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Recently, a macroscopic theory of N-channel disordered conductors treated the evolution (with the
length L) of the probability distribution of the transfer matrix for the full conductor and allowed a
theoretical description of the universal conductance fluctuations. Those results are used here to calculate
the correlation function between transmission as well as reflection coefficients: In the case L>> W (width
of the sample), the former essentially coincides with the one obtained from microscopic perturbative cal-
culations. The latter, on the other hand, is a prediction of the present model.
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Much effort has recently been devoted to the under-
standing of the intensity fluctuations of waves multiply
scattered from disordered media. In quantum electronic
transport, multiple scattering leads to anomalously large
(the so-called “universal”) conductance fluctuations'™®
(UCF): The variance of the dimensionless conductance
g (in units of e?/h) is of order unity and, to a large ex-
tent, does not depend on the size of the sample nor on
the degree of disorder. Multiple scattering is equally im-
portant in light propagation through a random medium,
where it is responsible for various effects in intensity
statistics (the speckle pattern).®!%!' It turns out,' for
instance, that the variance of the transmission coefficient
Ty=X,T, (towards the right, say, when a single mode
b is excited on the left) is of the order //NL, which is
again much larger than what a naive statistical con-
sideration would suggest. Here / is the (elastic) mean
free path, L the length of the system, and N the total
number of channels.

Another interesting fact was pointed out is Refs. 3 and
5: The naive assumption that (in the N>>1 limit) the
various transmission factors T, are statistically inde-
pendent violates the notion of UCF. It was then suggest-
ed in Ref. 5 that lack of correlation between reflection
factors R, might be consistent with UCF. The correla-
tion coefficient C‘,Tl,ya'b' between T, and T, was explicit-
ly evaluated later,® by use of diagrammatic perturbation
theory. As far as we know, there is no explicit evaluation
of the correlation coefficient CJ .5 between reflection
factors.

The standard theoretical description of the above-
mentioned problems, usually based on a perturbative
treatment or on numerical simulations, is of a micro-
scopic nature. In Refs. 3 and 7-9, on the other hand,
the input to the analysis is the transfer matrix for the
full conductor: The approach was thereby named mac-
roscopic in Refs. 8 and 9. The theory of Ref. 8 is based
on the properties of flux conservation, time-reversal in-

variance, and the appropriate combination law when two
wires are put together. The distribution associated with
systems of very small length is selected on the basis of a
maximum-entropy criterion; the combination law then
shows that the “evolution” of the distribution with the
length L is governed by a Fokker-Planck or diffusion
equation in IV dimensions. In Ref. 9 it was shown that
for quasi-1D systems [L>>W (width of the sample)l,
UCF are a consequence of the theory of Ref. 8. It thus
appears that, at least in this context, the macroscopic ap-
proach contains the same physical information as the de-
tailed microscopic calculations.

In the present Letter we shall first be concerned with
the calculation of the correlation coefficient CJj %' be-
tween transmission factors, within the macroscopic ap-
proach of Refs. 8 and 9. We show that for quasi-1D sys-
tems the result essentially coincides with the one ob-
tained from the microscopic calculation of Ref. 6. We
then extend the analysis to the study of the reflection
coefficients. We show that (R,;) is enhanced by a factor
of 2 in the backward direction, a result interpreted as a
weak localization effect. We finally calculate the corre-
lation coefficient C‘ﬁ,,a'b' and contrast these new results
with the behavior suggested in Ref. 5.

Let the disordered system be placed between two per-
fect leads: There, the quantized transverse states define
N channels for propagating modes, so that the wave
function is specified by a 2N-component vector. The
transfer matrix R relates the vector on the right with
that on the left. Under the restrictions of flux conserva-
tion and time-reversal invariance, an % matrix can be
represented in the form®

[u 0| [a+nz a1
ﬁ‘

v 0
11/2 (1+x)l/2 0 v*|’ (1)

where u,v are arbitrary VXN unitary matrices and A is
a real, diagonal matrix with N positive elements

0 u*
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AL, ...,An. One can write the various quantities of in-
terest in terms of the parameters of Eq. (1). For in-
stance, the N XN transmission and reflection matrices
(when incidence is from the left) are given by

r=u(1+1) "2, (2)
y=—vT[l/(1+A)]l/zv. 3)

An ensemble of 7R matrices is described by the
differential probability® dP; (R) =p;(R)du(R), where
L is the length of the system and du(R), the invariant
measure associated with the group of #’s, is given
by JA)ITadradu(u)du(), where JA)=ITa<s|na
—xs |, and du(u) [and du(v)] is the invariant measure
of the unitary group U(N). In Ref. 8 the probability
density p; () was considered to be isotropic, i.e., in-
dependent of the unitary matrices u,v of Eq. (1) and
dependent only upon A=, ...,An): pr(R)=p (A).
Without making use of any specific statistical distribu-
tion p; (A), we shall see that just from the isotropic as-
sumption we can obtain the structure of the averages
and correlations of transmission and reflection factors, as
a function of channel indices. Specific values for the
various coefficients will then be taken from the results of
Ref. 9, based on the diffusion equation that p; (A) must
obey.

The transmission factor T, is defined as | tas | 2t
being the ab matrix element of Eq. (2). Its average is
given by

(Tap) =X 0 MEEMH((1,75) /), (4)

where 7,=(1+21,) ~!. The last factor in Eq. (4) is an
average performed with p; (1), for which we need not be
more specific for the time being. The factors M occur-
ring in Eq. (4) are a particular case of the general aver-
age 202!

aay, ..., Ay Ay
1‘111,%1{l ..... az,'a,,,
=(ugrq - Uy W ttara, "+ Ugpa,) o, (5)

performed with the invariant measure of the unitary
group (indicated by the index 0). In Ref. 20 it is shown
that

Mz =N —150’05,,'“, (6)
so that Eq. (4) becomes
(Tap) =N ~XT), 7

where T =2, T. is the total transmission factor into all
channels, when the incident channels are fed with N in-
coherent unit fluxes.

Next we calculate, from Eq. (2), the crossed second
moment

- ! b,Bb’
(TopTap) = Z aaa b M5 (ratptat) V21

aBa'p’
(8)

In Refs. 20 and 21 the M coefficients of Eq. (8) are
shown to be

MRy =(N2—1) "1 (s26bs28f+ 8L666865) — N ~ (N2 —1) (5864855 + 55565368). )

The correlation coefficient Cly o5 =(T s Ta's?) —{TapXX T can now be calculated, with the result

Chay=(N?=1)"HIA+N 2KTH —2N “KT)1180a8sp + (U +N "2)(T) —2N “KT 2 1(8,0+ bs7)

+varT+N “XT2, 42N "X} =N "XTf—2N KT 13, (10)

Here we have defined T,=X,(1+1,) 2. Equation (10) is exact. As a check, we can easily verify that the sum of
(10) over a,b,a’,b’ gives precisely varT.

In Ref. 6, Egs. (3), three types of terms are also obtained: If we set W < L (quasi-1D systems), they are seen to have
essentially the structure provided by the & functions of our Eq. (10). The difference is that our Kronecker &’s (that we
can write as 845’ =8aq, =0, With Ag; = |ga—ga'| [ga being the transverse wave vector labeling the channel (the eigen-
mode) a] are replaced by some “smeared” (on a distance Aqg~1/L) & functions in Ref. 6.

The above conclusions made use of the isotropy assumption only. To be more specific about the coefficients of the &
functions in Eq. (10), we now use the results of Ref. 9, where the diffusion equation satisfied by p; (A) was employed.
To leading order in N>> 1, and for s=L/I> 1, it was shown in Ref. 9 that (T); = N/s, (T, = (N/s)? varT = %,
and (Ty); = 3 N/s. Within these same approximations, Eq. (10) becomes

Cloay =Tap) AT ap) [8aabppy+ 3TV " (Sga+8pp) + 5T, (1)

in agreement with Eqgs. (3) of Ref. 6 when W< L.

Thus, while our approach may miss some subtle correlations between nearby the same channels, it does correctly de-
scribe the “global” fluctuations in transmission and conductance. Assume, for instance, that a single mode, b, is excited
on the left and we are interested in fluctuations of T, and T, =X, T, which represent, respectively, the transmission
coefficient to a single channel a and to all channels on the right. From (11) we find varTa, =(T)? just as in Eq. (5)
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of Ref. 5, and varTb=%N_1s_l, in agreement with
Refs. 6 and 17.

We now turn to the study of the reflection coefficient
Rap =|ras |2, rap being the ab matrix element of Eq. (3).
The average of Ry is given by

(Rap) = o MEE (popp) V)1, (12)
where p, =A,(1+2,) ~!. Making use of Eq. (9) we have
(Rap)=(1+68,4)N "'(N+1) “KR),, (13)

R being the total reflection coefficient X.,5Rz5. Result
(13) means that backward scattering to the same chan-
nel is enhanced by a factor of 2 as compared with the
scattering to any other channel. Except for a smeared-

CR. ot =(RapX Ry (1 +845) ~1(8008b'+ 8apSas) + (R (8a58a'b'Saa’ — Saa’ — St — Sab' — pa’) + 2 (R 2],

We can easily verify that the sum of (15) over a,b,a’,b’
gives & =varR =varT. From Eq. (15) we also find the
fluctuation of R, as varRz =(Rg)? just as in Eq. (10)
of Ref. 5.

We see from Eq. (15) that we are not entitled to
neglect correlations between reflection coefficients (as
was suggested in Ref. 5), any more than we are in the
case of transmission coefficients. In particular, both have
a “long-range” term (the one with no Kronecker &’s) of
the same order of magnitude: 3 N ~*and 5N 4 re-
spectively. We emphasize the consistency between the
results of Egs. (11) and (15): They are a consequence of
the same model and, indeed, give rise to the same value
for the UCF.

It would be very nice if one could measure, probably
in optical experiments, the correlations studied above,
which, as we saw, have expressions that are far from ob-
vious.

Finally, we make a few comments on the validity of
the model that we are employing.

The isotropy assumption seems reasonable and is
mathematically very convenient, but it cannot hold gen-
erally. Indeed, it is not surprising that the model gives
excellent results for the quasi-1D case (L>W). If we
think of the channels as localized in real space, it is clear
that the condition L>> W is necessary for perfect mixing
of channels: Indeed, when L < W, there can be no cou-
pling between a channel close to the upper corner on the
left side and a channel close to the lower corner on the
opposite side, so that the isotropy assumption fails. We
also remark that in obtaining moments of 7T in Ref. 9,
one has to assume N/s =NI//L>>1 (otherwise the expan-
sion made there is not valid), so that L must be much
smaller than the 1D localization length & ~ N/ in the
wire (this is a necessary condition for the metallic re-
gime). We thus have a lower and an upper bound for
the validity of the model: W <L < (kgW)4~ 1.

In 2D there is the additional requirement that W
should be smaller than the 2D localization length

out cone, just as we mentioned after Eq. (10), this is pre-
cisely the enhanced backscattering predicted by weak-
localization theory.?? From (R)=N—(T) and’® (T)
=Ns !, Eq. (13) becomes, for N> 1, (1+8,)N ~'(1
—s 1), just as in Eq. (12) of Ref. 5, with the backward
enhancement included.

We can similarly calculate the crossed second moment

(RapRatp) = ;;p,mg;z BB (papppapp) )i, (14)
The M factor needed in Eq. (14) was calculated in Ref.
21. We merely present here the result for the correlation
coefficient CX ov' =(RapRyp? — (RapXRyp?), giving, for
the coefficient of each § function, the term to leading or-
der in NV and in the limit s> 1:

(15)

&y~lexp(kgl). This is again natural, since pieces of
size larger than &; are essentially decoupled from each
other, so that in 2D the isotropy assumption fails at a
scale larger than &;.

How to relax the condition of isotropy in order to ex-
tend the range of validity of our approach is still not
clear at this moment.

Another question, which was already mentioned in the
text, is how to improve on our Kronecker &’s in the chan-
nel indices and get a “smeared-out cone,” as in micro-
scopic calculations. This question is perhaps related
once again to the isotropy assumption: Indeed, we saw
that this assumption alone gives rise to the § functions.

The study of these questions will have to be left for the
future.
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