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Effect of Superradiance on Transport of Diffusing Photons in Cold Atomic Gases
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We show that in atomic gases cooperative effects like superradiance and subradiance lead to a potential
between two atoms that decays like 1=r. In the case of superradiance, this potential is attractive for close
enough atoms and can be interpreted as a coherent mesoscopic effect. The contribution of superradiant
pairs to multiple scattering properties of a dilute gas, such as photon elastic mean free path and group
velocity, is significantly different from that of independent atoms. We discuss the conditions under which
these effects may be observed and compare our results to recent experiments on photon transport in cold
atomic gases.

DOI: 10.1103/PhysRevLett.96.093601 PACS numbers: 42.50.Fx, 32.80.Pj, 42.25.Dd
The issue of coherent multiple scattering of photons in
cold atomic gases is important since it presents a path
towards the onset of Anderson localization transition, a
long standing and still open issue. The large resonant
scattering cross section of photons reduces the elastic
mean free path to values comparable to the photon wave-
length for which the weak disorder approximation breaks
down, thus signaling the onset of Anderson localization
transition [1,2]. Another advantage of cold atomic gases is
that sources of decoherence and inelastic scattering such as
Doppler broadening can be neglected. Moreover, propaga-
tion of photons in atomic gases differs from the case of
electrons in disordered metals or of electromagnetic waves
in suspensions of classical scatterers for which mesoscopic
effects and Anderson localization have been thoroughly
investigated [1]. This problem is then of great interest since
it may raise new issues in the Anderson problem such as
change of universality class and, therefore, new critical
behavior. New features displayed by the photon-atom
problem are the existence of internal degrees of freedom
(Zeeman sublevels) and cooperative effects such as sub-
radiance or superradiance that lead to effective interactions
between atoms [3]. These two differences may lead to
qualitative changes of both mesoscopic quantities and
Anderson localization. Some of the effects of a Zeeman
degeneracy have been investigated in the weak disorder
limit [4] using a set of finite phase coherence times [5]
which reduce mesoscopic effects, such as coherent back-
scattering [1,6]. The aim of this Letter is to investigate the
influence of cooperative effects and more specifically of
superradiance on the multiple scattering of photons. We
show that two atoms in a Dicke superradiant state [7]
interact by means of a potential which, once averaged
over disorder configurations, is attractive at short distances
and decays like 1=r. This potential, analogous to the one
considered in [8,9], has important consequences on trans-
port properties since the contribution of superradiant pairs
of atoms in a dilute gas provides smaller values of both
group velocity and diffusion coefficient so that the photons
become closer to the edge of Anderson localization.
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Atoms are taken as degenerate two-level systems de-
noted by jgi � jjg � 0; mg � 0i for the ground state and
jei � jje � 1; mei for the excited state, where j is the total
angular momentum and m is its projection on the quanti-
zation axis, taken as the ẑ axis. The energy separation
between the two levels including radiative shift is @!0

and the natural width of the excited level is @�. We con-
sider a pair of such atoms in an external radiation field and
the corresponding Hamiltonian is H � H0 � V, with
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2
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X
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@!ka
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k"ak"; (1)

ak" (ayk") is the annihilation (creation) operator of a mode
of the field of wave vector k, polarization "̂k, and angular
frequency !k � cjkj. The interaction V between the ra-
diation field and the dipole moments of the atoms may be
written as

V � �d1 �E�r1� � d2 �E�r2�; (2)

where dl is the electric dipole moment operator of the lth
atom and E�r� is the electric field operator.

The absorption of a photon by a pair of atoms in their
ground state leads to a configuration where the two atoms,
one excited and the second in its ground state, have mul-
tiple exchange of a photon, giving rise to an effective
interaction potential and to a modified lifetime as com-
pared to independent atoms. These two quantities are
obtained from the matrix elements of the evolution opera-
tor U�t� between states such as jg1e2; 0i. There are six
unperturbed and degenerate states with no photon, given by
fjg1e2i; 0i; je1jg2; 0ig in a standard basis where i; j �
�1; 0; 1. The symmetries of the Hamiltonian, namely, its
invariance by rotation around the axis between the two
atoms, and by reflection with respect to a plane containing
this axis, allows one to find combinations of these states
that are given by j��

i i �
1��
2
p �je1ig2; 0i � �jg1e2i; 0i� with

� � 	1, so that h��0
j jU�t�j�

�
i i � �ij���0S�i �t� and
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S�i �t� � he1ig2; 0jU�t�je1ig2; 0i

� �hg1e2i; 0jU�t�je1ig2; 0i: (3)

The states j��
i i are the well-known Dicke states, otherwise

defined as jLMi, where L is the cooperation number andM
is half of the total atomic inversion [7] so that j��i i � j10i
and j��i i � j00i. For large times, t
 r=c, where r is the
distance between the two atoms, up to second order in the
coupling to the radiation, we obtain that

S�i �t� ’ 1�
it
@

�
�E�i � i

@��i
2

�
: (4)

The two real quantities �E�i and ��i are, respectively, the
interacting potential and the probability per unit time of
emission of a photon by the two atoms in a Dicke state
j��

i i. A standard calculation [10] gives
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where k0 � !0=c. We have defined pi � 1� r̂2
i and qi �

1� 3r̂2
i , r̂ being a unit vector along the two atoms. At short

distance k0r� 1, we obtain that ��i � 2� for the super-
radiant state j��i i � j10i and ��i � 0 for the subradiant
state j��i i � j00i.

For a photon of wave vector k incident on an atomic
cloud, the potential we shall denote by Ve is obtained by
averaging upon the random orientations of the pairs of
atoms. Since hqii � 0 and hpii � 2=3 regardless of i, we
obtain for the average potential Ve

�Ve�r� � h�E
�
i i � ��

@�

2

cosk0r
k0r

(7)

and the average inverse lifetimes of Dicke states are

h��i i � �
�

1� �
sink0r
k0r

�
; (8)

which retains the same features as (6) for k0r� 1.
Let us characterize the interaction potential Ve. Whereas

for a single pair of atoms, the potential (5) is anisotropic
and decays at short distance like 1=r3, a behavior that
originates from the transverse part of the photon propaga-
tor, we obtain that on average over angular configurations,
the potential (7) between two atoms in a Dicke stateM � 0
becomes isotropic and decays like 1=r. This behavior is
also obtained by considering the interaction of two-level
atoms with a scalar wave. This could have been anticipated
since the transverse contribution qi to the photon propa-
gator averages to 0. A similar expression for the interacting
potential has been obtained for the case of an intense
radiation field [8,9]. But this latter potential is fourth order
in the coupling to the radiation and it corresponds to the
09360
interaction energy between two atoms in their ground state
in the presence of at least one photon. The average poten-
tial Ve we have obtained is different. It is second order in
the coupling to the radiation and it corresponds to the
interaction energy of Dicke states M � 0 in vacuum.

We turn now to scattering properties of Dicke states. The
collision operator is given by T�z� � V � VG�z�V, where
V is given by (2) and G�z� is the resolvent whose expec-
tation value in a Dicke state M � 0 is obtained by a
summation of the series of exchange of a virtual photon
between the two atoms. The matrix element that describes
the transition from the initial state jii � j1� 1; k"̂i where
the two atoms are in their ground state in the presence of a
photon �k"̂� to the final state, jfi � j1� 1; k0"̂0i, is the
sum of the superradiant and subradiant contributions, T �
T� � T�, with T	 � hfjVj�	ih�	jG�!�!0�j�

	i�
h�	jVjii [11]. A standard derivation leads to the following
expressions for the average amplitudes T	e

T�e � Aei�k�k0��R cos
�
k � r

2

�
cos

�
k0 � r

2

�
G�e (9)

and

T�e � Aei�k�k0��R sin
�
k � r

2

�
sin
�
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2

�
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We have defined r � r1 � r2, R � �r1 � r2�=2, and A �
@!
�0� d

2�êj � "̂��ê


j � "̂

0
� (d is a reduced matrix element and
� the quantization volume). The average propagators G	e
associated, respectively, to the superradiant and subradiant
states are,

G	e � h�	jG���j�	i �
1

@��� i �
2 	

�
2
eik0r

k0r
�
; (11)

where close to resonance, � � !�!0 � !0 and where
we have used (7) and (8) for the average potential and for
the average inverse lifetimes. At short distances k0r� 1,
the subradiant amplitude T�e becomes negligible as com-
pared to the superradiant term (9). Therefore, the potential
(7) is attractive and decays like 1=r. We can interpret these
results by saying that, at short distances �k0r� 1�, the
time evolution of the initial state j �0�i � je1; g2; 0i �
1��
2
p �j��i � j��i� corresponds for times shorter than 1=�

to a periodic exchange of a virtual photon between the two
atoms at the Rabi frequency �h�E�i � h�E�i�=@ ’
�=�k0r� which is much larger than �. For larger times,
the two atoms return to their ground state and a real photon
(k0"̂0) is emitted. At large distances (k0r
 1), the Rabi
frequency becomes smaller than �, so that the excitation
energy makes only a few oscillations between the two
atoms, thus leading to a negligible interaction potential
[12].

It is interesting to derive the previous results in another
way that emphasizes the analogy with weak localization
corrections [1,2].
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To that purpose, we write the scattering amplitude T
defined previously as a superposition of two scalar ampli-
tudes T1 and T2 [13], each of them being a sum of single
scattering and double scattering contributions, that is

T1 �
t

1� t2G2
0

�ei�k�k0��r1 � tG0ei�k�r1�k0�r2�� (12)

and

T2 �
t

1� t2G2
0

�ei�k�k0��r2 � tG0e
i�k�r2�k0�r1��: (13)

Here t � �2��=k0�=��� i�=2� is the amplitude of a scalar
wave scattered by a single atom at the origin and the
prefactor t=�1� t2G2

0� where G0 � �e
ik0r=4�r accounts

for the summation of the series of virtual photon exchange
between the two scatterers. We single out in the total
amplitude T � T1 � T2, the single scattering contribution
Ts, and write the intensity associated to the double scatter-
ing term shown in Fig. 1 as

jT � Tsj2 � 2

�������� t2G0

1� t2G2
0

��������
2
�1� cos�k� k0� � �r1 � r2��:

(14)

We recognize in the bracket the well-known Cooperon
interference term which is at the basis of coherent effects
in quantum mesoscopic systems such as weak localization
and coherent backscattering [1,2,6]. The interference term
reaches its maximum value 1 for r1 � r2 so that we obtain
from (12) and (13) that T1 � T2 / �1=2�T�e , up to a pro-
portionality factor [13]. Thus, the total amplitude is exactly
given by the superradiant term with no subradiant
contribution.

We consider now multiple scattering of a photon by
superradiant pairs built out of atoms separated by a dis-
tance r and coupled by the attractive interaction potential
Ve. This situation corresponds to a dilute gas that fulfills
r� �0 � n�1=3

i , where ni is the density of pairs and �0 �
2�=k0 is the atomic transition wavelength. Based on this
inequality, we may consider the two atoms that form a
superradiant pair through exchange of a virtual photon as
an effective scatterer and neglect cooperative interactions
k

k'

1

2

k'

k

FIG. 1. Diagrammatic representation of the two amplitudes
that describe double scattering of a scalar wave. The wavy line
accounts for the photon exchange between the two atoms. This
diagram is known in quantum mesoscopic physics as a
Cooperon.
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between otherwise well-separated pairs. The photon be-
havior is described by the configuration average of its
Green’s function, whose expression is obtained from a
standard derivation [1]. In the limit of large enough den-
sities of weakly scattering pairs, it reduces to the calcula-
tion of a self-energy given in terms of the average
propagator (11) by

�
�1�
e �

6�@�ni
k0

G�e �
6�ni
k0rm

Z rm

0

dr
�
��

1
2k0r
� i

: (15)

The average, denoted by . . ., is taken over distances r up to
a maximal value rm � k�1

0 which accounts for all possible
mechanisms that may break those pairs. In the considered
limit, the density of the gas can be assimilated to that of the
pairs. The imaginary part of ��1�e defines the elastic mean
free path le by k0=le � �Im��1�e , namely,

1

le
�

3�ni
k2

0

1

k0rm

Z 2k0rm

0

dx

1� ����
1
x�

2
: (16)

It is interesting to compare le to the mean free path l0 �
k2

0

6�ni
�1� �2�=��2� that corresponds to near resonant elastic

scattering of a photon by independent atoms. At resonance
�� � 0�, we have l0=le �

4
3 �k0rm�2 � 1. Away from reso-

nance, the elastic mean free path le becomes smaller than l0
and for blue detuning it is reduced in a ratio roughly given
by 1=�k0rm�

2.
Another important physical quantity is the group veloc-

ity vg given in terms of the refraction index � by c=vg �

��! d�
d! . Since ��1�e is proportional to the polarizability,

the refraction index depends on its real part, namely � �
�1� �c=!�2 Re��1�e �

1=2. From (15), we notice that � ’ 1
for all values of the detuning �=� and in a large range of
densities ni so that

c
vg
� 1�

ni
nc

1

2k0rm
f
�
k0rm;

�
�

�
; (17)

where we have defined nc � �k3
0=6�� �

!0
and the function

f�k0rm;�� �
Z 2k0rm

0
dx

1� ��� 1
x�

2

�1� ��� 1
x�

2�2
: (18)

This expression of vg diverges at a large and negative value
of the detuning �

� ’ �1=�2k0rm� and beyond it takes both
positive and negative values. Otherwise it is well behaved,
meaning that it remains finite and positive for all values of
the density ni. At resonance, the group velocity is

c
vg
� 1�

4�ni
k3

0

!0

�
�k0rm�2: (19)

The present expression of vg differs substantially from
the one obtained for light interaction with independent
two-level atoms. There, for densities ni > nc where nc
defined above is usually overwhelmingly small, the group
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velocity is known to diverge at two symmetric values of the
detuning of order unity and takes negative values in be-
tween (i.e., also at resonance). For instance, in a gas of
85Rb atoms, where ni � 6� 1010 cm�3, �0 � 780 nm,
and �

2� � 5:9 MHz, we have ni=nc ’ 105. The validity of
the concept of group velocity in such systems has thus been
often questioned [14] and an energy velocity has been
defined which describes energy transport through a diffu-
sive medium [15].

Transport of photons through a diffusing gas is charac-
terized by the diffusion coefficient D � 1

3vgle that com-
bines the elastic mean free path and the group velocity
[1,16], both derived from the complex valued self-energy
(15). The diffusion coefficient D is of great importance
since it enters in expressions of all measured physical
quantities such as reflection and transmission coefficients,
angular correlations of speckle patterns, time correlation
functions of the intensity (diffusing wave spectroscopy),
etc. [1]. Moreover, the critical behavior of transport close
to Anderson localization transition at strong disorder is
also obtained from the scaling form of D. Its expression,
deduced from (16) and (17), depends on the range rm and
on the detuning �=�. Since the group velocity and the
elastic mean free path are significantly modified for the
case of superradiant pairs, we thus expect the diffusion
coefficient to be different from its value obtained for
independent atoms. We also define the transport time by
�tr��� � le=vg � 3D=v2

g. At resonance, it can be rewritten
with the help of (19) as �tr�0� �

1
2� which is consistent with

our considering of superradiant pairs. We would like never-
theless to call attention to the fact that, away from reso-
nance, �tr��� depends on frequency.

We now compare our results to recent measurements of
the diffusion coefficient D and of the group velocity vg
obtained for multiple scattering of light at resonance, in a
cold atomic gas of 85Rb [17]. Since the range rm cannot be
directly determined, we first use Eqs. (16) and (17) to
obtain an expression independent of k0rm given by the

ratio �vg=c�2

3D � 8�nc=k
2
0c � 2�=c2. For 85Rb atoms, this

ratio equals 8:2� 10�10 s=m2, which is in good agreement
with the value 4:8� 10�10 s=m2 obtained from measure-
ments of D and vg. Finally, from the previous numerical
expression we deduce for the maximal range of interaction
rm the value k0rm ’ 0:51 also consistent with our assump-
tion of superradiant states. Therefore, multiple scattering
of photons by superradiant pairs provides a relevant
mechanism that needs to be considered, in addition to
others, e.g., scattering by independent atoms, for descrip-
tion of multiple scattering properties of dilute cold atomic
gases.

We have considered multiple scattering of a photon on
pairs of atoms that are in a superradiant state. On average
over disorder configurations, an attractive interaction po-
09360
tential builds up between close enough atoms that decays
like 1=r. The contribution of superradiant pairs, resulting
from this potential, to scattering properties is significantly
different from that of independent atoms. It leads to a well
defined but much smaller group velocity as compared to c
and correlatively to a smaller diffusion coefficient. For
densities considered in recent experiments on cold 85Rb
atoms, the quantity k0le that describes eventually the close-
ness to a localization transition, is reduced at moderate
detunings, by 1 order of magnitude. This effect is expected
to be even stronger for larger densities which could then be
close to the localization edge.
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