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Abstract. We review some of the characteristic features of the coherent
multiple scattering of scalar electromagnetic waves in random media. The
probability of quantum diffusion is defined and calculated up to the contri-
bution of the cooperon. We show that there are additional corrections at
the order of the cooperon which restore the normalization of the probabil-
ity. We study also the angular and temporal (diffusive wave spectroscopy)
correlation functions of speckle patterns. More particularly, we obtain a
closed expression of the contribution to the time correlation function which
is equivalent to the universal conductance fluctuations. Finally, the notion
of dephasing is discussed and implemented for the case of the dephasing
induced by the internal Zeeman degrees of freedom of cold atomic gases.

1. Introduction

This contribution aims to give a general survey of the field of coherent
multiple scattering of light by random media. This fleld crosses through
many topics in physics. Nevertheless, apart from details which are specific
to each particular physical problem, there is a large amount of common
features which characterize coherent multiple scattering of waves ranging
from mesoscopic metals to astrophysics. A unified description of the ba-
sic features of coherent multiple scattering have been presented elsewhere
[1, 2. In this short review, we shall mostly focus on the behavior of elec-
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tromagnetic waves scattering either in suspensions of classical scatterers or
in quantum systems such as cold atomic gases.

In the next section we shall describe two models for randomness which
are most frequently used and discuss their relation with the cross section
of an individual scatterer. Then, we shall review the main results about
the disorder average amplitude in multiple scattering in the weak scatter-
ing limit. A central quantity which is ubiquitous in all the physical results
is the probability of quantum diffusion. We shall discuss it quitc in details
and subsequently apply it to the study of correlation functions in speckle
patterns, the time correlation function in the multiple scattering limit (dif-
fusive wave spectroscopy) and to a discussion of some processes leading
to dephasing é.e. to the existence of a finite phase coherence time in the
multiple scattering of photons by cold atomic gases. We shall then discuss
this kind of dephasing and compare it to other mechanisms in mesoscopic
metallic systems.

2. Scalar Waves in Random Media

We consider an electromagnetic wave which propagates in a non dissipa-
tive and non magnetic heterogeneous dielectric medium characterized by
the real and positive dielectric constant e(r) = e+de(r). It fluctuates around
the average value €. By writing the corresponding Maxwell equations, we
obtain a wave equation for the electric field. In a first step, we shall disre-
gard the polarization of the field and consider the case of a scalar electric
field described by the complex function ¢(r) and solution of the Helmholtz
equation

—A(r) — kgu(r)p(r) = kgi(r) (1)
The quantity u(r) = de/€ is the relative fluctuation of the dielectric con-
stant and kg = Tiw/c where m = \/;% is the average refraction index. This
equation is similar to the Schrodinger equation for a free particle in a poten-
tial V(r). Here, the disorder potential is V(r) = —kZu(r). It is proportional
to the square of the frequency so that, unlike electronic systems, a lowering
of the frequency leads to a weaker effect of the disorder. The disorder po-
tential is a random and continuous function of the position. We can choose
the origin of the energies so that (V(r)) = 0 where (---) accounts for the
average over the configurations of the disorder. A simple approximation
consists in assuming that V(r) is a Gaussian random variable. Therefore,
only the second cumulant does not vanish. Moreover, we shall assume that
the wavelength is much larger than the correlation length of the potential
so that the two-point correlation function may be written as

(V@EVE)) = Bi(x - ') (2)
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where B is a constant. This model corresponds to the so-called white noise
limit.

The white noise model does not contain information about the micro-
scopic nature of the disorder. Another model first introduced by Edwards
[3] describes the disorder potential as a collection of N identical local-
ized scatterers each of them characterized by the scattering potential v(r),
namely

2

Vi)=Y v(r—r;) . 3)
1

<.
Il

The density n; = —% is taken to be constant in the limit 2 — co. We shall
moreover consider the scattering potential v(r) to be central and short
range, i.e., v{(r — r;) = vod(r — r;). In the limit of large densities n; — oo
of weak scatterers vp — 0 but with a constant value for nivg, the Edwards
model is equivalent to the white noise model provided we have the equality
B = 'ni'ug.

The total cross section is given, in the Born approximation, by o =
v3 /4, so that the parameter B of the white noise model is simply related
to the cross section of an individual scatterer:

B = 4mn;o (4)

However, it is important to keep in mind the following point. In order to
obtain the Edwards limit of a § potential, we must consider the limits of
both an infinite strength Uy and a vanishing range b so that the combina-~
tion vg = 47b3Up/3 is constant. Strictly speaking, the Born approximation
breaks down in this limit. However, in the limit of a white noise model
where vy — 0, the Born approximation remains valid.

3. The Average Amplitude of a Multiply Scattered Wave

In the presence of sources j(r) of the electric field, the solutions of the
Helmholtz equation (1) may be written,

P(r) = /drij(ri)G(rhI': ko) (5)
where the Green function G(r;,r, ko) is solution of [4]
(Bs + K3(1+ p(r))) Glri, v, ko) = 8(r = 17) (6)

This Green function can be expressed in terms of the free Green function
Gy solution of the previous equation but in the absence of the scattering
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Figure 1. Series of terms respectively generated by 1 and ¥ in the self-energy.

potential, i.e., for u(r) =0,
G(I‘i, r, kO) = GO(r’iv r, kO) - k% / dr/G(ria rl> kO)lu’(r/)GO (rla r, k()) (7)

1t is possible to write a formal multiple scattering expansion by iterating
the previous relation. By taking the average over a white noise potential,
we restore the translational invariance, so that the Fourier transform of the
average Green function can be written

G(k) = Go(k) + G(k)Z(k, €)Gy(k) (8)

The function X(k,¢€) is called the self-energy and it represents the sum of
all the irreducible scattering events.

The perturbative expansion of the self-energy is in terms of the param-
eter n;v2. For weak scattering the main contribution is obtained by keeping
only the first contribution ¥ in Fig. 1. The imaginary part of the corre-
sponding expression of the self-energy defines the elastic mean free path I,
namely

1
— = ——Im¥;(k, ky) = njo (9)
ko

where o is the cross section defined in (4). The first neglected term X5 in
Fig. 1 gives a correction

™

Im¥y (k) = %]
e

Im¥, (k) (10)

Hence, it allows to identify the small dimensionless parameter 1/kgle which
characterizes the weak scattering limit that we shall consider all along this
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paper. By keeping only the contribution of X1, we neglect all the interfer-
ence effects between scatterers (see Fig. 1).

Inserting (9) into (8) and performing a Fourier transform, one {inds that
the average Green function is given by

(,:ik‘o R

Gy, - X ==zl /2le .
G(ri,r,€) = Go(ry,r,€) e iR

et/ (11)
where R = |r — r;|. This expression corresponds to the retarded average
Green function. The advanced one is obtained by changing the sign of ko
in the previous expression.

4. The Probability of Quantum Diffusion

The quantities of physical interest are usually related not to the average
Green function but instead to the so-called probability of quantum diffusion
P(r,r',t) for a wave packet to propagate between the points r and r’ in
a time ¢. The average over the disorder of the Fourier transform of this
probability is given by [1, 2]

P(r,x',w) = 4%TGR(r,r’,wg)Gf“(r’,r,wg - w) (12)

This probability is normalized to unity, namely

/ Ple,r, t)dr' = 1 (13)

or equivalently .
/P(r,r’,w)dr’ = (14)
w
Three main contributions do appear in the probability P(r,r’,1):

— the probability to propagate between r and r’ without scattering.

— the probability to propagate between r and r’ by an incoherent se-
quence of multiple scattering. We shall call diffuson this contribution.

— the probability to go from r to r’ by a coherent multiple scattering se-
quence. We shall call cooperon this coherent contribution to the prob-
ability.

The first contribution is obtained by replacing in (12) the average over
the product of the two Green functions by the product of the avcraged
Green functions. This contribution known as the Drude-Boltzmann term
rewrites as
egwR/c—R/le

/ —
Po(r,r',w) = 4r R2¢

(15)
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Figure 2. Typical trajectories associated respectively to the retarded (G*F) (solid line)
and advanced (G**) (dashed line) Green functions.

where ¢ is the group velocity of the wave. It appears clearly that, at this
approximation, the average probability is not normalized.

4.1. THE DIFFUSON

The second contribution to the probability accounts for multiple scattering
in the weak disorder limit kl, > 1. Following the previous description of
the average Green function, we associate to each possible sequence C of
independent effective collisions (Fig. 2) a complex amplitude A(r,x’,C).
Hence, the Green function is given by the sum of such complex amplitudes
[5]-

In order to evaluate the probability which appears as a product of two
Green functions, we notice first the following two points:

— due to the short range of the scattering potential, the set of scatterers
entering in the multiple scattering sequences for both G¥ and G# must
be identical.

— the average distance between two elastic collisions is set by the elastic
mean free path I > A. Therefore, if any two scattering sequences
differ by even one collision event, the phase difference between the two
complex amplitudes, which measures the difference of path lengths in
units of A will be very large and then the corresponding probability
will vanish on average.

"Therefore, we shall retain only the contributions of the type represented in
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Figure 8. Multiple scattering trajectories which contribute to the average GEG#.

Fig. 3 for which the corresponding probability Py(r,1r’,w) is

Adr [ =R —A —<R <A
Py(r,v,w) = —C—/GE (r,r1)G._,(r1,1)G, (ro,v)G,_,(x',12)
X Tyy(ry,re)dridry (16)

This expression involves two contributions. The first one

G (e, 11)GL (00, 1) Got (11, B) T, (¥ 1)

describes the average propagation between any two points r and r’ of the
medium and the first (r;) (respectively the last (rq)) collision event of the
multiple scattering sequence. The second contribution deiiines Lu(r1,ro)
which we shall call the average structure factor of the scattering medium.
In a sense, it generalizes to the multiple scattering situation the usual two-
point correlation function in the single scattering case. Relying again on
the assumption of independent collisions allows to write for I, (r1,ra) the
integral equation

4m
Ly(ri,ro) = l—~5(r1 ~r9) + — /G ry,r w(r,rl)l“w(r, ro)dr (17)
€

This equation can be solved exactly for some geometries. For the infinite
three dimensional space, we obtain for the structure factor the expression

4_7r 1
le 1= Po(q,w)/Te

Fw(q) = (18)
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where FPy(q,w) is the Fourier transform of (15) and it is given by 515

qle
10.17_

arctan - with ¢ = |q|. The resulting probability thus rewrites

PO(CL(*))/Te
1— Po(q,w)/Te

We shall call diffuson this expression of the probability. The normalization
of the total probability P = Py+ Py can be readily checked namely P(q =
Ow)=2

In the hydrodynamic limit of slow spatial and temporal variations, i.e.,
for [r — ro| > I, and w7 < 1, the integral equation (17) for T, simplifies
and is solution of the diffusion equation

Py(q,w) = Fy(q,w) (19)

4re

[—iw — DAy ] Ty(ry, 1) = B ——0(r; — r2) (20)

where D = é% = évQTQ is the diffusion coefficient. At this approximation,

Py and T, are related by
12
Py(r, v, w) ~ 4—;6 w(r, 1) (21)

so that Py, as well, obeys a diffusion equation.

4.2. THE COOPERON

The two previous contributions, namely the Drude-Boltzmann term and the
diffuson which takes into account multiple scattering, provide a normalized
expression of the probability. Therefore, we may think having exhausted
all the contributions. But, consider now the multiple scattering sequences
like those represented in Fig. 4. It corresponds to the product of Green
functions of the kind we have considered before. But- now the two identi-
cal trajectories are time reversed. It is clear that if these trajectories are
closed on themselves, there is no phase difference left between them. This
requires time-reversal invariance namely GT4(r, v/, t) = GRA(Y r,t). We
shall call X, the contribution of this process to the total probability. It can
be evaluated as before and is given by

A —=A
Xo(r,r\w) = /G r,r1)G, (rg, r)G._, (', r))G_ (ro,1)
X Fw (1‘1, r2>dr1dr2 (22)
In the case of time reversal invariance we have,

Gi(ry,r)G(r1,1) = GE(r1, )Gl (r, 1) (23)
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Figure 4. a) Classical contribution to the probability. b) By changing the direction of
propagation of one of the trajectories there is still no overall dephasing provided that the
two points r and r’ coincide (c). d) If r # r’, there is a finite dephasing between the two
trajectories.

so that the new structure factor I',,(r1,r2) = I'y(ri,r2). In the diffusion
approximation, by calculating the integrals (16) and (22), we obtain

. 2
Xo(e,sw) = Pafrmyw) (S ) e (24)
kR
with R = |r —r'|. For R =0, i.e,, for r = r’, we have )
Xe(r,r,w) = Py(r,r,w) (25)

namely, the probability to come back to the initial point is twice the value
given by the diffuson. Nevertheless, it should be noticed that unlike the
diffuson Py and the structure factor I',,, the cooperon X, does not obey a
diffusion equation.

4.3. NORMALIZATION OF THE QUANTUM PROBABILITY

We have seen that the contributions of both the Drude-Boltzmann term
and the diffuson end up with a normalized probability of quantum dif-
fusion. Therefore, it is expected that the additional contribution of the
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Figure 5. Contribution of the cooperon to the probability a) diagram for Xc(q,w). b)
Dressing of the Hikami box with impurity lines.
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Figure 6. Hikami box.

cooperon will break this normalization. Indeed it appears, as a result of
the previous calculation of the cooperon, that the probability is doubled at
the origin in a small volume A\%~!l,. The relative volume of this enhance-
ment is A¥71, /(Dt)¥2. Tt has a maximum for ¢ ~ 7, which corresponds
to 1/(kl.)?". But there exist other terms which contribute as well to the
cooperon and which have not been taken into account so far. To identify
them, we need to keep in mind the contribution to the cooperon represented
by the diagram of Fig. 5. The box describes the interference between four
amplitudes. This box can be dressed by one impurity line in two possible
ways (Fig. 6). These two additional contributions are of the same order,
therefore we should consider the three of them for the full calculation of
the cooperon and eventually the normalization of the probability. The first
diagram, i.e., the cooperon gives the contribution

X1, w) = %H@“) (r = )T (x, 1, ) (26)

where

2 : 2
HAMR) = (i-;) (3%}’%5) e R/l (27)
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The two other diagrams have a negative contribution which at short dis-
tances r < [, is given by

I \? 1 Si(2kR)
(B) — gl Y R T i S P (7 B
HB(R) = HOR) x ( 4W> ML RE© (28)

where Si is the Sine integral function. These two diagrams give indeed at
short distances a negligible contribution in comparison to (26). Hence, the

return probability to the origin is doubled as obtained before. From the
Fourier transforms

H) = (£) a)
o2

HP)(q)=H (g = ~167rlea((1)2 (29)

™

a(q) =n [arctan(2k — ¢)le + 2 arctan gl — arctan(2k + g)le] (30)

we obtain that the sum of these three contributions is
/H(R)dR =0 (31)

Therefore the contribution of the cooperon which is to enhance the return
probability to the origin does not change the normalization of the total
probability which is achieved by a small reduction in the wings, 4.e., far
enough from the origin although of the order of the elastic mean free path
le.

5. Correlations in Speckle Patterns

Thus far, we have studied the disorder average value of the probability.
The averaging procedure is obtained experimentally by considering sus-
pensions of scatterers. An incident wave packet (a pulse) probes a static
configuration of the scatterers. This results from the large ratio between
the respective velocities of the light inside the medium and of the scatter-
ers. Average quantities are thus obtained through time averaging. Hence, a
pulse realizes an instantaneous picture of the disordered medium known as
a speckle pattern. This pattern consists in a random distribution of bright
and dark spots which signals large fluctuations of the relative intensity. This
observation can be made more quantitative and the intensity distribution
obeys a Rayleigh law which states that the intensity fluctuations are of the
order of the average intensity.
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Figure 7. The geometry of a slab of width L and section S used for the measurement
of the angular correlation functions both in reflection and in transmission.

There is a large variety of measurements that can be performed to
study speckle patterns using electromagnetic waves. The first is given by the
angular correlation function either in transmission or in reflection. To that
purpose, we consider the slab geometry of Fig. 7. An incident beam along
the direction §, is either reflected or transmitted along the direction §;. We
shall be mostly concerned with the transmission coefficient 75 defined as
the intensity I(R, 8,,8;) transmitted along the direction §; in the far field,
i.e., at a distance R much larger than any of the characteristic dimensions
of the slab:

_ R’I(R,8,%)
TS T I

where Iy is the intensity of the incoming wave and S is the section of the
slab. It is important to notice that this definition differs from those used in
the waveguide geometry. In this latter case, the incident and transmitted
waves are plane waves with boundary conditions imposed by the waveguide.
'This gives rise to the quantization of the transverse channels. Here, instead,
we have incident plane waves but transmitted spherical waves. This corre-
sponds to different boundary conditions and to a continuous distribution
of the transmitted angular directions.
We shall be interested in the normalized correlation function:
0150 T 1y

O W = = 33
aba't TabTa,’b’ ( )

T (32)

where 07,0 = Top — T o -

By definition, this correlation function is build from the product of
complex amplitudes which correspond to all possible multiple scattering
sequences in the disordered medium. Like for the calculation of the average
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Figure 8. The transmission angular correlation function corresponding to four waves
incident along the directions 8§, and 8, and outgoing along the directions 8, and 8. A
non zero contribution corresponds to the pairing of two amplitudes into a diffuson.
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Figure 9. Two contributions to the product 7447,/ which correspond respectively to
the pairing C1 = C2,C3 = C4 and C; = C4,C2 = C3. The first gives T 57 o . The second

corresponds to the angular correlation function noted CC(L;)L, I the text.

s

probability, the non vanishing contributions correspond to cases where the
amplitudes can be paired into diffusons (see Figs. 8 and 9).
In the case a = o/ and b = b/, we obtain,

7 =2
0T = Tap (34)
This constitutes the Rayleigh law which accounts for the characteristic
granular structure of a speckle pattern,i.e., relative fluctuations of order
unity. This is the most important and most “visible” property of a speckle
pattern. It exists also in the single scattering regime.

In multiple scattering, there are additional contributions which result
from the long range nature of the diffuson and from the existence of cross-
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Figure 10.  Classification of the contributions to the correlation function Cup.rp in
terms of the number of crossings of two diflusons. At each crossing, the corresponding
contribution is multiplied by 1/g <« 1. These three contributions are respectively denoted
¢, C? and @,

ings between diffusons. The occurrence of a crossing of two diffusons can
be calculated in detail. Let us give first a simple argument. For the slab
geometry we consider, the characteristic time for a diffusive trajectory
to cross over the sample is 7p = L?/D. The length of this trajectory is
L = ctp = 3L?/l.. The volume of the crossing of two such diffusive tra-
jectories namely the volume of a Hikami box is A%l,. We shall thus char-
acterize a diffuson by its length £ and its section A%. The occurrence of a
crossing of two diffusons is therefore given by the ratio of the two volumes

’\ZTE = il\%‘ x é, where we have defined the dimensionless quantity
k1.8
= 35
9= 3 (35)

with & = 27 /A. This is the so-called dimensionless conductance of a wire
of length L and section S. In the limit kl, > 1 of a weak disorder, g can
be very large, typically of order 10%. Therefore, we may assume that the
crossing events are uncorrelated, so that the probability of n crossings is
given by 1/¢™. This allows us to classify the contributions to the angular
correlation functions in terms of the number of crossings as represented in
Fig. 10.

In order to go further, we need to calculate the average transmission
coefficient 7 4. In the slab geometry, it can be written in terms of the
structure factor I' (taken at w = 0) defined by (17),

1 —z s —|L—2z
Ty = m/drldrge 1/male g=IL=z2l /bl D (p, | 1) (36.)
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where pg (1) is the projection of 8, (8p) along the Oz axis. Moreover, I'
depends on the variables 21, 29 and p = (ro — r1)). Thus, integrating over
21, 22 and using the relation (21) in the diffusion approximation, we obtain

mw/@Pma —l) = %%HM—OQLZ)(W)

which depends on the two-dimensional Fourier transform of the diffuson Py
given by (16):

1 sinhkj 2y sinhky (L — zpg)

N —
Plhi,27) =5 %y sinhk, L (38)
with zp, = min(z,2’) et zpy = max(z,2’). For k; =0, we have
I _ M
P,z 7)= (1 s ) (39)

Finally, by inserting this relation into (37) we obtain in the limit of small
angles g = pop ~ 1,

— 3 le

T 4r L

It should be emphasized here that this relation results from a given choice
of boundary conditions for the diffusion equation, namely a vanishing of
the probability at the boundaries z = 0,L of the slab. A more precise
calculation shows that there is an extrapolation length zg ~ [ at which the
probability vanishes outside the medium [1].

(40)

5.1. THE SHORT RANGE CORRELATION CV)

The main contribution (i.e. without crossing) to the angular correlation
function is given by Fig. 9 (b). Its calculation is very similar to those of the
average transmission coeflicient apart from additional phase factors. We
define the vectors A§, = §, — 8y and A§, = §, — § and we neglect their
projection along the z-axis so that,

2
0Tt 0 Tty :( 2S/alrlalrge k[ASa 1= A8y 2] g—21/le o~ L= 22|/ZPI‘(1'1 r2)>

(4m
(41)
Performing the z-integrals and defining g, = k|AS,|, we obtain in the limit
Gule < 1,

. goL 2
Cﬁii/b/ = 078,08, F1(0L) = dps,,08, (gli—;*(;;f) (42)
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Figure 11.  Contribution to 67467,y with one crossing. The different cases correspond
to configurations of incident plane waves along §, and &,/ and outgoing along &, and §;.
(a) depends on A&, but not on A8, and the opposite for (b).

with

sinh z

Fl(m)::( a )2 (43)

This expression of the angular correlation function allows to understand,
at least qualitatively, the memory effect [6, 7).

5.2. THE LONG-RANGE CORRELATION C(® .

The next contribution to the correlation function arises from terms which
involve one crossing of two diffusons. Due to the structure of the Hikami
box within which the crossing occurs, the angular correlation function is
different from C1). This is represented in Fig. 11 and it gives rise only to
the two possibilities

(aa)(d'a’) — (bB)(bD) (44)

and

(ad')(aa") — (bb) (VD)) (45)
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The corresponding expression for the first one is

- 1 4 o e
57;1)0%%1(2) W / Hdri[ezkAsb.(rzwm) + ezkAsa.(r1~r3)]E(zi)
/ HdRH ['(ry, R)T(r3, R3)['(Ro, ro)T(Ry, ry) (46)

where H(R) is the expression of the Hikami box calculated in the diffusion
approximation and given by [6, 8]

H(ry,ro,r3,14) = /dr H 5(r—1;) {2V2 V4—-Vi1?-V3 } (47)

48 k2

and where we have defined

E(Zz) — e—(z1+zg)/le €~|L~zzl/lee—!L—z4j/l@ (48)

In the diffusion approximation, and using the relation (21), the crossing of
two diffusons rewrites

. 4
/ [ dR:HR)T (r1, R1)T(r3, R3)[(Ro, r2)T(Ry, r4)
=1
327r

= e / dRPy(r1, R)Py(rs, R)[VRPy(R, r2)].[VR L2(R, r4)] (49)

Using the relation (38) to evaluate the gradients and considering the limit
@ple € 1, it remains

81 e

e (2) _ .
(57{15,57&/})/ 48 kQLSFQ(L LASb) (50)
where we have defined
1 sinh2z
F = -1 51
»(z) sinh?z ( 2z > (51)

Adding the contribution of the second diagram of Fig. 11, we finally obtain

‘ Ty Toy 1 ) A
ce, = Tsz = E[FQ(MASQ) + Fy(kLASy)] (52)
al

where the conductance g has been defined in (35). This contribution to the
correlation function is thus smaller than C(Y) by a factor 1 /g. But instead
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Figure 12. Contributions with two crossings. Those diagrams do not induce angular
structure.

of decreasing exponentially, it behaves as a power law and vanishes when
both AS§, and AS§;, are large.

The next term in the expansion of the angular correlation function in
powers of 1/g involves two crossings and is represented in Fig. 12. It is thus
easy to see that it does not involve any angular structure due to the pairing
of the trajectories. The corresponding correlation function thus corresponds
to the angular structure

c® . (aa)(d'a’) — (bb)(B'D) (53)

After a calculation similar to those of C'® but which involves now two
Hikami boxes, one finds ’

Vo (
OTbOT/b/ 2 1
C(?l:)’b’ - a__;__ = (54)
ada Tab 15 g

But, there exists other contributions to the two crossings term with the
angular structure of either ) or €2, They correspond to higher order
terms in the 1/g expansion of the corresponding correlation functions.

While performing the integration over all the ingoing and outgoing an-
gular directions, only the last term survives so that the relative fluctuations
of the total transmission coefficient reduces to

6T 21

72 = Eg@' (55)
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This result is well known in the context of electronic systems as the so-
called universal conductance fluctuations. There the conductance and the
transmission coefficient in a waveguide geometry are related through the
Landauer-Biittiker formalism. It is interesting to notice that we have ob-
tained an identical result using a different definition of the transmission
coefficient, i.e., a different geometry where the conduction channels do not
appear. This is true for the relative fluctuations but is not true anymore
for the second moment.

These different contributions associated to the crossings of diffusons
have been identified and measured [9]. We shall come back to it in the next
section.

6. Diffusive Wave Spectroscopy

We have seen previously that a way to perform disorder averages is to
consider suspensions in which the motion of the scatterers provides differ-
ent realizations of the disorder. Hence the time averaging is equivalent to
the averaging over realizations. The measurement of time correlation func-
tions of speckle patterns provides also a very useful tool to investigate the
dynamics of the scatterers in the multiple scattering regime. As such it
corresponds to a generalization of the quasi-elastic light scattering, a well
known experimental tool available in the single scattering regime [10].

We shall be interested in the time correlation functions of the intensity
and of the electromagnetic field defined by

—1 (56)

and
(E(T)E*(0))

(EQO)1)

where the intensity and the field are related as usual by I{T) = |E(T)[%.
The notation (...) denotes an average over all the multiple scattering se-
quences in the medium and over the dynamics of the scatterers. We shall
assume here that this dynamics corresponds to a non deterministic Brow-
nian motion characterized by a diffusion coefficient Dy (not to be mistaken
with the diffusion coefficient D = évle obtained previously in the diffusion
approximation). Then, the time correlation function of the electric field
is expressed in terms of the probability Py (i.e., the contribution of the
diffuson) and using the relation (21) so that

(1) = (57)

(E(r, T)E*(r,0)) / dtPy(r, t)e tT/2ms7e (58)
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where the characteristic time 7, = 1/ 4Dyk? accounts for the motion of one
scatterer.

To calculate the intensity correlation function go(7'), we notice that it
involves the average of the product of four electric fields. Hence, using the
pairing of these amplitudes as for the calculation of the angular correlation
function (see Fig. 9), we obtain [11]

92(T) = |g1(T)? (59)

In the limit T" = 0, we recover the second moment of the Rayleigh law,
namely (I?) = 2(I)2. From the two expressions (58) and (59) we can de-
duce the expression of go(T"). For instance, for the slab geometry using the
expression (38) and fixed ingoing and outgoing waves, we obtain a first
contribution to go(T), usually written as [12, 13]

2

with L, = Ze\/%. It can be simply deduced from the relation (42) by
replacing 1/q, by L.

The relation (59) is a consequence of the absence of crossings of diffu-
sons. We now address the question of the effect of crossings on the time
correlation function. The possible pairings of complex amplitudes is repre-
sented in Fig. 13. For the one crossing case, we notice that, unlike gél) (1),

the corresponding correlation function g§2) (T) involves two kind of diffu-
sons, namely those with amplitudes taken at the same time and those taken
at the two times 0 and 7'. The calculation can be done along the same lines

as for the angular correlation function Cc(d?)()z’b’ with the result
2
9" (T) = - Fa(L/ L) (61)

where the function F»(z) has been defined previously. We notice, that, un-
(1)

like g5~/ (T"), this correlation function decreases at large times like a power

law. It is nevertheless smaller than gél)(t) by a factor 1/g, so that its mea-

surement requires to get rid of gél) (7). This can be done by an angular
integration over the outgoing directions or equivalently by averaging over
a large number of speckle spots [14].

The case of the correlation function gég) (T") which involves two diffusons
crossings is more involved. We cannot anymore use the result of the angular

correlation function and replace g, by 1/L., since, as we have seen before,
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Figure 18. Diagrams contributing to the time correlation functions.

953) has no angular structure. Using the rules we have previously set for
the Hikami boxes and the expression (38) for P, for the slab geometry, we
obtain [1, 15]

3) L L Vo 4
&)= [ | dedz P2z, ) = 3 F3(L/Ly) (62)
so that "
A1) = SR(L/L,) (63)
where we have defined

2 32+ 222 — 2cosh2z + zsinh2z
3(2) = 2 z4sinh?z

(64)

We recover the expression CcB)(0) = 2/15 for L, — oco. The expression

of g§3)(t) given by (62) involves the integral of P?. This originates from
the closed loop which appear in the corresponding diagram of Fig. 13.
This expression looks quite close to the one proposed in [9]. But it gives a
much slower time dependence which should be sought in the distribution
of all closed loops in the slab and not only those touching the boundaries.
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The contribution of g§3)(T) is much more difficult to observe [9] since it is
proportional to 1/g2 ~ 1074,

In all the three contributions to the time correlation function, we have
considered the case of a scalar wave in the absence of absorption. It is justi-
fied to treat separately the effect of the polarization of the electromagnetic
wave for gél) (T'). But it is not anymore the case for the two remaining
contributions [15].

7. Dephasing in Cold Atomic Gases

The coherent effects we have presented are very sensitive to dephasing,
i.e., to any process which changes the relative phase of the two interfering
amplitudes involved in a diffuson or in a cooperon. Roughly speaking, a.
dephasing may originate either from an external field [16, 17] or from ad-
ditional degrees of freedom such as the spin-flip scattering in metals where
the spin of the electron rotates due to scattering by magnetic impurities or
a non deterministic motion of the scatterers such as studied before for the
diffusive wave spectroscopy [16, 1]. In the presence of dephasing, the prob-

ability of quantum diffusion can be written as P(r,r’,t) <ei¢(t)>, where the

random variable ¢(t) is the relative phase of the two interfering paths. Its
distribution depends on the origin of the dephasing and we denote by (...)
the average over this distribution. In most cases we have <ei¢(t)> o T
at least for long enough times ¢. The characteristic time 74 is the phase
coherence or dephasing time. An exponential decrease of the probability
of quantum diffusion does not necessarily describe a dephasing process.
For instance, the intensity of an electromagnetic wave which propagates in
an absorbing medium decreases exponentially. But this is not a dephasing
process since it affects equally both the coherent and incoherent contribu-
tions by a decrease of the overall intensity. The propagation of photons in
cold atomic gases addresses similar questions and provides new sources of
dephasing like internal atomic degrees of freedom. Coherent multiple scat-
tering effects have been observed in such gases and analyzed in great details
[18]. The dephasing induced by the internal Zeeman atomic degrees of free-
dom can be obtained in a closed form [19] in terms of both the polarization
state of the photons and of the Zeeman degeneracy.

Each of the N atoms of the gas is taken to be a two-level system of
characteristic transition frequency wq [20]. The ground state defines the zero
of energy and has total angular momentum J. The excited state has a total
angular momentum J, and a natural width I" due to coupling to the vacaum
fluctuations. We shall assume, moreover, that the velocity v of the atoms is
small compared to I'/k (k is the light wave-vector) but large compared to
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hk/M (M being the mass of the atom), so that it is possible to neglect the
Doppler and recoil effects. The external degrees of freedom of the atoms are
therefore the classical assigned positions ro, (a = 1,..., N) uncorrelated
with one another. The atom-photon interaction is described within the
dipole approximation [21], and the elastic scattering process between the
two states |ke, Jm) and [k'¢/, Jm’), where |ke) is a one-photon Fock state
of the free transverse electromagnetic field in the mode k of polarization
€, is described by the single scattering transition amplitude t;;(m, m’,w) =
t(w)(Jm/'|d;d;|Jm). where the resonant scattering amplitude is given by

3 T)2
M) = @) 5+ T/2

(65)

with 6 = w — wp being the detuning of the probe light from the atomic
resonance and pp(w) = Vw?/27? is the free photon spectral density. The
average over the disorder is taken over both the uncorrelated positions rg,
of the atoms and over the magnetic quantum numbers m, of the atoms.
The first, standard average restores the translation invariance. The internal
average, a trace with a scalar density matrix p assuming that the atoms
are prepared independently and equally in their ground states, restores ro-
tational invariance. The elastic mean free path is inversely proportional to
t(w) given in (65). Due to the tensorial structure of the transition ampli-
tude, the diffuson and the cooperon have now three eigenmodes each. The
dephasing associated to the internal degrees of freedom affects only the
cooperon which is given in the diffusion approximation by

1
D@+ 77 1K) + 75 1K)

XK (q) X (66)

for K = 0,1, 2. The characteristic times 74(K) are the depolarization times
which affect the diffuson as well. They describe the depolarization of the
initial light beam and can be calculated in the classical Rayleigh case [22].
The dephasing times associated to the intensity of the field are given by
[19]

(J(2J +3))71, Jo=J+1
w0 _) i Jo=J (67)
T Qr+J-1)"1, J=J-1

where the transport time 7, = I, + I'"! (in units where A = ¢ = 1). An
absence of dephasing only occurs for the classical dipole J = 0 (Rayleigh
scattering) and in the semi-classical limit J = J, — co.
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