluctuation induced tunneling model gives o o e~70/(T+T1) which
has also been used to describe the conductivity of SWNT mats [131].

6.8.6 Percolation Network

The percolation pathway depends on temperature as does the hopping/
tunneling process. A special case has been invoked in CB loaded composites
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where it is believed that localization occurs at the scale of the incipient in-
finite cluster of the percolation theory. This kind of localization is referred
as superlocalization and leads to VRH with a non fractional exponent of the
conductivity [132].

6.8.7 High-Electric-Field Effects

High electric field F also influences the transition rates which results in non-
ohmic behavior. Here we just discuss the mechanisms involving tunneling or
hopping which are invoked in CNT based materials.

A high electric field may cause emission across a tunnel barrier. This
Fowler-Nordheim emission process is at the origin of the field-emission prop-
erties of CNT (see Chap. 4). At high field, it is found that the current density
J increases as J o< E%¢~%®. When fluctuation induced tunneling is rele-
vant, J o e~(E/Eo-1)? [130]. Such a field dependence was invoked in SWNT
buckypaper [131].

Several processes have been proposed when VRH occurs. They depend on
the field magnitude and on the details of the material. In a weak field and
with a small DOS at the Fermi level, ‘heating’ of the electron gas due to the
potential energy gain may occur (not to be confused with Joule effect). The
energy distribution of the carriers is disturbed and an ‘electric temperature’
Ta can be introduced at T'= 0 K:

kpTo = veE¢ (6.113)

where v is a numerical factor close to 1. This model was used by Fuhrer
and coworkers in SWNT buckypaper [129]. When the thermal temperature is
finite, VRH transport occurs in the same way as it does at zero field but at the
price of replacing the real temperature by an effective one Tog = T+ Ty [133].

The field dependence observed in PMMA/SWNT composite seems in
agreement with this picture [124]. Using the effective temperature concept
allows one to build master curves which unify the ohmic temperature depen-
dence and the electric field dependencies for all investigated p fractions. It
suggests that localization is intrinsic in this system.

Increasing the field also changes the transport pathway. In very high fields,
VRH is lost and simple tunneling occurs [126].

6.8.8 Magnetoresistance

Two kinds of magnetoresistance effects may be considered. The spin depen-
dent contribution is weak in CNTs as long as magnetic particles are absent.
Still, the presence of catalysts may contribute to a negative magnetoresistance
(MR) in weak field. In CNT based materials, the main contribution is orbital
in nature.
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In a weak field, application of a magnetic field H partly destroys the
quantum interferences which appear along the transport path [134]. A negative
magnetoresistance is found quadratic (or linear) in field. This effect is the
strong localization counterpart of the weak localization negative MR discussed
in Sect. 6.8.2. Indeed MR saturates as soon as the magnetic flux through the
hopping area scales with the flux quantum &,.

H(R},,.)'? =& (6.114)

where Rhop o £(To/T)* is the hopping length. In the left panel of Fig. 6.55,
we show such a behavior in p = 8 % PMMA/SWNT composite. Below 20
K, the MR is linear and the saturation field corresponds to & ~7nm. Above
20K, a quadratic MR is observed without saturation effects in the field range.
The same behavior was also observed in SWNT mat [129].

In high fields (& > &), shrinkage of the wavefunctions occurs which re-
duces the transfer between adjacent sites. A positive magnetoresistance is

found:
In(R(H)/R(0)) o< H2¢*(T/T)%/? (6.115)

here in the presence of Coulomb interactions [129]. This positive MR has been
observed at low temperatures (T < 8 K) as shown in Fig. 6.55. Once again, a
localization length & ~ 7 nm is deduced.

6.9 Thermal Transport in Carbon Nanotubes

6.9.1 Introduction

Some forms of carbons are the best known heat conductors at room tempera-
ture (Table 6.1) and it was easy to figure out soon after the discovery of carbon
nanotubes (NT) that they should exhibit a very large thermal conductivity.
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Fig. 6.55. Left: Negative MR, due to quantum interferences in a SWNT/PMMA
composite with p = 8%. The arrows show the saturation field of (6.114). At T =
1.5K, the saturation comes from scattering with catalytic particles. Right: Positive
MR due to orbit shrinkage (see (6.115)) in the same sample at low temperature. In
both cases, £ ~ 7nm is found
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This should lead, as for the case of some carbon fibers heat treated at high
temperatures, to interesting applications as ‘hyperconductors’ of heat in the
form of composites [135]. However, due to the difficulty of measurements (cf.
below 6.9.4), preliminary experimental results were only available recently to
confirm this view. Indeed, in order to interpret correctly the experimental
results by comparing them to theoretical predictions, measurements need to
be performed on individual nanotubes. This is a very delicate experiment to
perform which was only realized recently on a MWNT by Kim et al. [136] us-
ing sophisticated nanolithographic techniques. The first thermal conductivity
measurements on NT, which were performed on bundles [137], did not lead to
a straightforward interpretation, since measurements pertained to an average
taken over a group of different nanotubes. Moreover, for the case of bundles,
to the thermal resistance of the individual nanotubes should be added that
of the contacts between them, and contact resistances are always difficult to
evaluate. This is not the case for the specific heat where contact resistances
do not play a direct role. On Table 6.1, we have listed the orders of magnitude
of the thermal conductivity of carbons and graphites at room temperature.
We have also shown for comparison the room-temperature value for copper
and the range of conductivities for most polymeric materials.

Table 6.1. Thermal conductivity of carbons and graphites at room temperature

Material Conductivity (Wm™'K™') Heat Treatment
Nanotubes >10°%

Diamond 10°

HOPG 10° >3000°C
Vapor deposited Fibers 102 <3000°C
Pitch Fibers 10%-10% 2000-3000°C
Pure Copper 5 x 102

PAN Fibers 10

Polymeric Materials 107!

The phonon spectrum of graphite is highly anisotropic and may be consid-
ered as quasi-2D for frequencies above a few THz. This anisotropy is naturally
reflected in the lattice thermal conductivity which is the dominant heat trans-
port mechanism, except at very low temperatures. In-plane we find the high-
est room-temperature thermal conductivities, comparable to that of diamond,
which is the best known heat conductor (Table 6.1). Normal to the graphene
layers, the thermal conductivity is two orders of magnitude lower at 300 K
(Fig. 6.56). This anisotropy is reduced as the temperature is lowered. Owing
to their reduced dimensions, the phonon spectrum of NT may be quantized
at low temperatures, as is the case for the charge carriers. This quantization
should be reflected in the specific heat and thermal conductivity.
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Fig. 6.56. Schematic representation of the temperature variation of the thermal
conductivity of HOPG in-plane and out-of-plane showing the strong anistropy in
the higher temperature range. This anisotropy is reduced as the temperature is
lowered

We will now discuss the thermal conductivity (Sect. 6.9.2) and the thermo-
electric power (Sect. 6.9.3) data available on carbon nanotubes (NT) and then
briefly comment on the problems encountered when performing their measure-
ment (Sect. 6.9.4). Emphasis will be placed on the recent results obtained on
an individual MWNT [136], since they may be compared to theoretical es-
timations. We will lean heavily on the knowledge accumulated through the
study of other forms of carbons [138].

6.9.2 Thermal Conductivity

In Chap. 1 of this volume [138], we introduced some basic principles concerning
the thermal conductivity of solids in general, and gave an overview over the
main features of this property for carbons and graphites. We refer to this
chapter and to other recent review papers [135,139,140] for an introduction
of this property in carbonaceous materials. We have seen that the lattice
thermal conductivity results of graphites may be discussed using the Debye

relation: 1
Kg = §C’v€e (6.116)

in the dominant phonon-approximation. This means that instead of consider-
ing the entire phonon spectrum, we introduce an average phonon frequency
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which is proportional to the absolute temperature, and to which is associ-
ated an appropriate mean free path ¢,. C is the lattice specific heat per unit
volume and v is an average phonon velocity, the velocity of sound. Despite
its simplicity, relation [135] is useful for the discussion of most thermal con-
ductivity results. For different samples of a given crystalline solid, since the
specific heats and the phonon velocities are the same, the thermal conductiv-
ity is directly proportional to the phonon mean free path. This phonon mean
free path depends essentially on the lattice perfection of the sample at low
temperatures [135,138].

Specific-heat measurements are now available for CNs. Hone et al. [141]
reported on the results of measurements performed on SWNT ropes in the
temperature range 2 < T < 300K. Later on, Lasjaunias et al. [142] pre-
sented experimental data pertaining to the low-temperature specific heat of
SWNT bundles. These results extended for the first time the specific heat
data to ultra-low temperatures {down to about 100 mK) showing clearly a T3
dependence in the lowest temperature range. This temperature dependence,
characteristic of a three-dimensional system, which was ascribed to inter-tube
interaction, does not reflect the behavior expected from an individual one-
dimensional SWNT.

At the lowest temperatures, when phonon-phonon umklapp processes are
frozen out due to the decrease in phonon density and phonon wave number,
crystallite or the sample boundaries are the main phonon scatterers and the
phonon mean free path should then be temperature insensitive. So is the ve-
locity of sound which is almost temperature insensitive at all temperatures. At
low temperatures, the temperature dependence of the thermal conductivity
should then follow that of the specific heat. Thus, the larger the crystallites or
the sample-size the higher the thermal conductivity. Above the thermal con-
ductivity maximum (Fig. 6.56 and Fig. 6.57), phonon scattering is mainly due -
to an intrinsic mechanism, phonon-phonon umklapp processes, and the ther-
mal conductivity should thus be the same for different well-ordered samples
of the same material. At intermediate temperatures, i.e. around the thermal
conductivity maximum, scattering of phonons by point defects (small scale
defects) is the dominant scattering process. The position and the magnitude
of the thermal-conductivity maximum will thus depend on the competition
between the various scattering processes (boundary, point defect, phonon,
etc). So, for different samples of the same material, the position and mag-
nitude of the maximum will depend on the point defects and the in-plane
coherence length, L,, since phonon-phonon interactions are assumed to be
the same [135]. This will have an important bearing on the discussion of the
experimental results, as discussed below.

Since the main mechanism responsible for heat flow in carbons, includ-
ing MWNTSs, is via the lattice waves, we should expect the same general
trends in these materials. Indeed, while for different carbons the electronic
structure might be quite different leading to various types of electronic con-
ductions, metallic, semimetallic or semiconducting, this is not the case for
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Fig. 6.57. Log-log representation of the temperature variation of the thermal con-
" ductance of an individual MWNT of diameter 14 nm. The solid lines represent the
linear fits with slopes 2.5 and 2.0 respectively for different temperature range. Inset:
Temperature variation of the thermal conductivity of an individual MWNT (solid
curve), and a bundle of diameters 80nm (broken curve) and 200 nm (dotted curve)
respectively. Adapted from [136] (by courtesy of P. Kim)

phonon transport. If we exclude phonon quantization in nanosystems, the
phonon spectrum should not differ widely from one carbon sample to another
provided that they remain in the crystalline state. It is only the phonon mean
free path which will differ since it is very sensitive to lattice defects [135,138].
The first thermal-conductivity data reported for nanotubes were per-
formed by Hone et al. [137] on as-grown NT bundles. They estimated a room
temperature thermal conductivity around 35 Wm™'K~!. This low value is
not unexpected for their samples since it includes contact resistances between
nanotubes of undefined crystal perfection. Indeed, subsequent calculations by
Berber et al. [143] predicted much higher values for an ideal individual SWNT,
of the order of a few 10* Wm™1K~! around 100K with a room temperature
value close to 7000 Wm~'K~1. These values, which are superior to those of
diamond and in-plane graphite (see Table 6.1) are more realistic, since they
are close to that which might be expected from a perfect graphene sheet. As
will be shown below, further experimental data have confirmed these views.
Since they were realized on an individual MWNT, the measurements per-
formed by Kim et al. [136], though still subject to certain experimental un-
certainties, lend themselves to the first reliable analysis allowing comparison
with theoretical predictions. Using nanolithographic techniques, Kim et al.



428 S. Roche et al.

designed a submicronic sample holder enabling the measurement of the ther-
mal conductivity and thermoelectric power (cf. Sect. 6.9.3) of an individual
MWNT of 14 nm diameter and a few micrometers in length. The temperature
range 8K < T < 370K was investigated. The results are shown in Fig. 6.57.
One may see from Fig. 6.57 that the estimated room temperature thermal
conductivity lies around 3000 Wm™1K~!, with a peak around 320 K. More-
over, Kim et al. estimated from their data a phonon mean free path of the
order of 500 nm, at low temperatures.

Although the high thermal-conductivity values obtained by Kim et al. [136]
are not surprising, they are not consistent with the position of the maximum
observed if we compare their data to those relative to other graphitic systems.
In these systems, a low-temperature mean free path around 500nm, due to
boundary scattering, would indeed lead to a thermal conductivity maximum
around room temperature, but with a value 3 to 4 times lower than that ob-
served for the MWNT investigated [135]. This discrepancy could be attributed
to a different thermal behavior of NTs with respect to bulk graphitic systems.
While this is probably true for SWNTs, it is not likely that MWNTs would
exhibit a different qualitative behavior from bulk graphitic systems. If this
is indeed the case, one should then ascribe the discrepancy to some experi-
mental uncertainties discussed by Kim et al. or, possibly, to the presence of
heat losses which are not explicitly addressed in their paper [136]. Also, for
the same boundary scattering length, a sample free of point defects might
exhibit higher values around the maximum. Finally, the quasi-ballistic mo-
tion of phonons invoked by the authors and ascribed to the short length of
the sample might lead to a qualitatively different behavior when compared
to a sample of infinite length. Further experimental work will be needed to
determine the reason for this apparent discrepancy.

6.9.3 Thermoelectric Power

Contrary to the case of the thermal conductivity, the interpretation of the
thermoelectric power (TEP) results for most known solids is a rather delicate
task. Indeed, except for the case of typical semiconductors such as germanium
or silicon, the interpretation of this property for most solids is hardly convinc-
ing. This is particularly true for the case of carbons and graphites [135].
The TEP or Seebeck coefficient, S, is the potential difference generated
by an applied unit temperature difference across an electrical conductor. The
diffusion thermoelectric power is due to the diffusion of charge carriers from
hot to cold caused by the redistribution of their energies caused by the tem-
perature gradient. The charge carriers accumulating at the cold end of the
sample give rise to the thermoelectric voltage. This potential difference tends
to counterbalance the flow of diffusing carriers until a steady state is reached.
Another mechanism, known as the phonon-drag thermoelectric power, con-
sists in & transfer of momentum from the out-of-balance phonon system to
the electron system under certain conditions (cf. below). This results in a
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drag on the charge carriers which causes an additional electronic drift. An
electric field is generated to counterbalance this extra electronic motion. For
a given group of charge carriers, the general expression for the diffusion TEP
is given by the Mott formula

7r2k]23

= T
S 3q[
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where Ey is the Fermi energy and o the electrical conductivity. The deriv-
atives is taken at the Fermi level. When, as is the case for HOPG, there is
more than one type of carrier, the total thermoelectric power is obtained by
considering the different groups of carriers with partial thermoelectric powers
that contribute to the total thermoelectric power as electromotive forces in
parallel [135,138].

Hone et al. [144] have reported on the temperature variation of the TEP of
SWNTs bundles in the temperature range 4.2 K < T' < 300 K. They have also
measured the electrical resistivity of these bundles in the same temperature
range. The three samples investigated, two pristine and one sintered, exhib-
ited the same qualitative behavior and almost the same values (Fig. 6.58).
The thermoelectric power was found to be positive in the whole temperature
range investigated. As may be seen from Fig. 6.58, it increases first linearly
at low temperature then tends to saturate around 100K to increase slowly
again with temperature around 200 K. The room-temperature values, around
50uV/K, are considerably higher than those observed for metallic samples
(a few nV/K), but are comparable to those observed in semimetals. Oddly
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Fig. 6.58. Temperature variation of the TEP of a SWNT bundle. Adapted from
[144] (by courtesy of J. Hone)
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enough, the temperature variation looks more like that observed in graphite
intercalation compounds (see for example [145]) than in the pristine material,
though the room temperature value measured in SWNTs is about twice that
reported for GICs. ‘

In the case of SWNTs the earlier results of Hone et al. [144] have shown
that the data are not consistent with those calculated from the known band
structure which predicts much smaller values than those actually observed.
Hone et al. suggest from their data that the predicted electron-hole symme-
try of metallic nanotubes is broken when they are assembled into the form
of ropes. Kim et al. [136] have also measured the temperature dependence of
the TEP of the individual MWNT, whose thermal conductivity is reported in
Fig. 6.57, from liquid helium temperatures up to room temperature (Fig. 6.59).
At first sight, since the TEP is positive in the entire temperature range, one
may deduce that it is generated by a majority of holes. The temperature
variation is roughly linear and the high room temperature value observed
(80uV/K) indicates that the Fermi energies are small, akin to what is ob-
served for semimetallic systems. However, for a sound interpretation of the
results, one needs to know at least the electronic band structure of the inves-
tigated sample. To illustrate the complexity of TEP analysis one should note
that, if we exclude magnetic systems, there are two types of mechanisms for
TEP generation: diffusion and phonon-drag. Besides, although the TEP is es-
sentially sensitive to the Fermi energies, it is also dependent on the dominant
scattering mechanism, but not on the magnitude of the scattering time. For
the diffusion case, this means that it depends on the way the relaxation time
depends on energy, i.e. the scattering parameter. It is worth noting too that
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Fig. 6.59. Temperature variation of the thermoelectric power of the single MWNT
which thermal conductivity is presented in Fig. 6.57. Adapted from [136] (by cour-
tesy of P. Kim)
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normal and umklapp electron-phonon scattering leads to TEPs of opposite
signs. However, in most cases, electron-phonon umklapp scattering is unlikely
to dominate the scene.

One important point to note is that, contrary to 3D systems, where the
phonon-drag contribution generally shows up at low temperatures, in low-
dimensional systems, whether 2D or 1D, this contribution might be dominant
at all temperatures. Cantrell and Butcher {146, 147] have shown that this is
the case for a 2D electron gas coupled to 3D phonons. Piraux et al. [148] have
suggested independently that for first stages graphite acceptor intercalation
compounds, which are typical 2D hole gases, the thermoelectric power is most
probably dominated by a phonon-drag contribution up to room temperature
with a negligible diffusion contribution [145]. More recently, Vavro et al. [149]
have adapted the Cantrell-Butcher 2D model to a 1D electron gas interacting
with 1D phonons to the case of p-doped SWNT and attributed the unusual
behavior of the thermoelectric power they observed to 1D phonon-drag.

More generally, the phonon-drag contributions invoked from time to time
can be justified using a naive physical picture. Phonon-drag shows up when
the phonons which are allowed to interact with electrons, the drag phonons
as opposed to the thermal phonons [145], have larger relaxation times for
- all other interactions, i.e. phonon-phonon, phonon-defects, etc. Note that the
drag phonons are not necessarily those which dominate the scene at a given
temperature and which carry most of the heat, i.e. those we call here the
thermal phonons. The drag phonons are, in the case of semimetals and semi-
conductors, restricted to lower energies determined by energy and momentum
conservation requirements [145]. For semimetallic systems with tiny Fermi
surfaces like HOPG, we have pointed out [150] that the phonon-phonon inter-
actions are very weak, even around room temperature, leading to unusually
large phonon-phonon relaxation times. Moreover, because of the low energies
of the drag phonons they are hardly scattered effectively by point defects
(Raleigh scattering). This means that the probability for phonons to interact
with electrons is larger than that of interacting with other phonons or point
defects. Thus, in the absence of large-scale defects, we are in an ideal situa-
tion to observe large phonon-drag effects at all temperatures in semimetallic
systems such as HOPG and MWNTs.

All this shows clearly that, contrary to the thermal conductivity, the in-
terpretation of thermoelectric effects involves the knowledge of many physical
parameters that are not always at hand. Also, since it is dependent on the
details of the electronic structure and on the phonon spectrum, one expects
that the TEP of SWNTs and MWNTs should differ since their electronic
structures are quite different.

6.9.4 Measurement Techniques

There are specific problems associated with the measurement of the transport
properties of macroscopic samples of large ratios of length to cross-section,



432 S. Roche et al.

such as carbon fibers with diameters of the order of 10 um, which are not
encountered in bulk materials. It is obvious that these problems should be
even more pronounced for the measurements on individual nanotubes where
samples are of submicron size and are quite difficult to handle. The case
of electrical resistivity has been discussed in previous sections, and we shall
briefly consider here the additional difficulties encountered when heat flow has
to be controlled such as in thermal transport measurements. Since heat flows
are more difficult to control than electrical currents, thermal conductivity
measurements are time consuming and very delicate to perform. This was
found to be particularly true for the case of carbon fibers [151] because of
their small diameters (~1075m). The main reason is that it is difficult to
make sure that the heat losses in the measuring system do not far exceed the
thermal conductance of the samples measured; the thermal conductance being
defined as the heat flow through the sample per unit temperature difference.
Moreover, in order to be able to get an insight into the mechanisms of the
thermal conductivity of the sample investigated, it is necessary to measure
the temperature variation of this property over a wide temperature range
on a single well-characterized material, as was done for a vapor deposited
fiber {152]. These problems are exacerbated for the case of single CNs [136].
Also, the determination of the sample cross-section may introduce large
uncertainties in the estimation of the absolute values of the conductivities.
The data obtained are thus more accurate with regard to temperature vari-
ation than with regard to absolute magnitudes. Fortunately, for the physical
interpretation of the experimental results it is more important to know the
temperature variation than the absolute values. These problems are not met
in thermoelectric power measurements, since the knowledge of the samples
cross-sections is not needed to calculate this transport coefficient. The mea-
surement of samples of submicronic sizes requires a miniaturization of the
experimental system, which may in some instances attain a high degree of
sophistication. This is particularly true for the case of single CNs, where one
has to deal with samples of a few nanometer diameter and about a microme-
ter length [153]. One has first to detect the sample, then apply to it contacts,
which means, in a four-probe measurement, four metallic conductors, two for
the injected heat current and two for measuring the resulting temperature
difference. This requires the use of nanolithographic techniques [136,153]. Be-
sides, one has to characterize the CN sample which is measured in order to
determine its diameter and helicity if its electronic properties are to be known.
This is particularly important for the case of the TEP, as mentioned above.
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