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The last few years, a large amount of effort has been devoted to the study of coherent
effects in disordered systems. They essentially dealt with average values over a whole
ensemble of samples and gave rise to the so-called coherent corrections of the weak
localization regime.

Recently, the transport properties of small disordered (mesoscopic) samples were consi-
dered from the view-point of the exact wave configuration (speckle pattern) of a given
realization of the random impurity potential.

A new kind of coherent effects appeared in the statistics of various properties of disordered
samples like for example the universal conductance fluctuations in metals which are size-
_independent. These properties are shown to come from the long-range correlations in the
fluctuations due to the underlying wave-field.

1. Introduction

The aim of this article is to give a brief summary of the works recently
devoted to the study of fluctuations in the propagation of waves or electrons in
random media. It has been known for a long time that a wave propagating in a
random medium gives rise to an irregular intensity pattern (a speckle pattern)
due to the interference of the scattered waves. A huge literature [1] has been
devoted in optics to these patterns in order to obtain the intensity distribution
law of the speckle spots as well as their contrast. Nevertheless, it has been
recently realized [2], in the study of electronic disordered systems of mesos-
copic sizes, that the correlations in speckle patterns are of long-range nature
when multiple scattering occurs. It was shown at the same time that relative
fluctuations of quantities like the total transmitted intensity or the electronic
conductance are much larger than what is predicted by the classical theory [3].
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2. Fluctuations in disordered mesoscopic electronic systems and in speckle
patterns :

Until recently, physicists were very used to the idea that transport coeffi-
cients, like the electrical conductance of a piece of metal, are well described by
average values. For instance a large amount of effort has been devoted to the
study of the conductance of disordered metals in order to compare with the
theoretical predictions of the localization problem [5]. It appeared to be
affected by quantum effects which are now well understood at least in the
weakly scattering regime. Spectacular phase coherent effects like mag-
netoresistance oscillations with period ¢, = h/2e (the Sharvin and Sharvin
effect [6]) are quantitatively explained by means of the weak localization
theory.

The first deviations from the use of averages to characterize completely
disordered systems came from experiments done on sub-micron normal metal
samples [7]. These systems of so-called mesoscopic size are good metals, like
Au-Pd for instance. This means that their average electrical conductance is
very large compared to, say, e’h, or in other words the elastic mean free path is
such that kp/>1. These samples are studied at low temperature (typically
between 10 and 100 mK) in order the inelastic scattering length L, =1 pm to
be larger than their size. The first experiments [8] on these mesoscopic systems
consist in measuring their conductance when varying the applied magnetic field
in different geometries. The first one is a ring of diameter roughly equal to
1 pm placed in a magnetic field B such that the electrons in the disordered
metals are affected only by the vector potential A. The Fourier transform of
the measured conductance variations is directly related to the density of closed
electronic trajectories classified according to their trajectories. Among the
various contributions, there is one corresponding to the addition of a flux h/e
through the ring. It is exactly the well-known Aharanov-Bohm effect but in a
disordered system.

The second geometry was used in the experiment done by Benoit et al. [9].
It gives us the voltage fluctuations of a mesoscopic metallic (Sb—Au) sample as
a function of the length between the two-measurement probes. They observed
that for lengths L smaller than the inelastic mean free path (or generically the
phase coherence length L), the total rms voltage fluctuations do not depend
on L, while for L > L, they recovered a classical behavior.

From the observed behavior of these systems, we can deduce some very
characteristic and unusual features.

i) The noisy-like structure observed on the aperiodic part of the conductance
oscillations is time-independent and perfectly reproducible at a given tempera-
ture. It varies when changing the microscopic impurity configuration.



E. Akkermans | Fluctuations in random media 103

ii) There exists a Aharonov—-Bohm effect with h/e periodicity. This implies
interferences between trajectories of electrons which have been scattered many
times, and therefore a long-range phase effect exists at the scale of the length
of the system, i.e. much larger than the elastic mean free path /.

iii) The amplitude of the conductance fluctuations remains very large even
for systems of mesoscopic sizes, much larger than it is predicted classically
(8g/{g) < L™").

iv) The size-independent behavior of the rms voltage fluctuations implies that
transport properties in these systems depend only on L but not on the size L
of the system as far as L <L,.

Let us now describe the counterpart of this kind of experiments in the
domain of electromagnetic waves propagating in solid or liquid suspensions.
Two main systems are usually considered. The first one is an aqueous
suspension of polystyrene beads with high volume fraction (= 10%). The
diameter of the beads used is roughly 0.5 um and the transport elastic mean
free path is /* =20 pm. The wavelength A = 0.5 pm is such that those systems
are equivalent of good metals in the sense that the ratio /A =10? is much
larger than one (weak localization regime). But it is necessary to study these
suspensions at short time scales (typically Ar=100ps) in order to avoid
self-averaging effects due to the thermal Brownian motion of the scatterers
[11]. Another system I shall discuss more in detail is the solid suspension of
TiO, particles embedded in polystyrene considered by Genack and Drake [12].
It has roughly the same characteristics of the liquid solution. The experiment
consists in measuring on a given speckle spot of the total transmitted pattern
the intensity correlation function when varying the wavelength of the incident
laser light. The averaging procedure is realized by summing over many speckle
spots. They showed that this correlation function is exponentially decreasing
with a characteristic frequency Aw = D/L? where D = }vl is the diffusion
constant of the light in the system, while L is its width. This correlation
frequency is much smaller than the expected value 1/7 of speckle patterns
obtained from single-scattering systems.

The net conclusion of all those experimental results would be that the
standard theory of fluctuations in the electronic conductance as well as for
speckle patterns seems to be unable to describe them. Before going further let
us recall the main features of this classical theory.

3. “Classical’’ theory of fluctuations for optical speckle patterns and for
electronic conductance

We consider the situation of a slab of thickness L and surface W containing a
suspension of elastic scatterers. A plane wave of wavelength A is incident on its
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surface and we are interested in the light intensity I, emerging in a given angle
0. It is convenient to introduce the number N of channels given as usual by
N =WI/A? or in other words the total num»er of speckle spots in the pattern.
The emerging intensity I, is the sum of many sources. The relative phase of
those sources can be assumed to be random due to the multiple scattering
inside the medium. Therefore, we can suppose that the amplitudes contributing
to I, are independent random variables leading to

(I5) =2(1,)" . (1)

This gives rise to the well-known Rayleigh distribution for the intensity. From
eq. (1), we can deduce that the speckle contrast between the different spots
given by the relative fluctuation of I, is unity.

We are now interested in the fluctuations of the total intensity defined by

I= ﬁ Iy, (2)

which is the quantity experimentally measured.

Let us now make the fundamental assumption that all the channels are
uncorrelated, which is very reasonable for single scattering situations. There-
fore we obtain for the variance of I

Var I = N(I,)*. (3)

The relative fluctuations of the total intensity or equivalently those of the
transmission coefficient T, for an incident plane wave in the channel b are then
given by the well-known result:

3 _ 8T, 1
Oy "1,y " VN )

where 8/=(Var I)"’>. An equivalent result can be obtained for the relative
fluctuations of the electronic conductance, 8g/( g), under the same assumption
of uncorrelated channels if one remembers that the dimensionless conductance
g (in units of e’/h) can be expressed as a function of the transmission
coefficient according to the Landauer formula

g=§nw (5)

It differs from the previous situation because we have now to sum over all the
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incident channels. The same kind of calculation leads to

% _ 1
(g) N ©)

and

%=1 - (7

These expressions (4), (5) and (6) are in contradiction with experimental
results presented above and lead to the conclusion that the assumption of
independent channels must be seriously revisited.

4. Universal fluctuations and long-range correlations

The theoretical challenge raised by the discrepancy between experiments and
the theory of classical fluctuations results in a large literature. I would like to
sketch briefly what are the three main approaches within which, at least to my
taste, most of this literature can be classified.

The first one is built on the Landauer formulation of the transport in
disordered systems. More precisely earlier works from Azbel [13] and Bttiker
et al. [14] tried to generalize the one channel Landauer formula of the
conductance and proposed at that time that magnetoresistance oscillations with
period h/e corresponding to the usual Aharonov-Bohm effect could be
observable in small rings. Later, a numerical simulation of the magnetoresist-
ance of small wires and rings done by Stone [16] reproduced the experimental
result including the aperiodic fluctuations and the Aharonov-Bohm effect.
These simulations did use the Azbel and Biittiker et al. muitichannel Landauer
formula, which appeared to contain all the relevant ingredients to go beyond
the classical theory.

A second approach developed simultaneously by Altschuller [17] and Lee
and Stone [18] consists in doing a perturbation expansion in the small
parameter (kol)™" as is usually done in the weak localization theory. They
calculated the correlation function of the conductivity o to zeroth order in
(kel)™! with the result

S0’ = (o’ - (a)2)5(§)2L4_d, (8)

where L is the thickness of the sample supposed to be infinite in the other
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directions. From the relation g = oL “~? which is assumed to remain valid for
the random variables themselves, we obtain

% . 1
<g> Ld—-Z (9)

for the relative fluctuations of the dimensionless conductance. Since {g) ~
L% eq. (9) implies that the variance of the conductance 8g is of order unity,
i.e. does not depend on the size L of the sample neither on the disorder
characterized by the elastic mean free path /.

Finally, the third approach based on some properties of the eigenvalues of
large random matrices leads Imry [19] to the conclusion that the number of
independent channels is not N as it was assumed in the classical theory but
N, = NI/L. Inserting this result which takes into account the correlations
between the channels in eq. (8) of the classical theory, one obtains

8g 1 L

tg_> - Neff - Ni ' (10)

From Ohm’s law g = o L% we can calculate ( g) = IN/L so that g = 1, which
coincides with the result of eq. (11) obtained within perturbation theory. The
result given above for N, is strongly related with the experimental result
obtained in optics by Genack and Drake [12]. Starting from their results it is
indeed possible to obtain the above expression for N, . They got the resuit that
the characteristic frequency of the intensity correlation function is Aw = D/ L*
The transmission coefficient or the total intensity for an incident plane wave is
determined by the number W of levels in the bandwidth Aw so that

N=rvVAw, (11)

where v =8m/uA® is the number of energy states per unit energy and unit
volume.
Then, we obtain
8w | W 8nu
N=73 3T =73 Ner (12)

This result shows unambiguously that the classical assumption of uncorrelated
channels fails badly when it is applied to systems undergoing multiple scatter-
ing. Let us also mention that this third approach based on properties of
random matrices was also used to recover the above result and to calculate the
correlation functions between the channels in reflexion and in transmission
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[20]. Actually a slightly different approach [21] using a “maximum entropy”
criterion was proposed in order to obtain the equation of motion of the
probability density of the transfer matrices. Without going into details the
interested reader can find in the proposed references, I prefer to give the final
results which look particularly clear. The correlation function between chan-
nels in transmission defined by C, ... = (T, T,»-) — {T.p){ T,.») is given by

Chwr = {Tup ) Tary Mo 8y + 3(T) (B + 8y ) + H(T) ), (13)

where T, is defined as discussed above as the transmission coefficient of the
intensity for an incident plane wave in the channel a emerging along the
channel b. Moreover, we have (T,,) =I/NL, and ( T') = NI/L is proportional
to the conductance. Finally, let us precise that eq. (13) has been obtained to
leading order in N> 1 and L/[> 1. In reflexion, with obvious notations and in
the same limit one obtains

Ctl}ba'b' = <Rab><Ra’b’>[(1 + aab)(saa’sbb’ + 6ab"sa’z':o)

+ (R>_1(6ab6a’b’8aa’ - 6aa’ - 6bb’ - 6ab' - aba') + %<R>_2] .
(14)

Eq. (13) for CL,,.,. coincides with eq. (3) of ref. [22] in the limit W < L. The
calculations of ref. [22] being obtained via a perturbation expansion according
to what we called the second approach are another confirmation of the
equivalence of the various approaches. Let us now discuss the main features of
eqs. (13) and (14). The first term in the expression of C., . which is the
dominant one is nothing but the familiar local intensity fluctuations of speckle
patterns giving rise to eq. (1). The second term describes long-range spatial
correlations between the channels. It gives the dominant contribution to the
quantity Var 7, which describes fluctuations of the total emergent intensity for
an incident plane wave. We obtain

Var T, = NIL .

[SSTR S

NL (15)

This term was also predicted by Stephen and Cwillich [23] by means of weak
scattering perturbation expansion. Finally, the third term appears to give the
dominant contribution when we are calculating the variance, Var 7, of the total
transmission coefficient summed over all the incident channels or in other
words the variance of the conductance. It gives the already well-known result
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Var T = ¢, The constant which is not universal at all appears in this case to be
equal to 5.

The different contributions appearing in eq. (4) for CL,,.,. cannot be
separated so easily. The first term gives, like for C", the usual speckle
contribution. Let us remark that it reveals the familiar enhanced backscattering
phenomenon [24] when calculating averages. The second and third terms
describe correlations between the reflected channels. It is worthwhile to
remark that Var R, which is the counterpart of Var T or Var g, is determined
by all the terms appearing in eq. (4) and not only by the last one as before.
They all contribute to give Var R = % =Var T which ensures the conservation
of energy. There are corrections to Var R proportional to (/L) and not to I/L
as found by Lee [25] who supposed that the channels in reflexion were not
correlated which strongly contradicts eq. (4). For all results, see table 1.

Table I

Summary of the various regimes obtained respectively from the
classical theory of fluctuations developed in section 3 and from
long-range correlations as explained in section 4. We recall that
38X’ = (X’ - (X)?). The model-dependent numerical value % is
obtained from calculations of ref. [20].

Fluctuations in multiple

Classical theory scattering theory
(T.,) o ~
(T3) 2AT,)’ AT,)’
S L
872 - L
(8) % %
war (2
o yl-g) §0-7)
(RZ) 2(R,,)* 2(R,,)*
or; v-o)

: Ly 2. 0(L)
SR (1 I 15+O‘ I
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5. Conclusion

I have presented in this article a brief and superficial review on this
exploding field of physics now sometimes called ‘“‘mesophysics”. New kinds of
theoretical approaches, actually already in gestation since a long time, were
developed somewhat independently. They are explaining quite well the experi-
ments but the proof of their equivalence needs still a lot of effort.

I would like also to emphasize that optical experiments seem to be more
appropriate to test theoretical predictions since the fluctuations should be
larger due to the fact that we are not integrating over incident channels.
Moreover, the transmission or reflexion coefficients are directly related to the
theory which is not the case for the two-points-conductance expression in
electronic systems as was discussed in section 2.

To conclude on some open problems, I must mention a question related to
the approach of the localization transition, i.e. for { g) ~ e’/h. It seems at first
sight that no modification has to be introduced by universal fluctuations theory
since it gives only numbers independent of any of the characteristics of the
system. Therefore no new scaling parameter is introduced. Nevertheless, it has
been recently predicted [27] that the distribution function of conductance
fluctuations should have a non-universal log-normal tail which can be neglected
in the regime (g)> e’k but becomes predominant near the localization
transition. There the failure of the one-parameter scaling theory should
appear. All these questions deserve further studies for the future.
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