
Chapter 8

Coherent backscattering of
light

8.1 Introduction

Phase coherence is at the basis of the interference effects which lead to weak lo-
calization in electronics. This phase coherence has also important consequences
in optics. Moreover, using an incident laser beam, it is possible in optics to
study the angular behavior of both transmitted and reflected waves. This is
difficult in electronic devices, where electrons are injected and collected from
reservoirs and do not have an accessible angular structure. In this chapter, we
study the intensity of the light reflected by a diffusive medium and we show
that it has an angular structure that is due to the coherent effects associated
with the Cooperon. We also show that it is possible to single out and analyze
the contribution of multiple scattering paths as a function of their length. This
leads to a kind of “spectroscopy” of diffusive trajectories.

The issue of wave scattering in disordered media has a long history. At the
turn of the twentieth century, a purely classical approach to the description of
radiative transfer of electromagnetic waves through the atmosphere, based on
the Boltzmann equation, had already been proposed by Schuster [200]. This
problem was subsequently extended to include the related domains of turbulent
media, meteorology and liquids. It was only during the 1980s, however, that
the possibility of phase coherent effects in the multiple scattering of waves in
random media was raised. The interest surrounding this question is certainly
related to new developments obtained on similar questions in the quantum
theory of scattering [201, 202, 203]. A systematic description of coherent effects
emphasizing the role of the Cooperon was initially proposed in references [204]
and [205]. These new developments came together with the first experimental
results [206, 207, 208], giving rise to a large number of works which it would
be rather difficult to list comprehensively [209]; we shall quote only a few in
this chapter. Nevertheless, we follow here the approach developed in references
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344 Chap. 8 : Coherent backscattering of light

[210, 211, 212] 1.
The variety of phenomena that result from multiple scattering of electro-

magnetic waves is rather broad. Consequently, the coherent backscattering
phenomenon that we study in this chapter has a large range of applications
that have been developed only during the last few years. We shall not study
them all, but rather present some of them towards the end of this chapter.

We consider first the case of a scalar wave, and then we include effects of
polarization. We define and study the reflection coefficient (sometimes called
the albedo) of a semi-infinite diffusive medium in terms of the Diffuson and of
the Cooperon. We then extend those results to the case of a finite absorption.
Finally, we present a rather detailed account of the experimental situation
which shows quite spectacularly the success of the present ideas about coherent
multiple scattering and its large field of applicability.

8.2 The geometry of the albedo

8.2.1 Definition

The physical situation we aim to describe is as follows. A far-field and point-
like source emits a monochromatic light which we assimilate to a plane wave
directed towards the interface between vacuum and the diffusive medium. The
direction of this plane wave is characterized by the unit vector ŝi. The wave
scattered by the medium emerges through the same interface (i.e., in reflec-
tion) and is detected far from the interface along the direction ŝe. We are thus
interested in the angular dependence of the reflection coefficient called albedo
(it is also sometimes called bistatic coefficient [213, 214]). There are several
definitions of this coefficient which are appropriate to different fields of physics
such as astrophysics, atomic physics, nuclear physics, etc. For instance, in as-
tronomy, the albedo of planets is defined as the ratio between the total reflected
light flux and the incident flux coming from the Sun. Thus defined, the albedo
of the Earth is 35% while that of the Moon is only 6%. For more details, see
references [213, 214].

The detector of the outgoing light along the direction ŝe essentially mea-
sures the intensity I(Rŝe) ∝ E2 of the electromagnetic field E(Rŝe). For a
spherical wave detected at a distance R which is large compared to the size of
the interface, the energy flux per unit time and per unit solid angle is

dF

dΩ
= cR2I(Rŝe) , (8.1)

where F is the flux of the Poynting vector. The incident flux is given by 2

F0 = cSI0 , (8.2)

1This choice of references should not be understood as resulting from a formed opinion on
other references. Its aim is simply to use those references whose notations are close to those
used in this book.

2We consider here the situation of a normal incidence. In the general case, the incident
flux depends on the cosine of the angle between the incident direction and the perpendicular
to the surface.
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and we define the albedo α(ŝe) by the dimensionless ratio

α(ŝe) =
1

F0

dF

dΩ
=
R2

S

I(Rŝe)

I0
(8.3)

The albedo appears to be a quantity close to a differential cross section (see
also the relation 2.66) up to a multiplicative factor related to the shape of the
interface of the diffusive medium.

8.2.2 Albedo of a diffusive medium

The albedo characterizes the light scattered by a diffusive medium. To calculate
this quantity, we need to evaluate the intensity I(Rŝe) of the scattered field
as defined by relation (4.54) 3. We start by presenting a heuristic derivation
that allows us to calculate the Diffuson and Cooperon contributions and to
understand the characteristics of the coherent albedo (triangular singularity,
algebraic decrease etc.).

We consider a semi-infinite diffusive medium filling the half-space z ≥ 0.
The half-space z ≤ 0 is a free space that contains the source and the detectors
(Fig. 8.1). The incident (assumed to be normal to the interface) and emergent
beams are respectively characterized by the wave vectors ki = kŝi and ke = kŝe

where ŝi and ŝe are unit vectors. Since the waves experience elastic scattering,
only their direction ŝ changes while the amplitude k = ω0/c remains constant.
Moreover, we also assume that the difference in optical index between the two
media is negligible.

In order to calculate the intensity I(Rŝe), we first consider the case of a
scalar wave solution of the Helmholtz equation (2.8). This solution corresponds
to an incident plane wave and to a spherical outgoing wave detected at a point
R = Rŝe in the far field, namely at a distance which is very large compared to
the size of the interface of the diffusive medium (Figure 8.1). For a given inci-
dent direction ŝi, the amplitude ψω0

(ŝe) of the outgoing wave has the following
structure

ψω0
(ŝe) ∝

∫

drdr′eik(ŝi.r−ŝe.r′)G(r, r′, ω0) . (8.4)

This expression is nothing but the Fourier transform of the Green’s function
(4.21), and it has the form

ψω0
(ŝe) =

∫

drdr′eik(ŝi.r−ŝe.r′)
∞
∑

N=1

∑

r1,··· ,rN

|A(r, r′, CN )| exp(i
2πLN

λ
) (8.5)

and the intensity is I(Rŝe) = 4π
c |ψω0

(ŝe)|2. In this expression the points r
and r′ can be anywhere on the interface, whereas the points ri correspond to

3In the definition (4.54) the source of the field is a δ function of unit strength so that
the intensity thus defined does not have the dimensions of a light intensity. This is not very
important since the albedo appears as the ratio of two such intensities.
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scattering events. CN = (r1, r2, ..., rN ) is a sequence of N scattering events
and LN/λ is the total length of the corresponding trajectory measured in units
of the wavelength λ = 2π

k . The field ψω0
thus appears as a sum over all the

possible multiple scattering sequences in the half-space z ≥ 0, weighted by the
phase factors that account for the two incident and emergent waves in the free
half-space z ≤ 0.

There are three distinct contributions to the albedo α. The first includes all
the terms for which the sequences that contribute respectively to ψω0

and ψ∗
ω0

are different (as represented in Figure 4.1). The second contribution includes all
the terms that correspond to identical scattering sequences (Figure 8.1). The
third and last contribution corresponds also to identical scattering sequences
propagating in opposite directions (Figure 8.2).
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Figure 8.1: Contribution of the Diffuson to the albedo averaged over disorder.
We have assumed in the calculation that the incident beam is perpendicular to
the interface.
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Figure 8.2: Contribution of the Cooperon to the albedo averaged over disorder.
We have assumed in the calculation that the incident beam is perpendicular to
the interface.

For a given realization of the disorder, i.e., of the position of the scatterers,
the first term provides the main contribution αs to the albedo, but vanishes
upon disorder averaging (Fig. 1.4). This term corresponds to the fluctuations
or speckle patterns that we shall study in Chapter 12. The two remaining
contributions denoted αd and αc have a finite average value and correspond
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respectively to the Diffuson and the Cooperon, namely to the incoherent and
coherent parts.

8.3 The average albedo

8.3.1 Incoherent albedo : contribution of the Diffuson

As stated before, the only multiple scattering trajectories that still contribute
to disorder averaging are those for which the sequences CN of scattering events
that enter the amplitudes ψω0

and ψ∗
ω0

are identical. In order to derive an
expression for the average albedo, we need to evaluate at the approximation
of the Diffuson the reflected average intensity, Id(Rŝe) at a point R = Rŝe at
infinity.

In the experimental setup for the albedo measurement, both the source
and the detector are placed outside the diffusive medium so that we must also
include the conversion of the incident plane wave into a diffusing wave and of
the diffusing wave back into an outgoing spherical wave. Several approaches
are thus possible. The most natural is to proceed as in Chapter 4, namely to
describe multiple scattering as a product G G Γ G G (see relations 4.37 or
4.60), where G is an average Green’s function and where Γ is the structure
factor 4 of the Diffuson. We thus obtain an expression analogous to (4.60)
which takes the form,

Id(Rŝe) =
4π

c

∫

dr1dr2|ψi(r1)|2|Γ(r1, r2)|G
R
(r2,R)|2 . (8.6)

The structure of this expression is represented in Figure 8.1. |ψi(r1)|2 is the
average intensity at point r1 that originates directly from the light source,
i.e., without intermediate scattering. It can thus be calculated within the

Drude-Boltzmann approximation. The term |GR
(r2,R)|2 describes, at the

same approximation, the wave propagation between the last scattering event
in r2 and any point R. Finally, Γ(r1, r2) is the Diffuson structure factor, which
obeys equation (4.24).

For the geometry that we are considering, the source term is well described
by an incident plane wave so that

ψi(r1) =

√

cI0
4π

e−|r1−r|/2lee−ikŝi.r1 , (8.7)

in which r is the intersection of the incident beam with the interface placed at
z = 0, r1 is the location of the first scattering event, and kŝi is the wave vector
of the incident plane wave (Figure 8.1). The average albedo at the Diffuson
approximation is obtained from the relations (8.3) and (8.6) and it takes the
form

αd =
R2

S

∫

dr1dr2e
−|r1−r|/leΓ(r1, r2)|G

R
(r2,R)|2 . (8.8)

4From now on, we shall no longer specify the frequency ω0 of the waves.
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For |R − r2| → ∞ (Fraunhoffer approximation), the average Green’s function

G
R
(r2,R) given by relation (3.48) can be expanded as (see 2.56) :

G
R
(r2,R) = e−|r′−r2|/2le

eik|R−r2|

4π|R− r2|

≃ e−|r′−r2|/2lee−ikŝe.r2
e−ikR

4πR
. (8.9)

Introducing the projection 5 µ of the unit vector ŝe on the Oz-axis, we obtain
|r2 − r′| = z2/µ and |r1 − r| = z1 so that the expression of the incoherent
albedo associated to the Diffuson finally takes the form

αd =
1

(4π)2S

∫

dr1dr2e
− z1

le e−
z2
µle Γ(r1, r2) (8.10)

Moreover, by assuming slow spatial variations, the structure factor Γ(r1, r2),
solution of equation (4.26), is shown to obey the diffusion equation

−D∆r2
Γ(r1, r2) =

4πc

l2e
δ(r1 − r2) (8.11)

and it is related to the probability Pd(r1, r2) through the relation (4.63) :

Pd(r1, r2) =
l2e

4πc
Γ(r1, r2) . (8.12)

Inserting this relation into (8.10), we obtain

αd =
c

4πl2e

∫ ∞

0

dz1dz2e
− z1

le e−
z2
µle Pd(z1, z2) (8.13)

with Pd(z1, z2) =
∫

S
d2ρPd(ρ, z1, z2). For the geometry of a semi-infinite

medium, the function Pd(ρ, z1, z2) depends on the coordinates z1 and z2 as
well as on the projection ρ of the vector r1 − r2 on the plane z = 0.

The calculation of the average albedo thus reduces to that of the probability
Pd in a semi-infinite medium. We have shown (section A5.2.3) that, for this
geometry, Pd is well described by the solution of a diffusion equation, provided
we choose as an effective boundary condition that Pd vanishes at the point −z0
with z0 = 2

3 le [215] 6. The solution of the corresponding stationary diffusion
equation is obtained using the image method (section 5.7 and Appendix A5.3).

5We assume that the incident beam is perpendicular to the interface.
6The exact solution of the Milne problem (Appendix A5.3) gives z0 ≃ 0.710 le. But this

value is not consistent with the diffusion approximation. We shall thus consider instead the
value z0 = 2/3le obtained within this approximation.
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The images of the points r1 and r2 are determined with respect to the plane
−z0, so that the probability Pd(ρ, z1, z2) becomes

Pd(ρ, z1, z2) =
1

4πD

(

1
√

ρ2 + (z1 − z2)2
− 1
√

ρ2 + (z1 + z2 + 2z0)2

)

. (8.14)

The integration over ρ leads to (relation 5.156)

Pd(z1, z2) =
1

2D
[(z1 + z2 + 2z0)− |z1 − z2|] =

zm + z0
D

(8.15)

where zm = min(z1, z2). Using (8.13), we finally obtain for the albedo αd the
expression

αd =
3

4π
µ

(

z0
le

+
µ

µ+ 1

)

(8.16)

From this relation, it appears that within the Diffuson approximation the av-
erage albedo of an optically thick medium is almost independent of the angle
between the incident beam and the direction ŝe of the outgoing wave (see Figure
8.7).

Remarks

• The previous expression for αd results from the calculation of the intensity
Id(R) at a point outside the diffusive medium. This is an approximation.
The theory of radiative transfer (Appendix A5.2) amounts to calculating the
specific intensity Id(z = 0, ŝe) at the interface along a given outgoing direction
ŝe (5.131). This approach leads to a different expression of the albedo, namely,

αd =
3

4π
µ
( z0

le
+ µ

)

(8.17)

which, in contrast to (8.16), is normalized, 2π
∫ π/2
0 αd(θ) sin θdθ = 1. Nev-

ertheless, we have chosen here to present the simplest derivation. It will be
useful to get some intuition about the angular dependence of the coherent
albedo and of the coherent backscattering cone.

• At first glance, the previous derivation of the average albedo does apply to
isotropic scatterers only, i.e., for a transport mean free path l∗ equal to le.
For the case of anisotropic scattering, the angular dependence of the structure
factor should be taken into account (Appendix A4.3). The albedo αd becomes

αd =
1

(4π)2S

∫

dr1dr2e
− z1

le e
− z2

µle Γ(ŝi, ŝe,r1,r2) (8.18)

where Γ(ŝi, ŝe,r1,r2) is the Fourier transform of Γ(ŝi, ŝe,q) defined by
(4.156). We shall return to this point in section 8.6.
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8.3.2 The coherent albedo : contribution of the Cooperon

We consider now the contribution αc of the Cooperon to the average albedo as
represented in Figure 8.2. As for the incoherent contribution, we describe the
conversion of a plane wave into a diffusing wave by means of an average Green’s
function that decreases exponentially while entering the diffusive medium. The
intensity Ic(Rŝe) is given by the relation (4.61), namely,

Ic(Rŝe) =
4π

c

∫

dr1dr2ψi(r1)ψi

∗
(r2)Γ

′(r1, r2)G
R
(r2,R)G

A
(R, r1) (8.19)

where Γ′(r1, r2) is the Cooperon structure factor (section 4.6). Time reversal
invariance implies that Γ′ = Γ. Considering as previously an incident plane
wave (8.7) and using the Fraunhoffer approximation (8.9) for the Green’s func-
tions, we obtain

αc =
R2

S

∫

dr1dr2e
−z2/2µle

eikŝe.r2

4πR
e−z1/2µle

e−ikŝe.r1

4πR
Γ(r1, r2)

× e−z1/2lee−z2/2lee−ikŝi.r1eikŝi.r2 , (8.20)

so that

αc(ŝe) =
1

(4π)2S

∫

dr1dr2e
−( µ+1

2µ )
z1+z2

le Γ(r1, r2)e
ik(ŝi+ŝe).(r2−r1) (8.21)

The phase that appears in this relation leads to an angular dependence of the
Cooperon contribution to the albedo. It is also important to notice that the
exponential attenuation factors appearing in relations (8.10) and (8.21) are
different. Along the backscattering direction, defined by the condition ŝi + ŝe =
0, the phase factor disappears and, since µ = 1, we obtain

αc(θ = 0) = αd (8.22)

where θ is the angle between the incident and emergent directions ŝi and ŝe, as
represented in Figure 8.2. Therefore the total average albedo α(θ) = αd+αc(θ)
is such that

α(θ = 0) = 2αd (8.23)

This relation should be compared with the doubling of the probability to re-
turn to the origin due to the Cooperon contribution as discussed in section
4.6. The corresponding physical phenomenon is usually known as coherent
backscattering.

Using the relation (4.63) between the structure factor Γ and Pd, (8.21)
becomes

αc =
c

4πl2e

∫ ∞

0

dz1dz2 e
−(µ+1

2µ ) z1+z2
le

∫

S

d2ρPd(ρ, z1, z2) e
ik⊥.ρ , (8.24)
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where k⊥ = (ki + ke)⊥ = k(ŝi + ŝe)⊥ is the projection on the xOy plane of
the vector ki + ke. If the length of (ŝi + ŝe) is small enough, we can neglect
its projection along the z-axis. Using both relation (8.14) and the integral

∫

S

d2ρ
eik⊥.ρ

√

ρ2 +A2
= 2π

e−k⊥|A|

k⊥
, (8.25)

with the notation k⊥ = |k⊥|, we obtain

αc =
c

4πl2e

∫ ∞

0

dz1dz2 e
−(µ+1

2µ ) z1+z2
le Pd(k⊥, z1, z2) (8.26)

with 7

Pd(k⊥, z1, z2) =
1

2Dk⊥

(

e−k⊥|z1−z2| − e−k⊥(z1+z2+2z0)
)

. (8.27)

Upon integrating, relation (8.26) becomes

αc(k⊥) =
3

8π

1
(

k⊥le + µ+1
2µ

)2

(

1− e−2k⊥z0

k⊥le
+

2µ

µ+ 1

)

(8.28)

As for the incoherent albedo, the dependence of αc(θ) on µ is negligible. In
most calculations, we shall thus use the previous expression with µ = 1, namely

αc(θ) =
3

8π

1

(1 + k⊥le)
2

(

1 +
1− e−2k⊥z0

k⊥le

)

. (8.29)

At small angles, we have k⊥ ≃ 2π
λ |θ|. The coherent contribution is non zero

within a cone of angular aperture λ
2πle

near the backscattering direction (k⊥ →
0). By expanding (8.29) we obtain

αc(θ) ≃ αd

(

1− 2
(le + z0)

2

le + 2z0
k⊥

)

+O
(

k2
⊥
)

(8.30)

≃ αc(0)− 3

4π

(le + z0)
2

le
k⊥ +O

(

k2
⊥
)

(8.31)

and αc(0) = αd. This result can be cast in the form

αc(θ) ≃ αc(0)− βk⊥le = αc(0)− βkle|θ| (8.32)

where the parameter β is defined by [211]

β =
3

4π

(

1 +
z0
le

)2

=
25

12π
(8.33)

7(8.27) can also be deduced from relation (5.157) and the correspondence (5.47).
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with z0 = 2
3 le. A triangular singularity thus appears in the angular depen-

dence of the albedo. This singularity results from the diffusive character of the
propagation of the light intensity and, in the next section, we show that it is
a measure of the distribution of the lengths of the multiple scattering paths.
At large angles, αc → 0, and only the classical, incoherent, contribution of the
Diffuson remains.
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Figure 8.3: Average intensity backscattered as a function of the angle θ, as
measured in a powder (solid solution) of ZnO. The albedo at exact backscatter-
ing, i.e., for θ = 0, is twice as large as its background value. In the inset, we
see the triangular singularity. A more quantitative analysis of this behavior is
given in section 8.8 [224].

The expressions that we have just established for the coherent albedo were
obtained using the diffusion approximation. We may question the validity of
this approximation for the short multiple scattering trajectories. This point is
discussed in section 8.8. An exact solution to the coherent albedo problem has
been proposed for a scalar wave and isotropic scattering [216]. This solution is
based on a slightly different formulation of the Milne problem (Appendix A5.3).
The corresponding solution, obtained for a semi-infinite geometry, uses the
Wiener-Hopf method and is inconvenient both for numerical handling and for
comparing with experimental results. Moreover, it cannot be extended to more
physical situations for which the scattering is anisotropic and the polarization
of the waves plays a role. Nevertheless, it accounts for the contribution of the
single scattering, an important point to which we shall return in section 8.8.2.
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Exercise 8.1. Using relation (8.27), show that the expansion of Pd(k⊥, z1, z2)
around k⊥ → 0 is given by

Pd(k⊥, z1, z2) = Pd(0, z1, z2) −
k⊥
D

(z1 + z0)(z2 + z0) . (8.34)

Exercise 8.2. Modification of the albedo for a slab of finite width

How is the triangular singularity of the coherent backscattering peak modified when
the diffusive medium is a slab of finite width L ? Show that in relation (8.30), k⊥
must be replaced by k⊥ coth k⊥(L+ 2z0).

For a finite width, we still keep the relation (8.26) and we replace (8.27) by (5.159),
using the correspondence (5.47), namely

Pd(k⊥, z1, z2) =
1

Dk⊥

sinh k⊥(zm + z0) sinh k⊥(L+ z0 − zM )

sinh k⊥(L+ 2z0)
(8.35)

with zm = min(z, z′) and zM = max(z, z′). We then expand this expression for small
values of the arguments k⊥zm, k⊥zM and k⊥z0, and we obtain a relation similar to
(8.34) where k⊥ has been replaced by k⊥ coth k⊥(L+2z0). Finally, the integral (8.26)
leads to the announced result.
The aim of this exercise is to show that the characteristic cusp in the backscattering
direction disappears for values of k⊥ smaller than 1/L. This singularity thus results
from the contribution of long diffusive trajectories. Cutting off these trajectories
beyond the length L modifies the cusp for small values of k⊥, i.e., for small angles.
This relation between long trajectories and small angles is discussed in more detail
in the next section.

More generally, using (8.35) and assuming z0 = 0, show that for a slab of finite width
L, the incoherent albedo αd(L) and the coherent contribution αc(k⊥, L) are given by
the expressions

αd(L) =
3

8π

(

1 − e−2b
)

(

1 − tanh(b/2)

b/2

)

(8.36)

αc(k⊥, L) =
3

8π

1 − e−2b

(1 − k⊥le)2

[

1 +
2k⊥le

(1 + k⊥le)2
1 − cosh (b (k⊥le + 1))

sinh b sinh(b k⊥le)

]

,

valid only in the diffusive limit, i.e., when the optical depth defined by b = L/le
becomes much larger than 1. Check that in the backscattering direction we still have
the relation αc(0, L) = αd(L), but without the cusp.

8.4 Time dependence of the albedo and study
of the triangular cusp

Of interest is an alternative derivation of the albedo starting from the time
dependence of the diffusion probability Pd(r, r

′, t). For the geometry of a semi-
infinite medium, with the help of relations (5.42) and (5.65), and the vanishing
boundary condition at −z0, we obtain

Pd(r, r
′, t) =

e−ρ2/4Dt

(4πDt)3/2

[

e−(z−z′)2/4Dt − e−(z+z′+2z0)
2/4Dt

]

, (8.37)
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where we have taken for the two-dimensional Fourier transform, the expression
Pd(k⊥, z, z′, t),

Pd(k⊥, z, z
′, t) =

e−Dk2
⊥t

(4πDt)1/2

[

e−(z−z′)2/4Dt − e−(z+z′+2z0)
2/4Dt

]

. (8.38)

We can now define, at least formally, a time-dependent albedo α(t) = αd(t) +
αc(θ, t) by

αd =

∫ ∞

0

dt αd(t) , αc(θ) =

∫ ∞

0

dt αc(θ, t) . (8.39)

We consider the small angle limit so that µ = 1 and the angular dependence
of αd is negligible. Noticing that αc(0, t) = αd(t) and using (8.26), we obtain
for αd(t) and αc(θ, t) the two expressions

αd(t) =
c

4πl2e

∫ ∞

0

dzdz′ e−z/lee−z′/lePd(z, z
′, t) (8.40)

αc(θ, t) =
c

4πl2e

∫ ∞

0

dzdz′ e−z/lee−z′/lePd(k⊥, z, z
′, t) . (8.41)

The integrals over z and z′ have no angular dependence. The only remain-
ing angular dependence comes from the factor e−Dk2

⊥t that is nothing but the
Fourier transform of a two-dimensional diffusion process restricted to the in-
terface.

Because of the exponential factors that appear in the integrals over z and
z′, these integrals are cut off at a length of the order of the elastic mean free
path le. Then, in the long time limit (t ≫ τe), the Gaussian terms in the
brackets of (8.38) can be expanded. Upon integrating over z and z′, we obtain

αc(θ, t) = αd(t)e
−Dk2

⊥t (8.42)

with

αd(t) ≃ c(z0 + le)
2 1

(4πDt)3/2
(8.43)

and k⊥ ≃ 2π|θ|/λ = k|θ|. This expression allows to rewrite αc(θ, t) in the form

αc(θ) ∝
∫ ∞

0

1

t3/2
e−

1
3 (kleθ)2t/τe

(

1− e−t/τe

)

dt . (8.44)

The integrand in this expression accounts for the contribution of diffusive tra-
jectories of total length t. An additional factor (1−e−t/τe) has been introduced
in order to cut off the integral at small times.

In the backscattering direction (k⊥ = 0), we have αc(θ = 0, t) = αd(t) ∝
(Dt)−3/2. At a given time t, the coherent backscattered echo is enhanced by

a factor (1 + e−Dk2
⊥t) as compared to its incoherent value. This enhancement

occurs inside a cone whose angular aperture is θ(t) = λ
2π

√
Dt

, so that the
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Figure 8.4: Time dependence of the albedo α(θ, t) at a fixed angle θ in a log-
arithmic plot. The coherent contribution appears for times shorter than τγ(θ)
given by the relation (8.47).

smaller the length t of the diffusive paths, the larger is the angular aperture
of their contribution to the coherent backscattering cone (Figure 8.4). This
implies that in the backscattering direction, the factor 2 between the coherent
and incoherent contributions remains at all times.

It is of interest that the albedo αd(t) can be interpreted as the probability of
reaching the plane z = −z0 after a time t. This probability varies like t−3/2 and
does not depend on the space dimensionality, in the sense that the same result
remains true for a two-dimensional diffusive process and a one-dimensional
interface or more generally in d dimensions with a (d−1)-dimensional interface.

Another useful representation of the albedo αc(θ) is obtained in the form
of the following Laplace transform

αc(θ) =

∫ ∞

0

dt αd(t)
〈

eik⊥.ρ
〉

(8.45)

in which the average is taken using the Gaussian law :

〈

eik⊥.ρ
〉

= e−Dk2
⊥t . (8.46)

The comparison of these two relations with (6.3) allows us to define a dephasing
time τγ(θ) = 1/Dk2

⊥, that can also be written as

τγ(θ)

τe
=

3

(kleθ)2
(8.47)

The triangular cusp characteristic of the coherent backscattering can then be
interpreted as arising from the sum of a series of Gaussian terms weighted by
the probability (Dt)−3/2. Although each of these terms behaves parabolically
near backscattering θ ≃ 0, the integral becomes singular around this value.
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The angle θ thus appears as a variable conjugate to the length t of the diffu-
sive paths. A given value of θ selects all paths of lengths t/τe ≤ 3

(kleθ)2 that

contribute to the coherent backscattering peak (Figure 8.4) . In other words,
long trajectories provide the main contribution to the coherent albedo at small
angles. The quantity Lγ =

√

Dτγ(θ) ≃ λ/2πθ appears to be the characteristic
length beyond which diffusive paths no longer contribute to the Cooperon and
to the coherent backscattering cone. In that sense, Lγ can be viewed as a
dephasing length (see Chapter 6) associated with the controlled and reversible
phase shift driven by the angle θ.

8.5 Effect of absorption

The effect of absorption on the albedo can be accounted for by means of an
absorption length la and the phenomenological expression 8

α(θ, la) =

∫ ∞

0

dt α(θ, t) e−t/τa (8.48)

where τa = la/c is the absorption time. Then, for the coherent albedo we
obtain

αc(θ, la) =

∫ ∞

0

dt αd(t)e
−Dtk2

⊥ e−t/τa . (8.49)

These expressions of coherent albedo in either the presence or the absence of
absorption are related by

αc(k⊥, la) = αc

(

√

k2
⊥ + k2

a,∞
)

(8.50)

with k−1
a =

√
Dτa =

√

lela
3 . In the backscattering direction, the previous

expression yields
αc(0, la) = αc(ka,∞) . (8.51)

The overall effect of a finite absorption length is to cut off the contributions
of diffusive trajectories of length longer than

√
Dτa both to the coherent and

incoherent albedos. Based on the analysis presented in the previous section and
on the expression (8.44), we expect the coherent albedo to exhibit a parabolic
behavior for angles θ such that τγ > τa, or equivalently θ < λ/2π

√
lela. This

results from the suppression of the diffusive trajectories of length larger than√
Dτa. Such a behavior has indeed been observed experimentally (see Figure

8.5 and section 8.8.3).

8Care must be taken to distinguish between the absorption length la defined as la = cτa
which corresponds to a diffusive trajectory of total length τa, and the length La =

√
Dτa

which is the typical distance reached by diffusion in a time τa. The latter plays a role
analogous to Lγ defined previously. It is usually more convenient to use la.
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It is also of interest to compare the effect of a finite absorption length
with that of a phase coherence time τφ as it appeared in the description of
coherent transport in metals (section 7.4). Indeed it is important to notice
that the absorption (τa) has a different effect than dephasing (τφ) since it
affects both coherent and incoherent contributions, so that the factor 2 at
backscattering remains unchanged. This is to be contrasted with the case of
electrons where a finite τφ affects the coherent contribution responsible for
weak localization by cutting off the trajectories of length longer than

√

Dτφ
but leaves the incoherent contribution unchanged.

(a)
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Figure 8.5: Behavior of the albedo in the presence of absorption for different
values of the absorption length la. See also Figure 8.11 [219].

8.6 Coherent albedo and anisotropic collisions

So far, we have limited ourselves to the case of isotropic scattering. The only rel-
evant characteristic length in the diffusive medium is then the elastic mean free
path le. But in most physically relevant situations, the scattering is anisotropic
and the transport mean free path l∗ differs from the elastic mean free path le
(Appendix A4.3). How is the albedo modified in that case? We still expect
the diffusion approximation to describe the long multiple scattering trajecto-
ries properly, provided we replace D by D∗ (i.e. le by l∗), so that the small
angle behavior of the coherent albedo αc remains unchanged. In other words,
we expect (8.31) to still hold provided we replace le by l∗ and z0 by 2

3 l
∗.

To understand better the distinct roles of le and l∗, let us start from the
definitions (8.6) and (8.19) of the albedo. In the expression of αd, the mean free
path le appears in the average Green’s functions and in the structure factor Γ.
For the case of anisotropic scattering it seems justified to replace the diffusion
coefficient D by D∗ in the expression of Γ (relation 4.170). On the other hand,
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the average Green’s functions that account respectively for the first and last
scattering events, remain functions of le and not of l∗. Performing the above
mentioned changes leads straightforwardly to a set of expressions for the small
angle coherent albedo and for the incoherent one, that depend on the ratio
le/l

∗, in contradiction to the argument presented in the first paragraph and,
more importantly, to experimental results.

To grasp the nature of this apparent contradiction, it must be realized that
the relations (8.6) and (8.19) need to be generalized in order to account for
the angular dependence of the structure factor (relation 8.18). Instead, we
now present an alternative description of light transport based on radiative
transfer the details of which may be found in Appendix A5.2. Equation (5.93)
for the specific intensity Id(ŝ, r) relies on the same approximations as those for
the Diffuson Pd. The advantage of the radiative transfer approach is that it
allows a more systematic description that includes the geometry of the diffusive
medium and the nature of the light sources. For instance, light sources appear
explicitly in (5.93) and the nature of the boundaries sets the choice of the
boundary conditions. Within the diffusion approximation used thus far for the
calculation of the albedo, the radiative transfer equation reduces to the diffusion
equation (5.105). But an advantage of the radiative transfer description as
compared to (4.66) resides in the fact that it contains explicitly the source of
the radiation. Another advantage is that it allows the conversion of an incident
plane wave into a diffusing wave to be described simply with the boundary
condition (5.108) of a vanishing incoming diffuse flux. In the absence of sources,
this boundary condition is given by (5.113), and it depends on the extrapolation
length z0 = 2

3 l
∗ we have been using previously. If there is a source, this

boundary condition takes the form (5.129), which depends both on l∗ and le.

The calculation of the albedo based on the radiative transfer equation and
on this boundary condition is more consistent, although less intuitive, than the
one that led to relations (8.16) and (8.28). But it is important to emphasize that
these two descriptions rely on the diffusion approximation and, as such, they
are equivalent. They differ in the fact that they do not treat the contribution
of the short multiple scattering trajectories on the same footing.

To proceed further, we again consider the geometry of a semi-infinite dif-
fusive medium whose interface is illuminated by a point-like light source of
intensity I0δ(ρ), in which ρ is a vector contained in the plane z = 0 defining
the interface. We have shown that the average intensity Id(r) is, at the dif-
fusion approximation, the solution of the equation (5.105) with the boundary
condition (5.129). For the geometry of a slab, the solution of this problem is
given by (5.132), namely

Id(ρ, z = 0) =
I0

4π2

l∗

le

∫ ∞

0

dλ J0(λρ)
λ

1 + 2
3 l

∗λ

(

1

1 + λle
− η
)

(8.52)

where η = 1− le/l∗ and J0 is a Bessel function. The outgoing flux at a point of
the interface is given by (5.131), namely 5

2Id(ρ, z = 0) [217, 210]. The coherent
albedo is simply given by the Fourier transform of this flux with respect to the
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variable ρ :

αc(θ) =
5

2I0

∫

S

d2ρ Id(ρ, z = 0) eik⊥.ρ . (8.53)

The integral over ρ is easily performed using (15.61). We obtain finally

αc(θ) =
5

4π

1

1− η
1

1 + 2
3k⊥l

∗

(

1

1 + k⊥le
− η
)

(8.54)

In the small angle limit, only long diffusive trajectories contribute to αc, which
then happens to depend only on the transport mean free path l∗, as stated
previously. In this limit, the expression (8.54) rewrites

αc(θ) ≃ αd − β∗k⊥l
∗ = αd − β∗kl∗|θ| (8.55)

with

β∗ =
3

4π

(

1 +
z0
l∗

)2

. (8.56)

By inserting z0 = 2l∗/3, we notice that β∗ = 25/12π, i.e., that it is independent
of the exact nature of the scattering process 9 (see 8.33). The expression (8.54)
for αc does not apply in the large angle limit (it gives an overall negative value
to the total albedo) since its range of validity is restricted to the diffusion
approximation, i.e., to diffusive trajectories of length longer than l∗.

8.7 The effect of polarization

Up to now, we have considered the Cooperon contribution to the coherent
albedo under the assumption that the light is a scalar wave, thus ignoring
the effect of polarization. We now reconsider this assumption. We saw in
section 6.6 that the effect of polarization is to introduce a phase shift between
paired sequences of multiple scattering. Here we discuss this phase shift in
the framework of the Rayleigh approximation 10 (sections A2.1.4 and 6.6). We
shall consider a linearly polarized (denoted by l) or a circularly polarized wave
characterized by its helicity h.

9To the best of our knowledge, there is no full fledged “microscopic” calculation of the
albedo for the case of anisotropic scattering. Moreover, it would not be very useful since such
an expression of the albedo at large angles would necessarily depend on other parameters
so far neglected (e.g. polarization, optical index mismatch, etc.). Nevertheless, it is worth
mentioning the result obtained in reference [218] for the coherent albedo in the anisotropic
case, that was obtained by combining together a microscopic description and the radiative
transfer approach. The absolute slope obtained by these authors is −3/4π(z0/l∗ + le/l∗)2.
It depends on le whereas it is expected to be universal.

10The results obtained in this approximation can be readily extended to the case of
Rayleigh-Gans scattering (remark p. 253).
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8.7.1 Depolarization coefficients

In section 6.6 we have studied the evolution of a given polarization state of a
light beam under multiple scattering. This evolution is described by the inte-
gral equation (6.156). A first and obvious effect of multiple scattering is the
depolarization of the incident light. After a time t (i.e., for diffusive trajecto-
ries of length ct), the depolarization of a wave can be characterized with the
help of two depolarization coefficients d‖(t) and d⊥(t) which measure the rela-
tive intensity analyzed in the backscattering direction, within each polarization
channel respectively parallel (l ‖ l or h ‖ h) and perpendicular (l ⊥ l or h ⊥ h)
to the incident polarization. These coefficients are defined by

d‖(t) =
Γ

(d)
‖ (t)

Γ
(d)
‖ (t) + Γ

(d)
⊥ (t)

, d⊥(t) =
Γ

(d)
⊥ (t)

Γ
(d)
‖ (t) + Γ

(d)
⊥ (t)

, (8.57)

where Γ
(d)
‖ and Γ

(d)
⊥ are the amplitudes of the structure factor in the correspond-

ing polarization channels. Clearly, in the long time limit, the depolarization is
complete :

d‖(t) −→
t→∞

1

2
, d⊥(t) −→

t→∞

1

2
. (8.58)

This results from the fact that the contribution of the scalar mode Γ0 is not
attenuated and is the same in the different components Γαα,ββ of the structure
factor (see eqs. 6.173, 6.174), so that the contribution of long trajectories
(t→∞) to the intensity is the same in all polarization channels.

Depolarization affects equally the coherent and incoherent contributions to
the albedo, i.e., the Diffuson and the Cooperon. This effect must be taken into
account to describe properly the multiple scattering of an initially polarized
light. For instance, the incoherent albedo is obtained from expression (8.39),
which after inserting the time dependent depolarization factors, becomes

α
‖
d =

∫ ∞

0

dt αd(t)d‖(t) ≃
1

2
αd (8.59)

α⊥
d =

∫ ∞

0

dt αd(t)d⊥(t) ≃ 1

2
αd . (8.60)

The net effect of depolarization is to reduce the incoherent background de-

scribed by α⊥
d and α

‖
d almost in the same proportion. Half of the signal is

detected in each of the two polarization channels, parallel and perpendicular.
The approximation d‖,⊥ ≃ 1

2 is well justified for the almost fully depolarized
long trajectories, that is for times larger than the characteristic times τ1 and
τ2 of the decaying modes (eq. 6.166). On the other hand, the weight of short
trajectories, still partially polarized, is then underestimated.

8.7.2 Coherent albedo of a polarized wave

In addition to depolarization, there is an additional phase shift between mul-
tiple scattering sequences propagating in opposite directions. This phase shift
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thus affects the Cooperon and the coherent backscattering. To see how this
happens, we consider an incident polarized beam. The coherent albedo can
be analyzed either in the same polarization channel or in the perpendicular
one. We have shown in section 6.6.4 that if the light is analyzed in the same
polarization channel, the vectorial nature of the light does not play any role,
apart from the depolarization effects previously discussed. The corresponding

coherent albedo α
‖
c , obtained from (8.44), remains unchanged and it includes

only the depolarization (8.58) of the incident light :

α‖
c(θ) =

∫ ∞

0

αd(t)d‖(t)e
−Dt( 2π

λ θ)
2

(1− e−t/τe)dt . (8.61)

Is this result also true for the perpendicular channel? For an initially polarized
light, the coherent albedo analyzed in the perpendicular channel is attenuated
by a multiplicative factor Q⊥(t) defined as the ratio of the Cooperon and the
Diffuson contributions to the structure factor :

Q⊥(t) =
Γ

(c)
⊥ (t)

Γ
(d)
⊥ (t)

. (8.62)

This ratio vanishes at large times, since the Cooperon in the perpendicular
channel involves two rapidly decaying modes k = 1 and k = 2 (see eqs. 6.176

and 6.167), whereas Γ
(d)
⊥ (t) is driven by the Goldstone mode Γ0, see the dis-

cussion p. 251. The coherent albedo α⊥
c (θ) becomes

α⊥
c (θ) =

∫ ∞

0

αd(t)d⊥(t)Q⊥(t)e−Dt( 2π
λ θ)

2

(1− e−t/τe)dt . (8.63)

For a beam analyzed along a polarization parallel to the incident one, we

check using (8.59) and (8.61) that α
‖
c(θ = 0) = α

‖
d. Therefore, as a result

of depolarization, both coherent and incoherent contributions are reduced by
half, but their ratio remains unchanged, namely there is still a factor 2 for
the coherent backscattering peak as in the scalar case. On the other hand,
for an emergent beam analyzed in a channel perpendicular to the incident
one, the coherent albedo becomes reduced due to the exponential decay of

the Cooperon Γ
(c)
⊥ (t) at large time. Consequently, the contribution of long

diffusive trajectories is reduced. The ratio between the coherent and incoherent
contributions in backscattering (θ = 0) is thus given by

r =

∫∞
0
dt αd(t)d⊥(t)Q⊥(t)
∫∞
0
dt αd(t)d⊥(t)

. (8.64)

The height of the cone is then reduced. The behaviors described above have
been observed experimentally, and are represented in Figure 8.6. We should
keep in mind that the previous results apply only for the limiting case of
Rayleigh scattering. For bigger scatterers, which is the common case, we deal
with anisotropic Mie scattering. The depolarization thus occurs on longer mul-
tiple scattering trajectories.
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Figure 8.6: Angular behavior of the coherent backscattering peak for a linearly
polarized light which is analyzed a) along the same polarization channel, and b)
along the perpendicular channel. The diffusive medium is made of polystyrene
spheres of diameters 0.109µm, 0.305µm, 0.460µm and 0.797µm. The angles
are scaled by the peak widths (θ∗) and the intensities by the multiply scattered
(‖) incoherent intensity so that all curves have the same width [219].

8.8 Experimental results

In the introduction of this chapter, we gave a brief historical overview of the
study of coherent backscattering. In the first measurement of an interference
effect near the backscattering direction [206], the relative enhancement factor
was about 15% instead of the expected 100% predicted theoretically. This
partly explains why this effect was not observed beforehand, even by chance.
The angular aperture of the cone, given by the ratio λ/l∗, is of the order of a
few mrad only. Its observation thus requires a very sensitive angular resolution
which has been achieved only quite recently. Following this first observation and
triggered by a number of theoretical predictions, several groups have designed
more and more precise experimental setups. The existing experiments can
be divided into two main groups : those performed on diffusive media made
of liquid suspensions of scatterers [206, 207, 208, 219] and those using solid
solutions [221, 222, 223]. In the first setting, the average results simply from
the motion of the scatterers integrated over a long enough time. In the second
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case, the average is obtained either by collecting the results obtained from
different configurations or by rotating a cylindrical sample along its axis, each
position providing a different configuration. The equivalence of the results
obtained from these different methods can be viewed as a justification of the
ergodic hypothesis.

The best angular resolution obtained so far is less than 50µrad [223]. A
good angular resolution is an experimental constraint for the observation of
the effects predicted theoretically, namely the factor 2 enhancement of the co-
herent albedo and the triangular cusp near the backscattering direction. The
experimental confirmation of these predictions has paved the road to the quan-
titative study of the other effects presented in this chapter, i.e., those related
to the presence of absorption, the size of the scatterers, the role of polarization,
etc. The results that have been obtained demonstrate beyond any doubt that,
besides the good understanding of coherent backscattering, we now have at our
disposal a tool that allows us to characterize very precisely multiple scattering
systems.

8.8.1 The triangular cusp
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Figure 8.7: Angular dependence of the intensity backscattered by a sample of
teflon. The extremely narrow cone results from the large elastic mean free
path. The intensity is normalized to one near zero angle. The continuous line
corresponds to a fit using the expression (8.16) for αd [224].

In the course of our study of coherent albedo, we have assumed that the
incoherent albedo αd has no angular structure. This appears clearly in Figure
8.7 which presents the backscattering by teflon. In Figure 8.8, we observe the
enhancement by a factor 2 and the cusp characteristics of coherent backscatter-
ing. The agreement between these experimental results and expression (8.28)
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Figure 8.8: Angular dependence of the intensity backscattered by a powder
(solid solution) of ZnO. The elastic mean free path is l∗ = 1.9 ± 0.1µm. The
normalization is such that the incoherent contribution (dashed line) is equal
to one in the backscattering direction (θ = 0). The enhancement factor is
α(θ = 0) = 1.994 ± 0.012. The continuous line corresponds to the expres-
sion (8.28) established in the diffusion approximation (weighted by a factor 1/2
that accounts for depolarization). The inset shows the behavior of the coherent
albedo near backscattering and the triangular cusp fitted using expression (8.28)
[224].

is excellent, both for liquid and solid solutions, and for a broad range of wave-
lengths and of elastic mean free paths [223, 224]. This agreement nevertheless
raises a number of questions, bearing in mind the approximations underlying
the derivation of expression (8.28). It has indeed been obtained for a scalar
wave and within the diffusion approximation which is well justified only for
long trajectories, i.e., for small angles. This approximation underestimates the
relative weight of short trajectories as compared to the exact solution [216].

This excellent agreement can be partially explained by the role played by
polarization. We have indeed obtained that, for a polarized wave analyzed
along the incident polarization channel, there is no phase shift between the
two trajectories paired into the Cooperon, thus justifying the use of a scalar
wave. Moreover, in contrast to long trajectories, the short ones are only par-
tially depolarized, as shown by relations (8.58). As a result of their remaining
polarization, the contribution of these short trajectories is partially washed out
when it is analyzed along the incident polarization channel 11. The contribu-
tion of the short trajectories is not, then, as important as predicted by the
exact scalar theory.

11The same argument applies equally to the justification for neglecting the single scattering
contribution to αc, since it remains fully polarized.
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8.8.2 Decrease of the height of the cone

Figure 8.9 shows that the width of the coherent backscattering cone decreases
when l∗ increases as predicted by (8.55). We also notice in the inset of the
same figure that the height also depends on the mean free path. It decreases
with l∗ and reaches values smaller than the expected factor 2.

Figure 8.9: Two measurements of the coherent backscattering cone that cor-
respond respectively to a small value of l∗ (broad cone) and to a larger value
(narrow cone). The latter corresponds to a solid solution (BaSO4) character-
ized by the parameter kl∗ = 22.6 ± 1.0, whereas the broader cone corresponds
to a liquid suspension of TiO2 characterized by kl∗ = 5.8± 1.0. The solid and
dashed line curves correspond respectively to the relations (8.28) and (8.16).
In the inset, we see clearly the deviation from factor 2 for the smallest value of
l∗ [223].

A first and immediate source for this discrepancy is single scattering. Let
us recall that in our respective calculations of the Diffuson and the Cooperon,
we have included in the latter the single scattering contribution for the sake of
convenience only (footnote 13, p. 123). However, it does not contribute to the
coherent albedo since it is angle-independent, whereas it does contribute to the
incoherent part αd. Strictly speaking, to evaluate the enhancement factor A,
i.e., the total value of the albedo at θ = 0, we must take out of αc the single
scattering contribution α0. With the help of the equality αc = αd, we thus
obtain the relation

A =
(αc − α0) + αd

αd
= 2− α0

αd
. (8.65)

As stated previously, polarization plays an important role in the behavior of the
single scattering contribution toA. For the case of Rayleigh scattering by point-
like scatterers, single scattering is described by the differential scattering cross
section (2.149) where the unit vectors ε̂i and ε̂′ account for the polarization
of the incident and emergent fields, respectively. Those vectors define four
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possible polarization channels : for a linearly polarized incident wave, we have
two channels (l ‖ l) or (l ⊥ l), while for a circularly polarized incident wave, we
have the two other channels (h ‖ h) and (h ⊥ h) where h is the helicity defined
with respect to the direction of propagation.

For the case of single scattering, ε̂i · ε̂′∗ remains finite in backscattering
only when (l ‖ l) or (h ⊥ h) (see Exercise 2.4). The latter channel describes a
reflection in a mirror of a circularly polarized wave. It is thus possible, using
channels (l ⊥ l) or (h ‖ h), to get rid of the single scattering contribution in
backscattering for the Rayleigh case. Moreover, relation (8.63) indicates that
in the channel (l ⊥ l) there is a non zero phase shift between the multiple
scattering trajectories paired into the Cooperon. This is not the case of the
channel (h ‖ h) for which the attenuation factor 〈Qαα〉 = 〈Q‖〉 = 1 (relation
8.62) [226]. It is thus possible, in this channel (h ‖ h), to obtain an enhancement
factor equal to its maximum 2, since both the single scattering and the finite
phase shift in the Cooperon are absent.

For anisotropic scattering, i.e., in the Mie regime (section A2.3.2), all polar-
ization channels contribute to backscattering. This leads to a smaller enhance-
ment factor. In most cases, however, the anisotropy of the scattering cross
section makes the single scattering contribution negligible in backscattering,
thus restoring an enhancement factor close to 2.

Yet another contribution to a reduction of A exists. It originates in multiple
scattering processes in which the wave is scattered more than once by a given
scatterer. This contribution is independent of the angle θ, and therefore is
added to the incoherent background, thus reducing A. It has been calculated
for the case of two scattering events [223] and it modifies the α0 term in A by
a factor proportional to 1/kl∗. This behavior is in good agreement with the
results shown in Figure 8.10.

Figure 8.10: Deviation of the amplification factor A with respect to the value
A = 2 plotted as a function of the parameter kl∗. Each point corresponds to a
different solid solution. The dashed line results from a calculation of A which
incorporates double scattering on the same scatterer [223].
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8.8.3 The role of absorption

The role of absorption in coherent backscattering does not simply amount to
a decrease in the height of the cone as given by (8.50). The introduction of a
new characteristic length la allows a more quantitative study of the comparative
roles of l∗ and le for the case of anisotropic scattering [219].

For instance, the results given in Figure 8.11 were obtained for a liquid
suspension of polystyrene spheres of diameter 0.46µm and a light of wavelength
λ = 0.389µm, a situation that corresponds to a very anisotropic scattering
12. The absorption length la measured independently at this concentration of
scatterers is of the order of 100µm. From (8.48), we expect to suppress the
contributions of the long trajectories. This is indeed what is observed in the
parallel polarization channel [219, 225]. From a closer inspection of Figure 8.11,
we also notice the following points relative to the effect of absorption :

• The incoherent contribution to the albedo is equally reduced in each of the
two polarization channels, either parallel or perpendicular. This indicates
that the contribution of the long trajectories to the incoherent albedo is
fully depolarized.

• The height of the coherent albedo peak measured in the parallel polar-
ization channel decreases in the same way as the incoherent background.
This is in contrast to the case of the perpendicular polarization channel
where the coherent albedo appeared to be much less affected. From this
observation, we conclude that, without absorption, all the trajectories
contribute to αc in the parallel channel, whereas only a fraction of those
trajectories do contribute in the perpendicular channel. This observation
is in agreement with the conclusions of section 8.7.

Let us now proceed along the same line of thought but in a more quantitative
way. The two expressions (8.50) and (8.51) provide a relation between the
coherent albedo curves in the presence and in the absence of absorption, but
at different angles. For instance, relation (8.51)

αc(0, la) = αc(ka,∞) (8.66)

allows us to define for each value of la an angle θa = λka/2π, such that

θa =
λ

2π

√

3

lal∗
. (8.67)

Figure 8.12 shows this dependence of θa as a function of la. From this relation
it is possible to deduce an experimental value for the transport mean free path,
l∗ = 20 ± 2µm which is pretty close to the calculated value (21.5µm) (see
footnote 12, p. 367). The validity of the scaling behavior (8.50) which appears
clearly in Figure 8.11 justifies once again the use of the diffusion approximation.

12 The calculation of l∗ using Mie scattering theory for spheres with this diameter yields
l∗ = 21.5µm, whereas le = 4.1µm (section A2.3.2).
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Figure 8.11: Effect of the absorption on the behavior of the albedo in a medium
made of a suspension of polystyrene beads immersed in a dye solution. Fig. (a)
shows the coherent albedo in the polarization channel parallel to the incident
polarization. The points are obtained using the scaling relation (8.50) which
relates the coherent albedo in the presence and in the absence of absorption.
(b) Same as in (a) but in the perpendicular polarization channel [219].

From this quantitative agreement, it is possible to infer a value of the pa-
rameter β∗ given by (8.56). This is an important issue since it allows us to check
the predictions presented in section 8.6 concerning the validity of the radiative
transfer approach. Within the parallel polarization channel, the coherent and
incoherent contributions to the albedo are equally affected by absorption. In
this channel, we thus have for the respective behavior of these two quantities,
the relation

αd(la =∞)− αd(la) = αc(ka = 0)− αc(ka) (8.68)

which, once we expand αc(ka) for small values of ka using (8.55), gives

αd(la)− αd(∞) = −1

2
β∗l∗ka , (8.69)

where the factor 1/2 has been added to account for depolarization effects. The
use of this expression is well justified since it describes only the contribution
of the long trajectories, (i.e., the limit of small angles). Using z0/l

∗ = 2/3, we
infer from (8.56) the theoretical value β∗/2 = 4.16/4π. From an independent
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measurement of αd(∞) in the absence of absorption and for point-like scatterers
[219], we obtain an experimental value β∗/2 = 4.2/4π ± 20% very close to the
theoretical value. This is an important result : first it confirms that we cannot
fix z0 = 0 for the extrapolation length that enters into the calculation of the
albedo of a semi-infinite medium, and, moreover, it also justifies using the value
z0 = 2l∗/3 obtained within the diffusion approximation. Second, it confirms
the assumptions given in section 8.6 which led us to the conclusion that the
slope of the albedo at small angles depends solely on l∗ and not on le

13.

Figure 8.12: Plot of the behavior of the angle θa defined by (8.67) as a function
of the absorption length. The dashed line corresponds to (8.67) [219].

8.9 Coherent backscattering at large

The interference effect underlying coherent backscattering is shared by many
different physical systems and can be observed using a large variety of waves.
The very existence of the coherent backscattering effect, the relative ease of
measuring it, and the good quantitative understanding we have of it, at least
for small angles, has turned it into a tool used relatively frequently in order to
display coherent multiple scattering and to obtain in situ precise measurements
of the transport mean free path. Moreover, coherent backscattering is a robust
effect, which, using light sources, can be measured on a broad range of materials
(see Figure 8.13).

The coherent backscattering effect can also be observed using a non coher-
ent light source such as sunlight. To obtain its expression in this limit, we must
perform the convolution of the monochromatic coherent albedo with the spec-

13This result is to be compared with the result obtained in reference [218] which predicts
for β∗ the expression

β∗ = −3/4π(2/3 + le/l
∗)2 . (8.70)

We would then obtain a much smaller value for β∗ because of the large factor l∗/le ≃ 5 for
the case of beads of diameter 0.46µm.
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Figure 8.13: Coherent backscattering cones measured using circularly polarized
light of wavelength λ = 0.514µm in various materials. The scales have been
chosen so as to obtain an enhancement factor of 2 (apart from snow and styro-
por, for which the true angular variation has been plotted). The enhancement
factors actually measured range between 1.6 and 2 [228].

tral correlation function of the light source [227, 228]. For the case of sunlight,
this yields to a reduction of the height of the cone (Figure 8.14).

8.9.1 Coherent backscattering and the “glory” effect

Other kinds of coherent backscattering effects have been observed for quite a
long time. Among them, the most famous is perhaps the glory which shows up
as a bright halo surrounding the shadow of a plane (or of a mountain hiker)
projected onto a sea of clouds (Figure 8.15) [229]. In contrast to the coherent
backscattering effect, the glory is a single scattering interference effect.

It results from the interference between equally long light paths inside a
spherical drop of water 14 (Figure 8.16). The counting of all paths that con-
tribute to the glory effect constitutes a difficult problem which necessitates the
use of the Mie theory (section A2.3.2), and which depends on many parame-
ters such as the wavelength of the incident light, the radius of the drop, and its
optical index. The increase in the backscattered intensity occurs inside a cone
of aperture of the order of λ/a, where a is the radius of the drop. For water
inside clouds, this radius is about a few tens of microns, i.e., much smaller
than the transport mean free path of light in this medium. This explains why
the bright halo that is observed is essentially associated with glory effect and
not with coherent backscattering. For big enough scatterers, however, the two
effects may coexist, and it could then be possible to cross over continuously
from a regime where multiple scattering mainly occurs inside a scatterer to a
regime of multiple scattering between scatterers [230].

14It might be of interest to note at this point that glory is an effect very different from the
rainbow, which apart from supernumerary rainbows inside the main arc, is not an interference
effect.
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Figure 8.14: Coherent backscattering cone obtained for sunlight on a solid solu-
tion of BaSO4 and compared, for the same medium, to a monochromatic light
of wavelength λ = 0.514µm [228].

Figure 8.15: Glory observed along the Hörnli ridge on mount Cervin (picture
G. Montambaux).

8.9.2 Coherent backscattering and opposition effect in as-
trophysics

As early as 1887, it was observed that the sunlight intensity reflected by the
rings of Saturn was larger in the backscattering direction [231] 15. This ob-
servation was then extended to almost all the planets and their moons when
observed in the so-called opposition configuration, i.e. when the Sun, Earth and
planet of interest are aligned, thus giving to this increase of the backscattered
intensity (Figure 8.17) the name “opposition effect.” Various explanations for
this effect have been proposed [232], but it is only recently that an explanation
based on the coherent backscattering effect has been suggested [233].

It has also been observed that the difference d‖ − d⊥ between the depo-
larization coefficients defined in (8.58) vanishes in the backscattering direction

15In astronomy, the backscattering angle is often called the phase angle.
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Figure 8.16: Illustration of the typical optical paths that interfere to produce the
glory effect. θb is the backscattering angle and βc is the critical angle of total
reflection [230].
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Figure 8.17: Opposition effect observed on the rings A and B of Saturn with
natural sunlight (a) and for blue light (b) (Franklin and Cook 1965).

and becomes negative inside a cone of angular aperture roughly equal to that
of the intensity 16. This effect known as the “polarization opposition effect”
was first observed by Lyot in 1929 [234]. It has been recently reexamined
in great detail in the framework of polarization effects in multiple scattering.
Those studies go much beyond the range of validity of the results presented in
section 8.7. Actually, the scatterers (for instance small ice crystals) are much
larger than the wavelength (Mie regime, section A2.3.2) and of random shape,
so that the behavior of the polarization can only be obtained from numeri-
cal studies [226, 235]. The interpretation of the opposition effect in terms of
coherent backscattering has indeed been fruitful, since it has led to a better un-
derstanding of the nature and composition of the measured reflecting surfaces.
Nevertheless, we must still use this interpretation cautiously since a number of

16The definition (8.58) of the depolarization coefficients is general, but their expression has
been obtained in the particular case of Rayleigh scattering.
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questions remain unsolved. For instance, the angular aperture of the backscat-
tering cone seems to correspond in certain cases to very short transport mean
free paths l∗, a result at odds with the nature of the scatterers.

8.9.3 Coherent backscattering by cold atomic gases

The physics of cold atoms constitutes a very active field of research, especially
since the first experimental observation in 1995 of the Bose-Einstein condensa-
tion in Rubidium atoms. The atomic densities reached in traps are very high,
especially near the onset of condensation, and their study using the usual spec-
troscopic methods appears not to be easy as a result of multiple scattering of
photons by atoms. This explains why, although it was first considered as a
nuisance, multiple scattering is of great interest for the study of the properties
of cold atoms as it is for classical scatterers. Moreover, it has also been real-
ized that cold atoms and Bose-Einstein condensates are good candidates for
the observation of coherent effects in multiple scattering not only in the weak
disorder regime but also in the Anderson localization regime. Another great
advantage of the resonant Rayleigh scattering of photons by atoms resides in
the fact that atoms provide an almost perfect realization of point-like scatter-
ers, an assumption that has been underlying most of our previous calculations
(section A2.3.3). These various points have triggered the experimental study of
the backscattering effect in cold atomic gases (Rubidium and Strontium) [236].
The behavior of the backscattering cone as a function of polarization appears
to be qualitatively different from the case of classical scatterers. This shows up
clearly in Figure 8.18 where the enhancement factor of the coherent albedo is
much smaller in the parallel polarization channel than in the perpendicular one
[237]. This is at odds with the case of classical Rayleigh (or Rayleigh-Gans)
scatterers where (see sections 6.6.4 and 8.7) a scattered wave analyzed along
the incident polarization channel remains unattenuated, whereas it is strongly
attenuated in the perpendicular polarization channel. The reason for this unex-
pected behavior arises from the existence of internal atomic degrees of freedom,
i.e., from degenerate Zeeman sub-levels which translates into a very different
expression for the elementary vertex. As for the classical Rayleigh scattering,
we must consider two distinct effects. One is the depolarization of an incident
photon that affects equally the Diffuson and the Cooperon, i.e., the incoherent
and coherent contributions to the albedo. A second effect is the decrease of
the Cooperon contribution in the parallel and perpendicular polarization chan-
nels. For Rayleigh scattering by a classical dipole, this decrease occurs only in
the perpendicular channel. We shall now see that for atoms with degenerate
Zeeman sub-levels, it also occurs in the parallel channel (see Appendix A6.5).

• Depolarization of the Diffuson

The classical intensity and the incoherent albedo can be measured within
either the polarization channel of the incident photons or the perpendicular

channel. The characteristic dephasing times τ
(d)
k defined by (6.321) and pre-

sented in Table 6.22 account for the loss of polarization of an incident photon.
As for Rayleigh scattering, only the scalar mode k = 0 survives in the long time
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Figure 8.18: Comparison of backscattering cones obtained for classical scatter-
ers (polystyrene) and for cold Rubidium atoms. We notice that the enhancement
factors are much smaller for atoms. Even more surprising is the behavior as a
function of polarization, which differs both qualitatively and quantitatively from
the classical case [236].

limit and contributes equally in all polarization channels. Therefore, for long
multiple scattering trajectories of photons, we recover the same depolarization
factor 1/2 obtained in the classical case (see relation 8.58).

• Reduction of the enhancement factor of the coherent albedo

In addition to depolarization, the Cooperon involves an additional phase
shift between multiple scattering amplitudes propagating in opposite direc-
tions. This phase shift gives rise to a decrease in the enhancement factor of the
coherent albedo relative to the incoherent background.

For classical Rayleigh scattering (section 8.7), the scalar mode k = 0 of
the Cooperon is a Goldstone mode. Therefore the Cooperon contribution is
robust in the parallel polarization channel (l ‖ l or h ‖ h) and it is attenuated
only in the perpendicular polarization channel (l ⊥ l or h ⊥ h). However,

for atomic gases, the contribution Γ
(c)
0 (t) of this mode decreases exponentially

since τ
(c)
0 is now finite. Consequently, the component Γ(c)(t) of the structure

factor is reduced even in the parallel channel . We may also be in a situation
opposite to the classical case, i.e., for which the enhancement of the coherent
albedo is larger in the perpendicular channel than in the parallel one. The
value of the enhancement depends on the nature of the atomic transition and
on the total angular momentum of the ground state (J) and of the excited
state (Je). For instance, for Rubidium atoms, which correspond to a transition

(J = 3, Je = 4), we have τ
(c)
2 > τ

(c)
1 > τ

(c)
0 (see Table 6.22). The exponential

decay of the Cooperon is driven by the less rapidly decaying mode, that is by

the largest time τ
(c)
2 , so that for long enough times, it decays with the same
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Figure 8.19: Structure factors Γ(d) and Γ(c) in the different polarization chan-
nels as obtained from eqs. (6.323, 6.324). See exercise 2.4 and Table (2.10)
for the calculation of the scalar product in the different polarization or helicity

channels in the backscattering direction. For Rayleigh scattering, Γ
(c)
0 = Γ

(d)
0

are Goldstone modes, while for scattering by Rb atoms, Γ
(c)
0 is attenuated and

decreases faster than Γ
(c)
2 .

characteristic time τ
(c)
2 in all polarization channels. Then, the height of the

coherent backscattering cone α
‖
c in the parallel channel is comparable to that

of α⊥
c in the perpendicular channel (Figure 8.18). More quantitatively, the

height of the cone in the different channels is given by the coefficient of the
k = 2 mode which, from Table (8.19) is 2/3, 1/2, 1/6, 1, respectively for the
l ‖ l, l ⊥ l, h ‖ h and h ⊥ h polarization channels. This is in qualitative
agreement with the results of Figure (8.18).

Finally, in the case of cold atomic gases, it is important to take into account
finite size effects of the cloud that lead to a rounding of the shape of the coherent
backscattering cone (Exercise 8.2). Moreover, the confinement of the atoms
is achieved by means of external lasers, so that the density of the gas is non
homogeneous. This raises the problem of finding the right boundary conditions
for the structure factor and for the probability Pd.

8.9.4 Coherent backscattering effect in acoustics

In order to close this tour of the various systems in which coherent backscat-
tering has been observed, let us mention the beautiful set of experiments done
in acoustics [238, 239]. Figure 8.20 shows the backscattering cone for acous-
tic waves (λ = 0.43mm) propagating in a two-dimensional random medium of
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dimensions 160mm × 80mm, composed of 2400 rigid steel rods immersed in
a water tank. This medium is characterized by a transport mean free path
l∗ ≃ 4mm and a diffusion coefficient D∗ ≃ 2.5mm2/µs.

The great advantage of the acoustic setup is that the detectors (a network
of ultrasonic transducers) can also measure the phase of the detected signal,
not only its intensity as in optics. Moreover, due to the lower speed of acoustic
waves, it is also possible to have access to the time resolved behavior such
as the time-dependent albedo α(θ, t) defined by (8.40, 8.41). This behavior
is represented in Figure 8.21. In agreement with relation (8.42), the shape of
the coherent cone is Gaussian with a width that varies like 1/

√
Dt. A similar

experiment in optics would require femtosecond pulses [240].

Figure 8.20: Coherent backscattering cone measured with acoustic waves (A.
Tourin et al. [239]).

Figure 8.21: Measurement of the time-dependent albedo α(t) with acoustic
pulses. The cone has a Gaussian shape and its width varies like 1/

√
Dt (A.

Tourin et al. [239]).


