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A thermodynamical treatment of a massless scalar field (a photon) confined to a fractal spatial manifold

leads to an equation of state relating pressure to internal energy, PVs ¼ U=ds, where ds is the spectral

dimension and Vs defines the ‘‘spectral volume.’’ For regular manifolds, Vs coincides with the usual

geometric spatial volume, but on a fractal this is not necessarily the case. This is further evidence that on a

fractal, momentum space can have a different dimension than position space. Our analysis also provides a

natural definition of the vacuum (Casimir) energy of a fractal. We suggest ways that these unusual

properties might be probed experimentally.
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Among one of the more unusual properties of spatial
fractals is that in some not yet completely understood sense
the dimension of momentum space can be different from
the dimension of position space. Even the notion of a
(Fourier) mode decomposition on a fractal is not yet under-
stood mathematically [1–3]. At first sight, this would ap-
pear to render problematical the conventional formulation
of thermodynamics and statistical mechanics in terms
of phase space cells [4]. Indeed, the quantization of the
electromagnetic field and resulting notion of a photon
appears inherently based on the Fourier decomposition of
the field as a superposition of an infinite number of modes
and their quantization as bosonic quantum harmonic oscil-
lators. The very idea of mode decomposition is based on
the assumption that it is possible to label and count the
modes by quantizing momentum space into elementary
cells of volume L"d, where the spatial volume V ¼ Ld is
taken to be a large hypercube in d space dimensions.

While such a mode-based approach is not available at
present for fractals, some results are known on fractals
concerning the spectrum of the Laplacian, encoded in
spectral functions such as the heat kernel trace and zeta
function [1,2,5–7]. We argue this is sufficient information
to define a consistent thermodynamic limit, leading to an
equation of state PVs ¼ U=ds, in terms of a ‘‘spectral
volume’’ Vs [defined below] and the spectral dimension,
ds [8]. On a regular manifold, the spectral and geometric
volume coincide, as do ds and the geometric dimension d,
but on a fractal this is not necessarily true.

The idea of using thermodynamics to probe the geomet-
rical structure of objects goes back to H. Lorentz, who in
1910 addressed the original ‘‘Can one hear the shape of a
drum?’’ question [9], asking why the Jeans law, dE ¼
VðT=!2c3Þ!2d!, only depends on the volume occupied
by the blackbody, and not on its shape. Soon after, Weyl
found the geometric meaning of the large eigenvalues of
differential operators [10,11], and it turns out that this is

what is probed in the thermodynamic large volume and
high temperature limit. Physically, at thermodynamical
equilibrium the photons probe the geometric structure of
the spatial manifold in which they are confined; the first
geometric property we learn is the volume. We are also
motivated by suggestions of fractal structure in models of
quantum gravity [12].
Our main technical result is an expression for the parti-

tion function ZðT; VsÞ of quantum radiation at thermody-
namic equilibrium at temperature T, on a fractal

lnZ ¼ yF perðlnyÞ; y % Vs=ð"@cÞds : (1)

Here, " % 1=ðkBTÞ, kB is Boltzmann’s constant, and F per

is a periodic function of lnðyÞ, whose period depends on the
characteristics of the fractal.
We first review the usual relation between the partition

function and the effective Lagrangian for a massless scalar
field in Euclidean space-time, emphasizing the importance
of the asymptotic limit of large volumes or correspond-
ingly large temperatures, and its relation to the Weyl
expansion [13]. In this approach, the mode decomposition
is encoded in the heat kernel trace for the Laplace operator,
so we can then generalize to fractals.
The partition function can be written as

lnZðT; VÞ ¼ "1
2 lnDetM&Mð@2=@t2 þ c2!Þ: (2)

M is a circle of circumference @" in the coordinate t, ! is
(minus) the Laplacian defined on the spatial manifold M,
and c is the speed of light. While (2) is independent of any
specific representation, it is usually derived using a mode
decomposition of the field. Recall that the spectral partition
function for a single bosonic oscillator of frequency ! is

lnzðT;!Þ ¼ ""@!
2

" lnð1" e""@!Þ: (3)

By standard manipulations [14], we obtain
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lnzðT;!Þ ¼ 1

2

Z 1

0

d!

!
e$!2!

Xþ1

n¼$1
e$ð2"n=@#Þ2!: (4)

Using the Kubo, Martin, and Schwinger (KMS) condition
[15] for thermodynamic equilibrium of a bosonic field$ at
temperature T, we recognize the second factor in the
integrand as a sum over Matsubara frequencies ð2"n@# Þ2,
corresponding to the spectrum of the operator @2=@t2

with periodic boundary conditions $ðtþ @#Þ ¼ $ðtÞ.
Identifying !2 ¼ c2k2 with the eigenvalues of c2!, and
tracing over all modes [16], we recover expression (2):

lnZðT; VÞ ¼ 1

2

Z 1

0

d!

!
TrMðe$!c2!ÞTrMðe$!@20Þ: (5)

All information about the spatial manifold M, including
possible dependence on its volume V, is contained in the
heat kernel trace factor. It is convenient to rescale !:

lnZðT; VÞ ¼ 1

2

Z 1

0

d!

!
fð!ÞKMðL2

#!Þ (6)

defining the photon thermal wavelength, L# & #@c, the
dimensionless function fð!Þ ¼ Pþ1

n¼$1 e$ð2"nÞ2!, andKM
as the dimensionless heat kernel trace of the Laplace
operator on the manifold M

KMðL2
#!Þ & TrMe$L2

#!!: (7)

The heat kernel contains an implicit length scale L, char-
acteristic of the geometry of the manifoldM, that enables
us to define a dimensionless Laplacian ~! & L2! [recall
that the eigenvalues of ! have dimensions of 1=length2].
Results in the mathematical literature refer to the dimen-
sionless Laplacian ~!.

As an illustration, consider blackbody radiation in a
large hypercube of volume V ¼ Ld, in d space dimensions.
The corresponding heat kernel KVð!Þ is obtained from
the mode decomposition of the field, ! ¼ cjkj ¼
c2"jnj=V1=d, where n is a d-dimension integer-valued
vector obtained by counting the elementary momentum-
space cells of volume ð2"Þd=V:

K Vð!Þ ¼
X

n

e$ð2"L#V
$1=dÞ2n2!: (8)

It is clear that the partition function has the form

lnZðT; VÞ ¼ QðxÞ; x & L#=V
1=d; (9)

where the precise form of the function Q is determined by
the heat kernel trace in (7). Standard thermodynamic quan-
tities and relations follow immediately from (9). For ex-
ample, the equation of state, PV ¼ U=d, relating the
internal energy U of the radiation to the pressure P and
the volume V, follows immediately from

U ¼ $ @

@#
lnZðT; VÞ ¼ $

!
dQ

dx

"@cV$1=d (10)

and

P ¼ 1

#

!
@ lnZ
@V

"

T
¼ $

!
dQ

dx

" @cV$1=d

Vd
: (11)

The Stefan-Boltzmann expression for the internal energy
U is a consequence of the equation of state and the ther-
modynamic relation ð@U@VÞT ¼ Tð@P@TÞV $ P, while noticing
from (11) that P depends on T only, in the thermodynamic
limit. We then obtain U ¼ aVTdþ1, where a is a constant
to be determined from (6). Also, the entropy,

S ¼ kBU=T þ kB lnZðT; VÞ ¼ xQ0ðxÞdþQðxÞ; (12)

depends only on the dimensionless parameter x, so that an
adiabatic (isentropic) expansion of the radiation occurs at
constant values of the product VTd.
For blackbody radiation in manifolds of complicated

shape, it is difficult to make an explicit mode decomposi-
tion and find an explicit expression like (8) for the heat
kernel trace. However, (9) continues to hold. We can learn
about the thermodynamic [large volume] limit from the
Weyl expansion of the heat kernel trace, described below.
Note that the large volume limit corresponds to V ' Ld

#,

which is a high temperature limit kBT ' @c=V1=d. This
probes the small ! behavior ofKMð!Þ for which a general
asymptotic expansion is known:

KMðL2
#!Þ(

V

ð4"L2
#!Þd=2

$%
S

ð4"L2
#!Þðd$1Þ=2þ))) (13)

where V is the radiation cavity volume, S is the surface
area, and % is a numerical constant depending on the
boundary conditions. Higher-order terms in the expansion
characterize other geometric and topological properties
such as the curvature of the surface [11,17]. Keeping
only the dominant volume term in (13), expression (6)
leads immediately to the familiar thermodynamic expres-
sions [4]: lnZ ¼ ðV=Ld

#Þ&Rðdþ 1Þ"ðdþ1
2 Þ="ðdþ1Þ=2, P ¼

ðkBT=Ld
#Þ&Rðdþ 1Þ"ðdþ1

2 Þ="ðdþ1Þ=2. Away from the ther-

modynamic limit, subdominant terms in (13) lead to cor-
rections that depend on the exact geometry of the volume
enclosing the radiation, but the equation of state PV ¼
U=d is always valid. This formulation in terms of heat
kernels makes it clear that the Weyl expansion is directly
related to the thermodynamic limit of a blackbody radia-
tion system, so we can use the leading term as a definition
of the volume probed by the photons as they attain thermal
equilibrium.
We now turn to fractals, and make use of recent progress

concerning the heat kernel trace on fractals [1,2,5–7].
While it is familiar that fractals have a nontrivial fractal
(Hausdorff) dimension dh, arising from their self-similar
spatial structure, it is perhaps less well-known that fractals
are characterized by another dimension, known as the
‘‘spectral dimension’’ ds, which need not be equal to dh
[8]. Indeed, diffusion on fractals is ‘‘anomalous’’ in the
sense that the Einstein Brownian motion relation, hr2ðtÞi/
t, for long enough times, is replaced on a fractal by
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hr2ðtÞi / t2=dw , where dw ¼ 2dh=ds is called the ‘‘anoma-
lous random walk dimension’’ [8]. For many fractals,
including well-studied cases such as the Sierpinski gaskets
or diamonds, the small ! limit of the heat kernel trace is
more complicated than the Weyl expansion expression
in (13). The heat kernel trace KF ð!Þ, on a fractal F , for

the dimensionless Laplacian ~!, behaves as KF ð!Þ ¼
!$ds=2Fð!Þ, where F is a periodic function of ln! [5].
The typical small ! behavior is shown in Fig. 1. The
leading small ! behavior, KF ð!Þ % !$ds=2, is determined
by the spectral dimension ds, but there are also oscillations
around this leading behavior, and these oscillations are
typically very small. Explicit expressions for this oscilla-
tory behavior are given in [6] for diamond fractals, and
numerical results for the Sierpinski gasket appear in [7].
Restoring units for the Laplacian, there exists a character-
istic length Ls (a ‘‘spectral length’’) such that,

KF ð!Þ ¼
!
L2
s

L2
"!

"
ds=2

FðL2
"!=L

2
sÞ: (14)

Inserting this expression into (6) leads to (1) for the parti-
tion function lnZ.

The first important conclusion from this result is that the
thermodynamic volume is determined by the spectral di-
mension ds rather than the fractal dimension dh. So, we
define the thermodynamic volume of the fractal to be the

‘‘spectral volume:’’ Vs ¼ bLds
s , where b is a numerical

coefficient that we specify in detail below. This implies
that the thermodynamic equation of state on a fractal is

PVs ¼
1

ds
U (15)

and according to (12), adiabatic (isentropic) transformation
on fractals occur at constant values of the product VsT

ds .
The second important conclusion is that the actual expres-
sions for pressure P, internal energy U, etc., will be modi-
fied on a fractal, not only by the appearance of the spectral

dimension and spectral volume, but also by the appearance
of oscillatory terms arising from the behavior of the log
periodic function F in (14).
In order to make this more explicit, and to give the actual

numerical coefficient appearing in the spectral volume, it is
convenient to make a Mellin transform to convert our
expressions from the heat kernel trace (7) to the associated
(dimensionless) zeta function [18]:

#MðsÞ & TrM
1

ð~!Þs
¼ 1

"ðsÞ
Z 1

0

d!

!
!sTre$

~!! (16)

with inverse (C is the usual inverse Mellin contour)

KMðL2
"!Þ ¼

1

2$i

Z
C
ds
!
L

L"

"
2s
#MðsÞ"ðsÞ!$s: (17)

Straightforward manipulations show that the partition
function can now be expressed as

lnZðT; VÞ ¼ $ 1

2

!
L"

L

"
#M

!
$ 1

2

"

þ 1

$i

Z
C

!
L

L"

"
2s
"ð2sÞ#Rð2sþ 1Þ#MðsÞds:

(18)

The first term gives the standard zero temperature ‘‘vac-
uum energy’’ contribution [13], proportional to #Mð$ 1

2Þ,
which has recently been generalized to quantum graphs
[19]. On a fractalF , our thermodynamical analysis gives a
simple expression for the Casimir energy:

E0 ¼
1

2

@c
Ls

#F

!
$ 1

2

"
: (19)

The second term in (18) encodes finite temperature correc-
tions to the internal energy U; the Riemann zeta factor
#Rð2sþ 1Þ arises from the sum over Matsubara modes.
On a regular manifold M, the zeta function #MðsÞ is a

meromorphic function in the complex plane with simple
poles on the real axis. The pole with largest real part is at
s ¼ d=2, and gives the leading term in the Weyl expansion
(13). Thus, we find a natural thermodynamical definition of
the volume in terms of the residue of #MðsÞ at this pole:
V ¼ ð4$Þd=2"ðd=2ÞLdResðd=2Þ. Depending on the form of
the manifold, and the boundary conditions, there may be
other poles on the real axis, and these determine the sub-
leading terms in (13). When the spatial manifold M is a
fractal, the situation is radically different [2,5,20,21]: the
zeta function of the (dimensionless) Laplacian ~! has also
been shown to be meromorphic in the complex s plane,
with simple poles, but now the poles can be complex, as
illustrated in Fig. 2. The pole with the largest real part lies
on the real axis at s ¼ ds=2, where ds is the spectral
dimension. This pole leads to the dominant behavior,
shown in the prefactor in (14), and provides the definition
of the spectral volume:

Vs & ð4$Þds=2"
!
ds
2

"
Lds
s Res

!
ds
2

"
: (20)

FIG. 1 (color online). Typical small ! behavior of a fractal heat
kernel trace. There are small oscillations [see inset], as a func-
tion of ln!, about the leading behavior %1=!ds=2.
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In addition, there is an infinite tower of complex poles with
the same real part:

sm ¼ ds
2
þ 2i!m

dw lnl
; m 2 Z; (21)

where l denotes the number of pieces the basic fractal unit
is split into in each iteration [6,20,21]. These complex
poles are the origin of the log periodic oscillations in
(14), and have been identified with complex dimensions
for fractals [2,20]. Explicit expressions for the zeta func-
tion on diamond fractals lead to simple expressions for
these poles and their residues [6]. Integral representations
have been given in [21] for the zeta function on other
fractals, including the Sierpinski gaskets. In [6] it was
argued that the origin of these complex poles is the appear-
ance of exponential degeneracy factors, rather than power-
law degeneracy factors that appear for regular manifolds.

To conclude, we have shown that the thermodynamical
volume of a fractal is determined by the spectral dimension
and the ‘‘spectral volume’’ defined in (20), and furthermore
that thermodynamical relations will have small oscillatory
behavior in the thermodynamic limit. These two properties
serve as direct and clear evidence of an underlying fractal
structure. To observe such phenomena, we propose
studies of thermalization of photons in fractal-shaped
(e.g., Sierpinski) mesoscopic waveguides. Of course, one
cannot fabricate such a waveguide to all orders of fractal
iteration, and the photon wavelength sets a natural cutoff
scale. However, computations show that the role of the
spectral dimension, and even the oscillatory behavior from
the complex poles, can be seen after only about five
iterations, which should be accessible. A similar argument
appears in [22]. Another interesting example is provided
by systems such as a Fibonacci distribution of dielectric
layers [23], whose spatial structure is not fractal, but whose
energy spectrum is given by a fractal triadic Cantor set.
The study of such layered structures would be significant,

because here the geometric volume is well defined, and
nonfractal; but we predict that the thermodynamically
significant volume is the spectral volume.
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FIG. 2. The generic pole structure of the zeta function on a
symmetric fractal [20,21]. The dominant behavior comes from
the real pole at s ¼ ds=2, and oscillations from the tower of
complex poles in (21). There may be other poles in the shaded
region to the left of this tower, but these do not contribute to the
thermodynamic limit. On the Sierpinksi gasket, there is another
tower of complex poles on the imaginary axis.
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