
Chapter 1

Introduction : mesoscopic
physics

1.1 Interference and disorder

Wave propagation in a random medium is a phenomenon common to many
areas of physics. There has been a recent resurgence of interest following the
discovery, both in optics and quantum mechanics, of surprising coherent effects
in a regime in which disorder was thought to be sufficiently strong to eliminate
a priori all interference effects.

To understand the origin of these coherent effects, it may be useful to recall
some general facts about interferences. Although quite spectacular in quantum
mechanics, their description is more intuitive in the context of physical optics.
For this reason, we begin with a discussion of interference effects in optics.

Consider a monochromatic wave scattered by an obstacle of some given
geometry, e.g., a circular aperture. Figure 1.1 shows the diffraction pattern on
a screen placed infinitely far from the obstacle. It exhibits a set of concentric
rings, alternatively bright and dark, resulting from constructive or destructive
interferences. According to Huygens’ principle, the intensity at a point on the
screen may be described by replacing the aperture by an ensemble of virtual
coherent point sources and considering the difference in optical paths associated
with these sources. In this way, it is possible to associate each interference ring
with an integer (the equivalent of a quantum number in quantum mechanics).

Let us consider the robustness of this diffraction pattern. If we illuminate
the obstacle by an incoherent source for which the length of the emitted wave
trains is sufficiently short so that the different virtual sources are out of phase,
then the interference pattern on the screen will disappear and the screen will
be uniformly illuminated. Contrast this with the following situation : employ
a coherent light source and rapidly move the obstacle in its plane in a random
fashion. Here too, the interference fringes are replaced by a uniform illumina-
tion. In this case, it is the persistence of the observer’s retina that averages
over many different displaced diffraction patterns. This example illustrates two
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Figure 1.1: Diffraction pattern at infinity for a circular aperture.

ways in which the diffraction pattern can disappear. In the former case, the
disappearance is associated with a random distribution of the lengths of wave
trains emanating from the source, while in the latter case, it is the result of an
average over an ensemble of spatially distributed virtual sources. This example
shows how interference effects may vanish upon averaging.

Let us now turn to the diffraction of a coherent source by an obstacle of
arbitrary type. For instance, suppose that the obstacle is a dielectric material
whose refractive index fluctuates in space on a scale comparable to the wave-
length of the light. The resulting scattering pattern, on a screen placed at
infinity, consists of a random distribution of bright and dark areas, as seen in
Figure 1.2; this is called a speckle pattern 1. Each speckle associated with the
scattering represents a “fingerprint” of the random obstacle, and is specific to
it. However, in contrast to the case of scattering by a sufficiently symmetric
obstacle (such as a simple circular aperture), it is impossible to identify an or-
der in the speckle pattern, and thus we cannot describe it with a deterministic
sequence of integer numbers. This impossibility is one of the characteristics of
what are termed complex media.

In this last experiment, for a thin enough obstacle, a wave scatters only once
in the random medium before it emerges on its way to the screen at infinity
(see Figure 1.3.a). This regime is called single scattering. Consider now the
opposite limit of an optically thick medium (also called a turbid medium), in
which the wave scatters many times before leaving (Figure 1.3.b). We thus
speak of multiple scattering. The intensity at a point on the screen is obtained
from the sum of the complex amplitudes of the waves arriving at that point.
The phase associated with each amplitude is proportional to the path length of
the multiply scattered wave divided by its wavelength λ. The path lengths are

1These speckles resemble those observed with light emitted by a weakly coherent laser,
but they are of a different nature. Here they result from static spatial fluctuations due to
the inhomogeneity of the scattering medium.
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Figure 1.2: Speckle patterns due to scattering through an inhomogeneous
medium. Here the medium is optically thick, meaning that the incident ra-
diation undergoes many scatterings before leaving the sample. Each image cor-
responds to a different realization of the random medium (M. Kaveh et al.,
Nature 326, 778 (1987)).

randomly distributed, so one could expect that the associated phases fluctuate
and average to zero. Thus, the total intensity would reduce to the sum of the
intensities associated with each of the paths.

In other words, if we represent this situation as equivalent to a series of
thin obstacles, with each element of the series corresponding to a different
and independent realization of the random medium, we might expect that for
a sufficiently large number of such thin obstacles, the resulting intensity at
a point on the screen is averaged over the different realizations, causing the
speckles to vanish. This point of view corresponds to the classical description,
for which the underlying wave nature plays no further role.

Figures 1.2 and 1.4 show that this conclusion is incorrect, and that the
speckles survive, even in the regime of multiple scattering. If, on the other hand,
we perform an ensemble average, the diffraction pattern disappears. This is
the case with turbid media such as the atmosphere or suspensions of scatterers
in a liquid (milk, for example), where the motion of the scatterers yields an
average over different realizations of the random medium, provided we wait
long enough. The classical approach, therefore, correctly describes the average
characteristics of a turbid medium, such as the transmission coefficient or the
diffusion coefficient of the average intensity. As such, it has been employed



18 Chap. 1 : Introduction : mesoscopic physics

k

k'

L

k

L

k'

Figure 1.3: Schematic representations of the regimes of single scattering (left),
and multiple scattering (right).

extensively in problems involving the radiative transfer of waves through the
atmosphere or through turbulent media.

Figure 1.4: Averaging : The first speckle pattern (a) represents a snapshot of a
random medium corresponding to a single realization of the disorder. The other
two figures (b and c) correspond to an integration over the motion of scatterers,
and hence to a self-average. (Figure courtesy of Georg Maret).

This description may be adapted as such to the problem of propagation of
electrons in a metal. In this case, the impurities in the metal are the analog
of the scatterers in the optically thick medium, and the quantity analogous
to the intensity is the electrical conductivity. In principle, of course, it is
necessary to use the machinery of quantum mechanics to calculate the electrical
conductivity. But since the work of Drude at the beginning of the last century,
it has been accepted that transport properties of metals are correctly described
by the disorder-averaged conductivity, obtained from a classical description of
the electron gas. However, for a given sample, i.e., for a specific realization
of disorder, we may observe interference effects, which only disappear upon
averaging [1].

The indisputable success of the classical approach led to the belief that
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coherent effects would not subsist in a random medium in which a wave under-
goes multiple scattering. In the 1980s however, a series of novel experiments
unequivocally proved this view to be false. In order to probe interference ef-
fects, we now turn to the Aharonov-Bohm effect, which occurs in the most
spectacular of these experiments.

1.2 The Aharonov-Bohm effect

The Young two-slit device surely provides the simplest example of an interfer-
ence pattern in optics; understanding its analog in the case of electrons is nec-
essary for the understanding of quantum interference effects. In the Aharonov-
Bohm geometry, an infinite solenoid is placed between the slits, such that the
paths of the interfering electrons are exterior to it, as indicated in Figure 1.5.
The magnetic field outside the solenoid is zero, so that classically it has no
effect on the motion of the electrons.
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Figure 1.5: Schematic representation of the Aharonov-Bohm effect. A flux tube
of flux φ is placed behind the two slits.

This is not the case in quantum mechanics where, to calculate the intensity,
we must sum the complex amplitudes associated with different trajectories.
For the two trajectories of Figure 1.5, the amplitudes have the form a1,2 =
|a1,2|eiδ1,2 , where the phases δ1 and δ2 are given by (−e is electron charge) :

δ1 = δ
(0)
1 − e

~

∫

1

A.dl

δ2 = δ
(0)
2 − e

~

∫

2

A.dl . (1.1)

The integrals are the line integrals of the vector potential A along the two

trajectories and δ
(0)
1,2 are the phases in the absence of magnetic flux. In the
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presence of a magnetic flux φ induced by the solenoid, the intensity I(φ) is
given by

I(φ) = |a1 + a2|2 = |a1|2 + |a2|2 + 2|a1a2| cos(δ1 − δ2)
= I1 + I2 + 2

√

I1I2 cos(δ1 − δ2) . (1.2)

The phase difference ∆δ(φ) = δ1 − δ2 between the two trajectories is now
modulated by the magnetic flux φ

∆δ(φ) = δ
(0)
1 − δ(0)2 +

e

~

∮

A.dl = ∆δ(0) + 2π
φ

φ0
, (1.3)

where φ0 = h/e is the quantum of magnetic flux. It is thus possible to vary
continuously the state of interference at each point on the screen by changing
the magnetic flux φ. This is the Aharonov-Bohm effect [2]. It is a remarkable
probe to study this coherence in electronic systems [3]. This constitutes an
advantage for electronic systems over their optical counterparts 2.

This effect has been observed in the following experiment : a coherent
stream of electrons was emitted by an electron microscope and split in two be-
fore passing through a toroidal magnet whose magnetic field was confined to the
inside of the torus [5]. Thus, the magnetic field was zero along the trajectories
of electrons. This was however an experiment performed in vacuum, where the
electrons do not undergo any scattering before interfering. In order to demon-
strate possible phase coherence in metals, in which the electrons undergo many
collisions, R. Webb and his collaborators (1983) measured the resistance of a
gold ring [6]. In the setup depicted in Figure 1.6, electrons are constrained to
pass through the two halves of the ring that constitute the analogs of the two
Young slits, before being collected at the other end.

The analog of the intensity I(φ) is the electrical current, or better yet,
the conductance G(φ) measured for different values of the magnetic flux φ.
The flux is produced by applying a uniform magnetic field, though this does
not strictly correspond to the Aharonov-Bohm experiment, since the magnetic
field is not zero along the trajectories of electrons. However, the applied field is
taken sufficiently weak that firstly, there is no deflection of the trajectories due
to the Lorentz force, and secondly, the dephasing of coherent trajectories due
to the magnetic field is negligible in the interior of the ring. Thus, the effect of
the magnetic field may be neglected in comparison to that of the flux. Figure
1.7 shows that the magnetoresistance of this ring is, to first approximation, a
periodic function of the applied flux whose period is the flux quantum φ0 = h/e.
Indeed, since the relative phase of the two trajectories is modulated by the
flux, the total current, and therefore the conductance of the ring, are periodic
functions of the flux 3 :

G(φ) = G0 + δG cos(∆δ(0) + 2π
φ

φ0
) . (1.4)

2In a rotating frame, there is an analogous effect, called the Sagnac effect [4].
3We see in Figure 1.7 that the modulation is not purely periodic. This is due to the fact

that the ring is not one-dimensional. Moreover, multiple scattering trajectories within the
same branch may also be modulated by the magnetic field which penetrates into the ring
itself. This is the origin of the low-frequency peak in Figure 1.7.b.
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Figure 1.6: Schematic description of the experiment of Webb et al. on the
Aharonov-Bohm effect in a metal. In this experiment, the applied magnetic
field is uniform. φ is the flux through the ring.

This modulation of the conductance as a function of flux results from the
existence of coherent effects in a medium in which the disorder is strong enough
for electrons to be multiply scattered. Consequently, the naive argument that
phase coherence disappears in this regime is incorrect, and must be reexamined.

1.3 Phase coherence and effect of disorder

In the aforementioned experiment of R. Webb et al., the size of the ring was
of the order of a micron. Now we know that for a macroscopic system, the
modulation as a function of magnetic flux disappears. Therefore, there exists a
characteristic length such that on scales greater than it, there is no longer any
phase coherence. This length, called the phase coherence length and denoted
Lφ, plays an essential role in the description of coherent effects in complex
systems.

In order to better understand the nature of this length, it is useful to review
some notions related to quantum coherence 4. Consider an ensemble of quan-
tum particles contained in a cubic box of side length L in d dimensions. The
possible quantum states are coherent superpositions of wavefunctions such that
the quantum state of the system is coherent over the whole volume Ld. There
are many examples in which quantum coherence extends up to the macroscopic
scale : superconductivity, superfluidity, free electron gas at zero temperature,
coherent states of the photon field, etc.

For the electron gas at finite temperature, this coherence disappears at the
macroscopic scale. It is therefore possible to treat physical phenomena such

4Most of the notions discussed here use the language of quantum mechanics; however,
they have more or less direct analogs in the case of electromagnetic wave propagation.
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Figure 1.7: a) Magnetoresistance of a gold ring at low temperature T = 0.01K,
b) Fourier spectrum of the magnetoresistance. The principal contribution is
that of the Fourier component at φ0 = h/e [6].

as electrical or thermal transport, employing an essentially classical approach.
The suppression of quantum coherence results from phenomena linked to the
existence of incoherent and irreversible processes due to the coupling of elec-
trons to their environment. This environment consists of degrees of freedom
with which the electrons interact : thermal excitations of the atomic lattice
(phonons), impurities having internal degrees of freedom, interaction with other
electrons, etc. This irreversibility is a source of decoherence for the electrons
and its description is a difficult problem which we shall consider in Chapters 6
and 13. The phase coherence length Lφ generically describes the loss of phase
coherence due to irreversible processes. In metals, the phase coherence length
is a decreasing function of temperature. In practice, Lφ is of the order of a few
microns for temperatures less than one kelvin.

None of the above considerations are related to the existence of static dis-
order of the type discussed in the two previous sections (e.g., static impurities
such as vacancies or substitutional disorder, or variation of the refractive index
in optics). Such disorder does not destroy the phase coherence and does not
introduce any irreversibility. However, the possible symmetries of the quantum
system disappear in such a way that it is no longer possible to describe the
system with quantum numbers. In consequence, each observable of a random
medium depends on the specific distribution of the disordered potential. On
average, it is possible to characterize the disorder by means of a characteristic
length : the elastic mean free path le, which represents the average distance
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travelled by a wave packet between two scattering events with no energy change
(see Chapters 3 and 4).

We see, therefore, that the phase coherence length Lφ is fundamentally
different from the elastic mean free path le. For sufficiently low temperatures,
these two lengths may differ by several orders of magnitude, so that an electron
may propagate in a disordered medium a distance much larger than le keeping
its phase coherence, so long as the length of its trajectory does not exceed Lφ.
The loss of coherence, therefore, is not related to the existence of a random
potential of any strength, but rather to other types of mechanisms. It may seem
surprising that the distinction between the effect of elastic disorder described
by le and that associated with irreversible processes of phase relaxation was
first demonstrated in the relatively nontrivial case of transport in a metal where
the electrons have complex interactions with their environment. However, this
same distinction also applies to electromagnetic wave propagation in turbid
media in the regime of coherent multiple scattering.

1.4 Average coherence and multiple scattering

If phase coherence leads to interference effects for a specific realization of dis-
order, it might be thought that those would disappear upon averaging. In the
experiment of R. Webb et al. described in section 1.2, the conductance oscilla-
tions of period φ0 = h/e correspond to a specific ring. If we now average over
disorder, that is, over ∆δ(0) in relation (1.4), we expect the modulation by the
magnetic flux to disappear, and with it all trace of coherent effects. The same
kind of experiment was performed in 1981 by Sharvin and Sharvin [7] on a long
hollow metallic cylinder threaded by an Aharonov-Bohm flux. A cylinder of
height greater than Lφ can be interpreted as an ensemble of identical, uncor-
related rings of the type used in R. Webb’s experiment. Thus, this experiment
yields an ensemble average. Remarkably, they saw a signal which still oscillates
with flux but with a periodicity φ0/2 instead of φ0. How can we understand
that coherent effects can subsist on average?

The same type of question may be asked in the context of optics. If we
average a speckle pattern over different realizations of disorder, does any trace
of the phase coherence remain? Here too there was an unexpected result : the
reflection coefficient of a wave in a turbid medium (sometimes called its albedo)
was found to exhibit an angular dependence that could not be explained by
the classical transport theory (Figure 1.8). This effect is known as coherent
backscattering, and is a signature of phase coherence.

These results show that even on average, some phase coherence effects re-
main. In order to clarify the nature of these effects, let us consider an optically
thick random medium. It may be modelled by an ensemble of point scatterers
at positions rn distributed randomly. The validity of this hypothesis for a real-
istic description of a random medium will be discussed in detail in Chapters 2
and 3. Consider a plane wave emanating from a coherent source (located out-
side the medium), which propagates in the medium and collides elastically with
scatterers, and let us calculate the resulting interference pattern. For this, we
study the complex amplitude A(k,k′) of the wave re-emitted in the direction
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Figure 1.8: Speckle pattern obtained by multiple scattering of light by a sample
of polystyrene spheres, as a function of observation angle. The curve in the
lower figure represents the intensity fluctuations measured along a given angular
direction. The upper figure is obtained by averaging over the positions of the
spheres, and the resulting curve gives the angular dependence of the average
intensity. (Figure courtesy of G. Maret.)

defined by the wavevector k′, corresponding to an incident plane wave with
wavevector k. It may be written, without loss of generality, in the form

A(k,k′) =
∑

r1,r2

f(r1, r2)e
i(k.r1−k′.r2) , (1.5)

where f(r1, r2) is the complex amplitude corresponding to the propagation
between two scattering events located at r1 and r2. This amplitude may be
expressed as a sum of the form

∑

j aj =
∑

j |aj |eiδj , where each path j repre-
sents a sequence of scatterings (Figure 1.9) joining the points r1 and r2. The
associated intensity is given by

|A(k,k′)|2 =
∑

r1,r2

∑

r3,r4

f(r1, r2)f
∗(r3, r4)e

i(k.r1−k′.r2)e−i(k.r3−k′.r4) (1.6)

with

f(r1, r2)f
∗(r3, r4) =

∑

j,j′

aj(r1, r2)a
∗
j′(r3, r4) =

∑

j,j′

|aj ||aj′ |ei(δj−δj′ ) . (1.7)

In order to calculate its value averaged over the realizations of the random
potential, that is, over the positions of scatterers, it is useful to note that most
of the terms in relations (1.6) and (1.7) average to zero, provided that the
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phase δj − δj′ , which measures the difference in the lengths of the trajectories
of Figure 1.9, is random.
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Figure 1.9: Typical trajectories which contribute to the total complex amplitude
f(r1, r2) of a multiply scattered wave.

In consequence, the only terms which contribute to the average of |A(k,k′)|2
are those for which the phases vanish. This can only occur for pairs of identical
trajectories, those which have the same sequence of scattering events, either in
the same or in opposite directions. Such trajectories are schematically repre-
sented in Figure 1.10, and correspond to the sequences

r1 → ra → rb · · · → ry → rz → r2

r2 → rz → ry · · · → rb → ra → r1

The fact that the trajectories are identical imposes on us, in particular, to take
r1 = r3 and r2 = r4 for the former process (same direction) and r1 = r4 and
r2 = r3 for the latter (opposite direction) in relation (1.6). These two processes
contribute identically to the intensity provided that the system is invariant
under time reversal. Moreover, the second process gives rise, according to
(1.6), to an additional dephasing such that the only two non-zero contributions
which remain upon averaging are :

|A(k,k′)|2 =
∑

r1,r2

|f(r1, r2)|2
[

1 + ei(k+k′).(r1−r2)
]

, (1.8)

where · · · denotes averaging over the realizations of the random potential.

The essence of the present book is a systematic study of the consequences
of the existence of these two processes, which survive upon averaging in the
course of multiple scattering. The former process is well-known. It may be per-
fectly well understood in a purely classical treatment that does not take into
account the existence of an underlying wave equation, since the phases exactly
cancel out. In the study of electron transport in metals, this classical analysis is
performed in the framework of the Boltzmann equation, while for electromag-
netic wave propagation, the equivalent theory, called radiative transfer, was
developed by Mie and Schwartzchild [8]. Both date from the beginning of the
twentieth century.

The second term in relation (1.8) contains a phase factor. This last depends
on the points r1 and r2, and the sum over these points in the averaging makes
this term vanish in general, with two notable exceptions :
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Figure 1.10: Schematic representation of the two types of sequences of multiple
scatterings that remain upon averaging. The first corresponds to the classical
average intensity. The second, for which the two sequences of scattering events
are traversed in opposite directions, is the source of the coherent backscattering
effect.

• k+k′ ≃ 0 : In the direction exactly opposite to the direction of incidence,
the intensity is twice the classical value. The classical contribution has
no angular dependence on average, and the second term, which depends
on k + k′, gives an angular dependence to the average intensity reflected
by the medium which appears as a peak in the albedo. This phenomenon
was observed first in optics and it is known as coherent backscattering; its
study is the object of Chapter 8.

• In the sum (1.8), the terms for which r1 = r2 are special. They cor-
respond to closed multiple scattering trajectories. Their contribution to
the averaged interference term survive even when it is impossible to select
the directions k and k′. This is the case for metals or semiconductors
for which the interference term affects the average transport properties
such as the electrical conductivity. This is the origin of the phenomenon
of weak localization.
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1.5 Phase coherence and self-averaging : uni-
versal fluctuations

The measurable physical quantities of a disordered quantum system depend
on the specific realization of the disorder, at least so long as the characteristic
lengths of the system are smaller than the phase coherence length Lφ. In
the opposite case, that is, for lengths greater than Lφ, the phase coherence
is lost, and the system becomes classical, namely the physical quantities are
independent of the specific realization of the disorder. The physics of systems
of size less than Lφ, called mesoscopic systems 5, is thus particularly interesting
because of coherence effects [9, 10]. The physics of mesoscopic systems makes
precise the distinction between the complexity due to disorder described by le
and the decoherence, which depends on Lφ :

• Disorder (le) : loss of symmetry and of good quantum numbers (com-
plexity).

• Loss of phase coherence (Lφ).

Let us now attempt to understand why a disordered quantum system larger
than Lφ exhibits self-averaging, i.e., why its measurable physical properties
are equal to their ensemble averages. If the characteristic size L of a system
is much greater than Lφ, the system may be decomposed into a collection of

N = (L/Lφ)
d ≫ 1 statistically independent subsystems, in each of which the

quantum coherence is preserved. A physical quantity defined in each subsys-
tem will then take on N random values. The law of large numbers ensures that
every macroscopic quantity is equal, with probability one, to its average value.
Consequently, every disordered system of size L≫ Lφ is effectively equivalent
to an ensemble average. On the other hand, deviations from self-averaging
are observed in systems of sizes smaller than Lφ because of the underlying
phase coherence. The study of these deviations is one of the main goals of
mesoscopic physics. Consider the particularly important example of fluctua-
tions in the electrical conductance of a weakly disordered metal (Chapter 11).
In the classical self-averaging limit, for a cubic sample of size L, the relative
conductance fluctuations vary as 1/

√
N :

√

δG2

G
≃ 1√

N
≃
(

Lφ

L

)d/2

(1.9)

where δG = G − G. The average conductance G is the classical conductance
Gcl given by Ohm’s law Gcl = σLd−2 where σ is the electrical conductivity 6.
From relation (1.9), we deduce that δG2 ∝ Ld−4. For d ≤ 3, the fluctuations
go to zero in the large scale limit, and the system is said to be self-averaging.
In contrast, for L < Lφ, it is found experimentally that

√

δG2 ≃ const.× e2

h
. (1.10)

5The Greek root µǫσoς means intermediate.
6The expression Gcl = σLd−2 is a generalization to d dimensions of the standard expres-

sion Gcl = σS/L, for a sample of length L and cross section S.
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In the mesoscopic regime, the amplitude of conductance fluctuations is inde-
pendent of the size L and of the amount of disorder, and one speaks of universal
conductance fluctuations. The variance of the conductance is the product of
a universal quantity e2/h and a numerical factor which depends solely on the
sample geometry. This implies that in the mesoscopic regime, the electrical
conductance is no longer a self-averaging quantity. This universality is shown
in Figure 1.11 where each plot corresponds to a very different system. One
essential characteristic of mesoscopic fluctuations is their reproducibility. For a
given realization of disorder, the dependence of the fluctuations as a function
of an external parameter such as Fermi energy or magnetic field is perfectly
reproducible. In this sense, the fluctuations represent, just like speckle pat-
terns in optics, a “fingerprint” of the realization of the disorder, and uniquely
characterize it.
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Figure 1.11: Aperiodic variations in the magnetoconductance of three different
systems. a) A gold ring of diameter 0.8 mm, b) a Si-MOSFET sample, and c)
the result of numerical simulations of the disordered Anderson model (discussed
in Chapter 2). The conductance varies by several orders of magnitude from one
system to another, but the fluctuations remain of order e2/h (P.A. Lee et al.,
Phys. Rev. B 35, 1039 (1987)).

1.6 Spectral correlations

We have mentioned the signature of coherent effects on transport properties
such as electrical conductance or albedo. For an isolated system of finite size,
we may wonder about the effect of disorder on the spatial behavior of wave
functions and on the correlation of eigenenergies. For electromagnetic waves,
we are interested in the spectrum of eigenfrequencies. If, for instance, the wave
functions are strongly affected by the disorder and are exponentially localized,
then the corresponding eigenenergies (or frequencies) may be arbitrarily close
one to another since they describe states for which the spatial overlap is ex-
ponentially small. These wave functions are uncorrelated as are their energy
levels. If, on the other hand, the wavefunctions are spatially delocalized over
the system and do not exhibit any spatial structure, which corresponds to a
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regime we may consider as ergodic, then the important spatial overlap of the
eigenfunctions induces spectral correlations manifested by a “repulsion” of the
energy levels. These two extreme situations are very general, and are insen-
sitive to the microscopic details characterizing the disorder. It turns out that
the spectral correlations present universal properties common to very differ-
ent physical systems. Consider, for example, the probability P (s) that two
neighboring energy levels are separated by s. The two preceding situations are
described by two robust limiting cases for the function P (s), corresponding,
respectively, to a Poisson distribution for the exponentially localized states,
and to a Wigner-Dyson distribution for the ergodic case. These two distribu-
tions, represented in Figure 10.1, describe a wide range of physical problems
and divide them, to first approximation, into two classes, corresponding either
to integrable systems (Poisson) or to non-integrable –also called chaotic– sys-
tems (Wigner-Dyson). This latter case may be systematically studied by using
random matrix theory along the general lines discussed in Chapter 10.

Of course, a complex medium exhibits such universal behavior only in lim-
iting cases. From the methods developed in this book, we shall see how to
recover certain results of random matrix theory, and to identify corrections to
the universal regime. These spectral correlations are extremely sensitive to the
loss of phase coherence. They thus depend on Lφ and are characteristic of
the mesoscopic regime. They are evidenced by the behavior of thermodynamic
variables such as magnetization or persistent currents which constitute the or-
bital response of electrons to an applied magnetic field; this is the object of
Chapter 14.

1.7 Classical probability and quantum crossings

Most physical quantities studied in this book are expressed as a function of
the product of two complex amplitudes, each being the sum of contributions
associated with multiple scattering trajectories :

∑

i

a∗i
∑

j

aj =
∑

i,j

a∗i aj . (1.11)

This is the case, for example, of light intensity considered in section 1.4. The
combination of amplitudes (1.11) is related to the probability of quantum diffu-
sion, whose role is essential in characterizing the physical properties of disor-
dered media. This probability, which describes the evolution of a wave packet
between any two points r and r′, is written as the product of two complex
amplitudes 7 known as propagators or Green’s functions. Denoting the average
probability by P (r, r′), we have

P (r, r′) ∝
∑

i,j

a∗i (r, r
′)aj(r, r′) . (1.12)

7In this introduction, we do not seek to establish exact expressions for the various physical
quantities, but simply to discuss their behavior as a function of multiple scattering ampli-
tudes. We therefore omit time or frequency dependence when it is not essential. More precise
definitions are left for Chapters 3 and 4.
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Each amplitude aj(r, r
′) describes a propagating trajectory j from r to r′, and

thus P (r, r′) appears as the sum of contributions of pairs of trajectories, each
characterized by an amplitude and a phase. This sum may be decomposed into
two contributions, one for which the trajectories i and j are identical, the other
for which they are different :

P (r, r′) ∝
∑

j

|aj(r, r′)|2 +
∑

i6=j

a∗i (r, r
′)aj(r, r′) . (1.13)

In the former contribution the phases vanish. In the latter, the dephasing of

aj

ai
*

r r'

r'r

(a)

(b)
aj

aj
*

Figure 1.12: By averaging over disorder, the contribution from pairs of dif-
ferent trajectories (a) vanishes, leaving only terms corresponding to identical
trajectories to contribute to the average probability (b).

paired trajectories is large and random, and consequently their contribution
vanishes on average 8. The probability is thus given by a sum of intensities and
does not contain any interference term (Figure 1.12) :

Pcl(r, r
′) ∝

∑

j

|aj(r, r′)|2 . (1.14)

We shall call this classical term a Diffuson. In the weak disorder limit, that
is, as long as the wavelength λ is small compared to the elastic mean free path
le, and for length scales larger than le, the Diffuson is well-described by the
solution of the diffusion equation

[ ∂

∂t
−D∆

]

Pcl(r, r
′, t) = δ(r − r′)δ(t) , (1.15)

where D = vle/d is the diffusion constant, v the group velocity of the wave
packet, and d the dimension of space.

One quantity of particular importance is the probability of return to the
initial point Pcl(r, r, t), as well as its integral over space Z(t). This last quantity
is expressed as a function of the eigenfrequencies denoted En associated with
the diffusion equation (1.15)

Z(t) =

∫

drPcl(r, r, t) =
∑

n

e−Ent (1.16)

8We show in the following section that the interference terms of expression (1.13) do not
vanish completely, and are at the origin of most of the quantum effects described in this
book.
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for t > 0. For example, for a system 9 of volume Ω, we have

Z(t) =
Ω

(4πDt)d/2
. (1.17)

The dependence as a function of the space dimensionality d plays an essential
role, and the physical properties are accordingly more sensitive to the effects
of multiple scattering when the dimensionality is small, since the return prob-
ability increases with decreasing d.

For a finite system of volume Ω = Ld, boundary conditions may play an
important role, since they reflect the nature of the coupling to the environment
on which Z(t) depends. This introduces a new characteristic time

τD = L2/D (1.18)

called the diffusion time or Thouless time. It represents the time to diffuse from
one boundary of the sample to the other. If t≪ τD, the effect of boundaries is
not felt, the diffusion is free and expressed by relation (1.17). If, on the other
hand, t≫ τD, the entire volume is explored by the random walk, we are in the
ergodic regime, and Z(t) ≃ 1. A characteristic energy is associated with τD
and it is called the Thouless energy Ec = ~/τD.

1.7.1 Quantum crossings

Taking the second contribution of (1.13) to be zero amounts to neglecting all
interference effects. In fact, even after averaging over disorder, this contribu-
tion is not rigorously zero. There still remain terms describing pairs of distinct
trajectories, i 6= j, which are sufficiently close that their dephasing is small.
As an example, consider the case of Figure 1.13.a, where the two trajectories
in a Diffuson follow the same sequence of scatterings but cross, forming a loop
with counter propagating trajectories 10. This notion of crossing is essential
because it is at the origin of coherent effects like weak localization, long range
light intensity correlations, or universal conductance fluctuations. As such, it
is useful to develop intuition about them. Figures 1.13.a,b show that one such
crossing mixes four complex amplitudes and pairs them in different ways. The
crossing, also called Hikami box, is an object whose role is to permute ampli-
tudes [14]. For the induced dephasing to be smaller than 2π, the trajectories
must be as close to each other as possible, and the crossing must be localized
in space, that is, on a scale of the order of the elastic mean free path le. We
shall see that the volume associated with a crossing in d dimensions is of order
λd−1le. This may be interpreted by attributing a length vt to a Diffuson – the
object built with paired trajectories - propagating during a time t, where v is
the group velocity, and a cross section λd−1, giving a volume λd−1 vt.

To evaluate the importance of quantum effects, let us estimate the proba-
bility that two Diffusons will cross, as in Figure 1.13.b. This probability, for

9We ignore boundary effects, and thus are dealing with free diffusion.
10These quantum crossings, which exchange two amplitudes, should not be confused with

the self-crossings of a classical random walk.
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(a)

(b)

Figure 1.13: a) The crossing of trajectories contributing to a Diffuson leads to
a new pairing of amplitudes. b) The pairing of four amplitudes resulting from
the crossing of two Diffusons.

a time interval dt, is proportional to the ratio of the Diffuson volume to the
system volume Ω = Ld, that is,

dp×(t) =
λd−1vdt

Ω
≃ 1

g

dt

τD
. (1.19)

In this expression, we have explicitly indicated the diffusion time τD = L2/D.
We have also introduced a dimensionless number g, proportional to the inverse
ratio of the two volumes λd−1vτD/Ω. We will show that this number is none
other than the classical electrical conductance g = Gcl/(e

2/h), in units of the
quantum of conductance e2/h (relation 7.22).

When the disordered medium is coupled to leads, the diffusing waves escape
from the system in a time of the order of τD which sets therefore the charac-
teristic time for diffusive trajectories. Therefore, the probability for a crossing
during the time τD is inversely proportional to the dimensionless conductance,
namely

p×(τD) =

∫ τD

0

dp×(t) ≃ 1

g
. (1.20)

This parameter allows us to evaluate the importance of quantum corrections
to the classical behavior. In the limit of weak disorder λ≪ le, the conductance
g is large, so the crossing probability, and hence the effects of coherence, are
small.

The quantum crossings, and the dephasing which they induce, introduce
a correction to the classical probability (1.14). It is the combination of these
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crossings, the interference that they describe, and the spatially long range
nature of the Diffuson, which allows to propagate coherent effects over the entire
system. Those are the effects which lie at the basis of mesoscopic physics. The
simple argument developed here straightforwardly implies that the quantum
corrections to classical electron transport are of the order Gcl × 1/g, that is to
say, e2/h.

In the limit of weak disorder, the crossings are independent of each other.
This allows us to write successive corrections to the classical probability as a
function of the number of crossings, that is, as a power series in 1/g.

1.8 Objectives

This book deals with coherent multiple scattering of electronic or electromag-
netic waves in disordered media, in the limit where the wavelength 11 λ = 2π/k
is small compared to the elastic mean free path le. This is the limit of weak
disorder. It is possible to develop a general framework for the description of
a large number of physical phenomena, which were effectively predicted, ob-
served, and explained, by employing a small number of rather general ideas.
In this section, we briefly outline these ideas, and indicate the relevant chapter
in which these phenomena are discussed.

•Weak localization corrections to the conductivity (Chap. 7) and
the coherent backscattering peak (Chap. 8)

One particularly important example where the notion of quantum cross-
ing appears is that of electron transport in a weakly disordered conductor.
Consider, for example, transport across a sample of size L. The conductance
corresponding to the classical probability is the classical or Drude conductance
Gcl. The quantum correction to the probability leads to a correction to the
conductance.

This correction associated with a single crossing is of order 1/g, but it
depends as well on the distribution of loops, that is, on the closed diffusive
trajectories (Figure 1.14), whose number is given by the spatial integral (1.16),
namely by the integrated probability of returning to the origin Z(t). The
probability po(τD) of crossing the sample with a single quantum crossing (one
loop) is of the form

po(τD) ∼ 1

g

∫ τD

0

Z(t)
dt

τD
, (1.21)

where τD = L2/D. We obtain the relative correction to the average conduc-
tance ∆G = G−Gcl as,

∆G

Gcl
∼ −po(τD) (1.22)

11For electrons, λ is the Fermi wavelength.
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(a)

(b)

Figure 1.14: The crossing of a Diffuson with itself (b) leads to a quantum
correction to the classical Drude conductivity (a).

The minus sign in this correction indicates that taking a quantum crossing
and therefore a closed loop into account has the effect of reducing the average
conductance. This is called the weak localization correction.

We note that the two multiple scattering trajectories that form a loop evolve
in opposite directions. If the system is time reversal invariant, the two ampli-
tudes associated to these trajectories j and jT are identical ajT (r, r) = aj(r, r)
so that their product is equal to the product of two amplitudes propagating in
the same direction. If there are processes which break this invariance, then the
weak localization correction vanishes. This pairing of time-reversed conjugate
trajectories is called a Cooperon.

This pairing closely resembles that described in the optical counterpart of
section 1.4 and Figure 1.10.b, which corresponds to time reversed multiple
scattering amplitudes aj(r1, r2) and a∗jT (r1, r2). For the geometry of a semi-
infinite disordered medium, and a plane wave incident along the direction k
which emerges along k′, the average reflected intensity I(k,k′) (also called the
average albedo) depends on the angle between the directions k and k′. From
(1.8), we have

I(k,k′) ∝
∫

drdr′Pcl(r, r
′)
[

1 + ei(k+k′).(r−r′)
]

(1.23)

We identify |f(r, r′)|2 with the Diffuson Pcl(r, r
′) whose endpoints r and r′

are taken to be close to the interface between the diffusive medium and the
vacuum. The first term in the brackets is the phase-independent classical con-
tribution, while the interference term has an angular dependence around the
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backscattering direction k′ ≃ −k. The albedo therefore exhibits a peak in this
direction, called the coherent backscattering peak, whose intensity is twice the
classical value.

• Correlations in speckle patterns (Chap. 12)

For a given realization of disorder, the intensity distribution of a light wave
undergoing multiple scattering is a random distribution of dark and bright
spots (Figure 1.2) called a speckle pattern. This interference pattern, arising
from the superposition of complex amplitudes, constitutes a “fingerprint” of the
specific disorder configuration. In order to characterize a speckle pattern, we
may measure the angular distribution of the transmitted (or reflected) intensity
using the geometry of a slab of thickness L. In this case, one measures the
normalized intensity Tab transmitted in the direction ŝb and corresponding
to a wave incident in the direction ŝa (see Figure 12.2). On average, the
transmission coefficient Tab depends only slightly on the directions ŝa and ŝb,
and we denote it T . The angular correlation of the speckle is defined by

Caba′b′ =
δTabδTa′b′

T 2 , (1.24)

where δTab = Tab − T . The fluctuations of the speckle, for a given incidence

direction ŝa, are described by the quantity Cabab = δ2Tab/T
2

which happens,
as we shall see, to be equal to 1, yielding

T 2
ab = 2 T 2

. (1.25)

This result, which constitutes the Rayleigh law, describes the most “visible”
aspect of a speckle pattern, namely, its “granularity,” with relative fluctuations
of the order of unity.

In contrast to the probability (average conductance or light intensity), a
correlation function such as (1.24) is the product of four complex amplitudes
(Figure 1.15.a). When averaging over disorder, the only important contri-
butions are obtained by pairing these amplitudes so as to form Diffusons or
Cooperons. Neglecting, in a first step, the possibility of a quantum crossing of
two Diffusons, there are two possibilities, shown in Figures 1.15.b,c. The first
is the product of two average intensities Tab and Ta′b′ . The second gives the

principal contribution to the correlation function (1.24), denoted C
(1)
aba′b′ . It is

nonzero only if ŝa − ŝa′ = ŝb − ŝb′ and it decays exponentially as a function of
k|ŝa − ŝa′ |/L, that is, over a very small angular range.

It is also possible to pair the amplitudes by interposing one or more quantum
crossings. This results in corrections to the angular correlation function in

powers of 1/g. The first one, denoted C
(2)
aba′b′ , has a single crossing, and is

shown in Figure 1.15.d. The presence of a crossing imposes constraints on the
pairing of the amplitudes, and thus gives rise to a different angular dependence.

We will show in section 12.4.2 that C
(2)
aba′b′ decays as a power of k|ŝa − ŝa′ |/L,

instead of an exponential decay. It has a weight 1/g ≪ 1 as compared to the
term with no crossing.
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Figure 1.15: (a) The angular correlation function of a speckle pattern is built
from the product of four complex amplitudes corresponding to four plane waves
incoming along directions ŝa and ŝa′ and emerging along ŝb and ŝb′ . The
main contributions are obtained by pairing the amplitudes two by two to form
Diffusons. This gives rise to contributions (b) and (c). Contribution (c), which

corresponds to the correlation function C
(1)
aba′b′ decays exponentially in angle.

Contribution (d) contains one quantum crossing, while (e) has two quantum
crossings. In this last case, we note that the corresponding correlation function
has no angular dependence.

The contribution C
(3)
aba′b′ , with two crossings is sketched in Figure 1.15.e.

Because of the two-crossing structure, this contribution has no angular depen-
dence; i.e., it yields a uniform background to the correlation function. This
result is characteristic of coherent multiple scattering, that is to say, of the com-
bined effect of quantum crossings and of their long range propagation through
the Diffusons. Upon averaging the total angular correlation function over all
directions of incident and emergent waves, only this last contribution survives,
which constitutes the analog for waves of universal conductance fluctuations
[11, 12].

• Universal conductance fluctuations (Chap. 11)

These considerations obtained for electromagnetic waves are easily trans-
posed to the case of electrons in a weakly disordered metal, and in this context
lead to conductance fluctuations. In the mesoscopic regime, these fluctuations
differ considerably from the classical result : they are universal and of order
e2/h (see section 1.5). This results from the existence of quantum crossings.
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More precisely, the calculation of the fluctuations δG2 = G2 −G2
involves the

pairing of four complex amplitudes paired into two Diffusons. Moreover, in
the framework of the Landauer formalism (Appendix C7.2), the conductance,
in units of e2/h, is related to the transmission coefficient Tab summed over all
incident and emergent directions a and b. Thus, as for the speckle angular cor-
relations, it may be shown that the term with no quantum crossing corresponds

to G
2
. The contribution from a single crossing vanishes upon summation over

the emergent directions. In contrast, the term with two quantum crossings has
no angular dependence (Figure 1.15.e) and it gives a universal variance δG2

proportional to G2
cl/g

2 = (e2/h)2.

We note that, as for the weak localization correction, the variance δG2

depends on the distribution of loops. Here the loops result from two crossings
(Figure 1.15e). For a loop of length vt, the choice of the relative position of
the two crossings introduces an additional factor λd−1vt/Ω ≃ t/(gτD) in the
integral (1.21). We thus deduce that

δG2

G2
cl

∼ 1

g2

∫ τD

0

Z(t)
tdt

τ2
D

(1.26)

This expression is similar to the relative correction of weak localization (1.21,
1.22), but the additional factor t has important consequences. The dependence
Z(t) ∝ t−d/2 of the integrated return probability to the origin implies that weak
localization correction is universal for d < 2, while conductance fluctuations are
universal for d < 4.

• Dephasing (Chap. 6)

The interference effects discussed earlier result from the existence of quan-
tum crossings. They depend on the coherence of the wave-scatterer system,
and may be modified in the presence of dephasing processes. Such processes
are related to additional degrees of freedom which we may divide into three
classes, examples of which are :

• External field : uniform magnetic field, Aharonov-Bohm flux.

• Degrees of freedom of the scattered wave : electron spin and photon
polarization.

• Degrees of freedom of the scatterers : magnetic impurities, environment
induced by other electrons, motion of scatterers, internal quantum degrees of
freedom (atomic Zeeman sublevels).

Let us first consider the case of multiple scattering of electrons, now in
the presence of a magnetic field. Full coherence implies that time-reversed
trajectories have the same amplitude. This is no longer the case in the presence
of a magnetic field, which induces a dephasing between conjugate trajectories :

ajT (r, r′) = aj(r, r
′)eiΦj(r,r′) . (1.27)
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Using (1.13) and the discussion on page 33, the correction to the return prob-
ability associated to the Cooperon, which we denote Pc, is of the form

Pc(r, r) ∝
∑

j

|aj(r, r)|2eiΦj(r,r) , (1.28)

where Φj(r, r) is the phase difference accumulated along the closed trajectories.
The dephasing due to a magnetic field is

Φj(r, r
′) =

2e

~

∫ r′

r

A.dl , (1.29)

where the factor 2 comes from the fact that the two paired trajectories each
accumulate the same phase, but with opposite signs, so that their difference
adds. The coherent contribution to the return probability is thus affected by
this phase factor, and the weak localization correction to the electrical conduc-
tance takes the form

∆G

Gcl
∝ −

∫

dtZ(t)
〈

eiΦ(t)
〉

(1.30)

where
〈

eiΦ(t)
〉

is the average phase factor of the ensemble of trajectories of
length vt.

The magnetic field thus appears as a way to probe phase coherence. In par-
ticular, the Aharonov-Bohm effect gives rise to the spectacular Sharvin-Sharvin
effect, in which the average conductance still has a contribution which oscil-
lates with period h/2e (section 7.6.2). To evaluate the coherent contribution
in the presence of a magnetic field, we must look for solutions of the covariant
diffusion equation which replaces (1.15)

[

∂

∂t
−D

(

∇r + i
2e

~
A(r)

)2
]

P (r, r′, t) = δ(r − r′)δ(t) . (1.31)

The dephasing (1.29) resulting from the application of a magnetic field changes
the phase accumulated along a multiple scattering trajectory. In contrast, to
describe the coupling to other degrees of freedom, we are led to locally average
the relative dephasing between the two complex amplitudes which interfere.
This results from our incomplete knowledge of the internal quantum state of the
scatterers. The average over the scatterers degrees of freedom gives rise to an
irreversible dephasing, which we describe using a finite phase coherence time τφ.
We show in Chapter 6 that the contributions of the Diffuson and the Cooperon
are modified by a phase factor which in general decreases exponentially with
time.

〈

eiΦ(t)
〉

∝ e−t/τφ . (1.32)

Here 〈· · · 〉 indicates an average over both disorder and these other degrees of
freedom. The determination of the phase coherence time requires the evaluation
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of the average in (1.32). This notion of dephasing extends to any perturbation
whose effect is to modify the phase relation between paired multiple scattering
trajectories. We present such an example just below.

• Dynamics of scatterers - diffusing wave spectroscopy (Chaps. 6
and 9)

When properly understood, a source of dephasing is not necessarily a nui-
sance, but may be used to study the properties of the diffusive medium. Thus,
in the case of scattering of electromagnetic waves, it is possible, by measuring
the time autocorrelation function of the electromagnetic field, to take advantage
of the coherent multiple scattering to deduce information about the dynamics
of the scatterers which is characterized by a time scale τb. In fact, since the
scatterer velocity is usually much smaller than that of the wave, if we send
light pulses at different times, 0 and T , we can probe different realizations of
the random potential. The paired trajectories thus explore different configu-
rations separated by a time T . This results in a dephasing which depends on
the motion of the scatterers during the time interval T . The time correlation
function of the electric field E at a point r (with a source at r0) is of the form

〈E(r, T )E∗(r, 0)〉 ∝
〈

∑

j

aj(r0, r, T )a∗j (r0, r, 0)

〉

, (1.33)

where the average is over both the configurations and the motion of the scat-
terers. It is given as a function of the classical probability (the Diffuson) :

〈E(r, T )E∗(r, 0)〉 ∝
∫ ∞

0

dtPcl(r0, r, t)e
−t/τs (1.34)

The characteristic time τs, which depends on the dynamics of the scatterers,
is related to τb and to T . This technique which consists in measuring the time
correlations of the field or the intensity is known as diffusing wave spectroscopy.
It gives information about the dynamics of the scatterers. Since the long multi-
ple scattering paths decorrelate very quickly, we may obtain information about
the dynamics at very short times. This idea is largely used in the study of
turbid media.

• Density of states (Chap. 10)

The preceding examples dealt with the transport of waves or electrons. The
case of thermodynamic quantities is more delicate, since they are expressed as
a function of the density of states, which has the form

ρ(ǫ) ∝
∫

dr
∑

j

aj(r, r) . (1.35)

When averaging over disorder, the phases vanish, and there is no remnant of
phase coherence. On the other hand, quantities which are products of densi-
ties of states or thermodynamic potentials involve pairs of trajectories and are
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therefore sensitive to the effects of phase coherence. For example, the fluctua-
tions of the density of states are of the form

ρ(ǫ)ρ(ǫ′) ∝
∫

drdr′∑

i,j

ai(r, r)a∗j (r
′, r′) , (1.36)

i.e., they involve paired closed trajectories but with different initial points. In
order to keep them paired, we notice that in the integration over initial points
there appears the length Li of each multiple scattering closed loops. We thus
obtain a structure quite close to the classical probability (1.14) :

ρ(ǫ)ρ(ǫ′) ∝
∫

dr
∑

i

Li |ai(r, r)|2 (1.37)

but which contains, besides Pcl(r, r, t), the length Li of the trajectories, which
is proportional to vt. More precisely, the Fourier transform (with respect to
ǫ − ǫ′) of the correlation function ρ(ǫ)ρ(ǫ′) is proportional not to Z(t) but to
t Z(t) :

ρ(ǫ)ρ(ǫ′)
F.T.−→ t Z(t) (1.38)

The number of levels N(E) in an energy interval E is the integral of the
density of states. A particularly useful quantity for the characterization of the

spectral correlations is the variance Σ2(E) = N2 −N2
of this number of levels

given by

Σ2(E) =
2

π2

∫ ∞

0

dt
Z(t)

t
sin2(

Et

2
) . (1.39)

For energies less than the Thouless energy Ec, that is, for times greater than
τD, we are in the ergodic regime and Z(t) = 1. Starting from (1.39), we get

Σ2(E) ∝ lnE . (1.40)

We recover the behavior of the spectral rigidity described by random matrix
theory. In the opposite limit, when E ≫ Ec, that is t ≪ τD, Z(t) depends on
the spatial dimension d via expression (1.17), which leads to the non-universal
behavior of the variance Σ2(E) ∝ (E/Ec)

d/2. We thus see the role diffusion
plays in spectral properties. It is, in principle, possible to determine the Thou-
less energy and the diffusion coefficient starting from the spectral correlations.
Moreover, these spectral properties enable us in principle to distinguish be-
tween a good and a poor conductor.

• Fluctuations in thermodynamic properties - orbital magnetism
(Chap. 14)

The orbital magnetization of an electron gas is given by the derivative of
the total energy with respect to the magnetic field :

M∝ − ∂

∂B

∫ 0

−ǫF

ǫρ(ǫ, B)dǫ . (1.41)
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In the geometry of a ring threaded by a magnetic field, this magnetic response
corresponds to the existence of a persistent current circulating along the ring.
The fluctuations of the magnetization may be calculated simply from the fluc-
tuations of the density of states. Given the definition (1.41), the variance

δM2 =M2 −M2
takes the form

δM2 ∝ ∂

∂B

∂

∂B′

∫ 0

−ǫF

∫ 0

−ǫF

ǫ ǫ′ρ(ǫ, B)ρ(ǫ′, B′)dǫdǫ′|B′=B (1.42)

which upon Fourier transformation leads to

δM2 ∝
∫ ∞

0

∂2Z(t, B)

∂B2

e−t/τφ

t3
dt (1.43)

where the dependence of Z(t, B) on the magnetic field is obtained by solving
equation (1.31). Thus, though the average value of the magnetization is not
affected by the phase coherence, its distribution is.

• Coulomb interaction (Chap. 13)

Until now, we have ignored the Coulomb interaction between electrons.
Taking this into account changes numerous physical properties, particularly in
the presence of disorder, since the probability that two electrons interact is
increased by the diffusive motion of the electrons. For sufficiently high electron
densities, the potential is strongly screened and we may describe the effect of
the interactions in the Hartree-Fock approximation. It is enough to add an
interaction term of the form

1

2

∫

U(r − r′)n(r)n(r′)drdr′ ≃ U

2

∫

n2(r)dr (1.44)

to the total energy, where U(r − r′) ≃ Uδ(r − r′) is the screened interaction,
and n(r) is the local electron density, related to the density of states, so that

n(r)n(r) ∝
∫

dǫdǫ′
∑

ij

a∗i (r, r, ǫ)aj(r, r, ǫ
′) . (1.45)

The correction to the total energy has the form

δEee ∝ U
∫

drdǫ1dǫ2Pcl(r, r, ǫ1 − ǫ2) . (1.46)

This correction gives an additional contribution to the average magnetization
which reads

Mee ∝ −U
∫ ∞

0

∂Z(t, B)

∂B

e−t/τφ

t2
dt (1.47)
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• Density of states anomaly

The aforementioned shift in energy (1.46) due to the Coulomb interaction
also implies a reduction of the density of states at the Fermi level. Formally,
the density of states is expressed as the second derivative of δEee with respect
to the shift ǫ measured relative to the Fermi level which, using (1.46), yields

δρ(ǫ) ∝ U
∫

drPcl(r, r, ǫ) (1.48)

or

δρ(ǫ) ∝ U
∫ ∞

0

Z(t) cos ǫt dt (1.49)

This correction, called density of states anomaly, is an important signature of
the electron-electron interaction, and it depends on the space dimensionality
and the sample geometry via the probability Z(t).

• Quasiparticle lifetime (Chap. 13)

The lifetime of a single particle electronic state is limited by electron-
electron interaction. Using the Fermi golden rule, it is shown that it is related
to the square of a matrix element of the screened Coulomb interaction, that
is, a product of four wavefunctions. The average over disorder introduces the
probability of return to the origin. We will show that

1

τee(ǫ)
∝
∫ ∞

0

Z(t)

t
sin2 ǫt

2
dt (1.50)

where ǫ is the energy shift measured from the Fermi level. This time can be
measured by studying how an electronic current injected at the energy ǫ relaxes
to equilibrium. The time τee(ǫ) diverges as the energy ǫ goes to zero, that is,
for a particle at the Fermi level. If it diverges faster than ǫ, then a state
at the Fermi level remains well-defined, and we may still use the framework
of the Landau theory of Fermi liquids in which, to a good approximation, the
electronic states may be regarded as weakly interacting quasiparticle states. At
finite temperature, even for ǫ = 0, the time τee remains finite, and it therefore
contributes to the reduction of phase coherence. Its temperature dependence,
denoted τφ(T ), involves the spatial dimension through the diffusive motion.

The Coulomb interaction may also be viewed as that of a single electron
coupled to a fluctuating longitudinal electromagnetic field which originates from
the other electrons. The phase coherence time τφ(T ) which affects the Cooperon
results from the dephasing due to this fluctuating electromagnetic field.

• Calculational methodology : long and short range correlations
- characteristic energies
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To complete and summarize this introduction, we give a survey of the char-
acteristic energy scales of the different regimes we have discussed. In the upper
part of Figure 1.16, the ergodic regime corresponds to long times over which
the diffusing wave uniformly explores all the volume at its disposal. For shorter
times, i.e., for higher energies, diffusion is free, with the boundaries having no
effect. We will not consider the regime of times shorter than the average colli-
sion time τe = le/v for which the motion becomes ballistic. On the lower scale,
we indicate the limit of validity of the Diffuson approximation, for which quan-
tum corrections are small. These corrections arise predominantly for energies
E smaller than the average level spacing ∆.�

EC 	e EF
quantum

ergodic free diffusion ballistic

E

Diffuson approximation 

h/

diffusion approximation 

Figure 1.16: Characteristic energy scales defining the different regimes studied
in coherent multiple scattering.

The calculation of the physical quantities discussed in the aforementioned
examples amounts to evaluating the average of a product of amplitudes asso-
ciated with multiple scattering trajectories. We have seen how these products
may be expressed by means of a pairing of either identical amplitudes or time-
reversed amplitudes, the other terms averaging to zero. These pairings can be
expressed in terms of the diffusion probability, the solution of a diffusion equa-
tion (1.15). This is a long range function whose diagrammatic representation is
shown in Figure 1.17. All the quantities of interest involve one or more Diffu-
sons. We have also shown that Diffusons may cross, and we have stressed that
these quantum crossings are at the origin of the coherent effects observed in
multiple scattering. The crossing is described by a short range function which
decays exponentially on a scale of order le, and preserves the phase coherence
between paired trajectories.

We may thus consider the problem of evaluating different physical quantities
as a “construction game” which consists in building a diagrammatic represen-
tation which facilitates the calculation. The building blocks in this “game” are
the Diffusons, Cooperons, and quantum crossings (Hikami boxes). A few ex-
amples are presented in Figure 1.17. We will see that the rules of construction
are very precise. This notwithstanding, our hope is that the reader, having
read this Introduction will acquire an understanding of the principles which
guide the construction of various physical quantities.
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Figure 1.17: a) Examples of physical quantities whose structure is related to that
of the probability P (r, r′) b) The basic building blocks used to calculate these
quantities are the classical diffusion probability (the Diffuson), the correction
related to phase coherence (the Cooperon), and the short range crossings. The
symbol o represents a collision and the symbol × represents an arbitrary point
in the medium.


