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Abstract

A light beam multiply scattered by a cloud of randomly distributed scatterers
leads to a very complex interference, or speckle, pattern. The characteris-
tics of a speckle pattern are usually studied using the average transmitted
intensity and the intensity correlation function of the scattered light. In par-
ticular, the intensity fluctuations for the case of classical scatterers are given
by the Rayleigh law, which states that the root mean square of the trans-
mitted intensity equals its configuration average. In this thesis we study the
average and the correlation functions of the transmitted intensity of light
multiply scattered by a cold atomic gas. We show that the internal structure
of atoms, e.g. Zeeman degeneracy, enhances significantly the intensity corre-
lation. This enhancement results from contributions of the internal degrees
of freedom of the scatterers, that do not contribute to the average intensity.
These additional contributions are, however, sensitive to an applied magnetic
field which reduces sharply the correlation enhancement. The correspond-
ing behavior of the correlation has a resonant-like shape, and its width is
narrower than the one obtained in other related phenomena like the Hanle
effect. This may have an experimental significance, since the width of the
resonance-like peak is directly related to experiments resolution. The en-
hanced correlation is also sensitive to the motion of scatterers. This motion
leads to a rapid decay of the correlation as a function of time.
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CHAPTER 1

Introduction

In this work we study the intensity correlation of light multiply scattered
by a cloud of randomly distributed atoms. As such, this work involves two
different fields of physics [1, 2] (Appendix D). The first one is atomic physics,
namely the interaction of light and atoms. This is a well established field
which has been extensively studied since the early years of the twentieth
century. The second field is coherent transport of waves in random media,
which is a central part of mesoscopic physics. This field is much younger than
atomic physics, and most of the progress has been achieved mainly during
the last two decades of the twentieth century, although a few important con-
tributions have been published beforehand, e.g. in the context of light waves
[3, 4]. Coherent multiple scattering of waves in disordered media appears in
many areas in physics, such as astrophysics, but the main focus during the
last decades is on solid state physics or, more precisely, the transport of elec-
trons in conductors. The impurities in a conductor are randomly distributed,
and scatter electrons. This determines the conduction properties of the sub-
stance. Owing to the progress in technology, which allows cooling metallic
samples down to sub-kelvin temperatures, the coherence length of conduc-
tion electrons became comparable to the size of the conductor [5]. This new
situation led to new theoretical developments to take into account the wave
properties of the electrons inside the conductor. This new field is known as
mesoscopic physics. It concerns systems which, despite being macroscopic,
involve interference effects due to the long range coherence of the waves.

The study of coherent multiple scattering of light in disordered media
presents experimental advantages relative to the problem of electronic con-
duction. For example, light that is shined upon a scattering medium and
then is detected along some direction allows angular, or directional, analy-
sis of multiple scattering, which is much more difficult in the case of elec-
trons. Moreover, lasers provide a common source of extremely coherent
waves, which are also easily tunable, so that the scattering cross section
may be controlled by simply changing the light wavelength. The use of light
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thus allowed the experimental observation of mesoscopic phenomena, such as
coherent backscattering, which was discovered theoretically and experimen-
tally during the mid eighties of the last century [6, 7, 8, 9]. The coherent
backscattering is often referred to as a weak localization effect, to indicate
that it is observed when the scattering events can be considered independent
of each other. The condition for weak localization is usually expressed as
kl ≫ 1, where k is the wave number of the scattered wave and l is the elastic
mean free path of the wave inside the medium. In this regime, the multiply
scattered wave is treated within the framework of diffusion theory, where in-
terference effects amounts to some corrections to the diffusion result, called
weak localization corrections. In the strong localization regime, kl ∼ 1, a
very different behavior is obtained, such as a metal-insulator transition (An-
derson transition) in three dimensions. In this work, we restrict ourselves to
the weak localization regime.

Within the diffusion approximation, the disorder-averaged multiply scat-
tered intensity depends essentially on 4 parameters: the size of the disordered
sample, the light wavelength, the total scattering cross section of the wave
off a single scatterer, and the density of scatterers in the medium. It does not
depend, for example, on the dynamics of the scatterers, at least as long as
this dynamics does not affect the coherence of the wave. More information,
both about the sample and the scattered wave, may be gained using correla-
tion functions. Here we focus on two kinds of correlation functions: angular
and temporal. The first kind is the correlation between the intensity, incom-
ing and scattered along different directions (different channels). The second
kind usually amounts to correlation between the scattered intensity of a sin-
gle channel at two different times. In both cases, the full correlation function
is given by a perturbation series, where each order corresponds to the number
of possible crossings. The term “crossing” denotes the situation in which two
diffusion processes cross each other in a coherent way. The small parameter
in this perturbation series is the probability of the crossing event to occur,
which for a cubic sample of linear dimension L is given roughly by λ2/lL (λ
is the wavelength of the wave), and is typically much smaller than unity. The
zeroth order, C(1), corresponds to the absence of crossing [5, 10]. This is the
dominant contribution to the channel correlation function, namely, where the
wave is incident and detected along some specific directions. Since this is the
case considered in the present work, we restrict our study to the zeroth order
contribution. The C(1) function is often called short range correlation, since
it decays exponentially with the relative angle of the two channels or with
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the time separation between measurements (temporal correlation). There is
a general behavior that characterizes the correlation C(1) for classical scatter-
ers. This is the Rayleigh law, which states that for small relative angles, or
time separations, we have II ′ = 2Ī Ī ′. Here I and I ′ denotes two intensities,
corresponding to two channels or two times, and · · · is a disorder configura-
tion average. In particular, for I = I ′, the Rayleigh law becomes I2 = 2Ī2. It
characterizes also the light coming from the sun (chaotic light). The next two
orders, C(2) and C(3), correspond to cases where two diffusion processes cross
each other once and twice, respectively. These contributions are referred to
as long ranged [11, 12], because they decay much slower than C(1) as a func-
tion of the relative angle or time: C(2) decays as a power low while C(3) is
constant. As a result, C(2) and C(3) contribute significantly only when many
channels are integrated to find, for example, the total transmission coeffi-
cient. In particular, the infinite-range C(3) contribution is at the basis of the
so-called universal conductance fluctuations observed in electronic transport
[13]. Information about the dynamics of scatterers may be obtained using
the temporal correlation function, since the decay of this function is due to
the motion of the scatterers. This motion leads to a difference between the
positions of the scatterer at times 0 and t, say. If this difference is sufficiently
large and random, the scattering amplitudes at times 0 and t are no longer
coherent, and the correlation between them is suppressed. This field is called
diffusing wave spectroscopy [14].

The development of new techniques for cooling atoms using light, in the
1990’th, raised the question of coherent multiple scattering of light in a gas of
cold atoms. This is mainly due to the fact that information about the atomic
sample is obtained by studying the multiply scattered light. For cold enough
atoms, the Doppler effect can be neglected and the coherence length of the
light may be on the order of the sample size. Resonant multiple scattering
corresponds to photons that are resonant with a given atomic transition. In
this case, a large scattering cross section is obtained, which is also very easily
tunable. Thus, the experimentalist is able to control the mean free path of
the light inside the medium, and to vary it over orders of magnitude just
by changing slightly the laser frequency. A major difference of the resonant
multiple scattering of light by atoms, relative to classical scatterers, is the
interaction between light polarization and the internal degrees of freedom
of the scatterers, and in particular the Zeeman degeneracy [2, 15, 16]. The
effect of atomic internal degrees of freedom was shown to reduce significantly
the coherent backscattering of light [17, 18, 19]. This is because constructive
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interference between counter propagating scattering paths, in the presence of
an atomic Zeeman degeneracy, occurs only for a certain reciprocity condition
for the Zeeman m quantum numbers. Therefore, the backscattering peak
is reduced relatively to scatterers that do not possess internal structure, for
which constructive interference always occur between counter propagating
paths. For light resonant with an atomic transition which involves a non-
degenerate ground state, the height of the coherent backscattering peak is
found to be about its classical value [20]. This result confirms the prediction,
according to which Zeeman degeneracy has an effect on the multiple scatter-
ing process. Until now, however, no study has been devoted to the effect of
a Zeeman degeneracy on the correlation functions.

In this work we calculate the transmitted intensity correlation of a light
beam, multiply scattered in a gas of cold atoms, within the diffusion approx-
imation. We consider two level atoms, with ground and excited states which
are generally Zeeman degenerate. Our main results are as follows:

(1) We find that when the atomic ground state is Zeeman degenerate,
the transmitted intensity correlation is well enhanced above the classical
Rayleigh law. In the case of angular correlation, the enhancement decays
for relative angles of the order λ/L, as in the classical case. In the case of
temporal correlation, the enhanced correlation holds at very short times, as
discussed below. For a non-degenerate atomic ground state we recover the
classical results, and in particular the Rayleigh law. The origin of the en-
hanced correlation is the mixing of spatial disorder, related to the classical
position of scatterers, and internal disorder, corresponding to the random-
ness in the internal states of scatterers. The classical Rayleigh law amounts
to the enhancement of the multiply scattered intensity correlation relative,
say, to the incoming laser beam. The enhanced correlation above Rayleigh
may thus be intuitively explained as a result of the enhanced disorder due to
the additional degrees of freedom (Zeeman quantum numbers).

(2) The enhanced correlation is not unique to quantum systems or to
multiple scattering processes. It is shown that a similar result is obtained
even in the limit of a single scattering, as long as the scatterers have some
internal degeneracy. Moreover, the internal degrees of freedom may be of
any kind, classical or quantum in nature.

(3) The effect of an external magnetic field on the enhanced correlation
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is studied. The magnetic field removes the atomic degeneracy and thus af-
fects the correlation function. In a sense, the magnetic field may be said
to reduce the internal disorder, by taking many atomic transitions far from
resonance, thus reducing their occurrence. We show that there is a sharp
reduction of the enhanced correlation as a function of the magnitude of the
external field. The Full Width at Half Maximum (FWHM) of this reduc-
tion scales as l/L ≡ 1/b, a parameter which is controllable and in principle
may be infinitely small. This might be very useful in spectroscopy, since the
FWHM is directly related to the resolution of the experiment. In the multi-
ple scattering regime, where l/L≪ 1, the FWHM of the resonance-like field
dependent correlation curve, is orders of magnitude smaller than the FWHM
of the Hanle or Franken effects used in standard level-crossing spectroscopy.

(4) Dephasing mechanisms, such as Doppler shifts, are expected to reduce
and limit the enhancement of the intensity correlation. Of these mechanisms
we focus on the dynamics of scatterers, which classically leads to an expo-
nential reduction of the correlation as a function of time. We give a criterion
for the time period over which the enhanced correlation holds. The decrease
of the correlation with time is roughly similar to the classical case, namely
exponential, with a decay rate equal to b2/τb. Here τb is the typical time
for the scatterers to move a distance comparable to λ. This means that as
we get more and more into the multiple scattering regime, namely, when we
increase b, the time window to observe the enhanced correlation gets shorter
and shorter.

This thesis contains two main parts. The first, which includes Chapters
2,3, and 4, provides an introductory survey of the essential theory which is at
the basis of our work. Chapter 2 describes the theory of multiple scattering
within the diffusion approximation. In Chapter 3 we discuss the correlation
function C(1) in the specific case we consider here, namely, the slab geometry.
Chapter 4 is devoted to the preliminaries of the interaction between light and
atoms. The second part of this thesis (Chapters 5 and 6) contains our original
contribution. In Chapter 5 we develop and calculate the correlation function
of the light for the case of atomic scatterers. In Chapter 6, we study the
effect of an applied magnetic field. Also in Chapter 6, we discuss the time
dependence of the correlation function due to the dynamics of the scatterers.
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CHAPTER 2

Multiple scattering of light

In this chapter and in the next one we survey the theory of multiple
scattering of light in random media. The present chapter concerns the prop-
agation of intensity, and the next one is devoted to intensity correlation
functions. As the rest of this thesis, we assume weak disorder. There are two
essential consequences of this assumption: first, it allows for a perturbative
treatment of the problem and second, it permits the consideration of the
individual scattering events as being independent of each other. Thus, we
ignore cooperative effects of the scatterers. Moreover, it is assumed that the
coherence length of the scattered wave is always larger than the sample size,
meaning that we neglect dephasing mechanisms such as Doppler effect. We
also assume that there is no absorption in the medium. The medium has,
however, a significant effect on the coherence between two different wave
amplitudes. Also, in Chapters 2 and 3 we do not take into account the pos-
sibility that the scatterers have an internal structure, and they are treated
as point-like classical objects. Internal degrees of freedom of the scatterers
are considered from Chapter 4 on.

This chapter starts with a study of the Green function of the wave equa-
tion, including its temporal and spatial dependence. Next we discuss in a
general way the intensity propagation. Then, we introduce the Diffuson func-
tion, which plays a central role in this work. Finally, we consider the diffusive
limit and the corresponding diffusion equation for the intensity propagation.

The description given in the present and the next chapters is based mainly
on [2].

2.1 Green function of the wave equation

The behavior of electromagnetic fields in a material medium with no
charge and current densities is governed by the Maxwell’s equations (SI units)

∇ · D = 0

∇ · B = 0

∇×E +
∂B

∂t
= 0 (1)

∇×H − ∂D

∂t
= 0

9



where E is the electric field, D = ε(r)E, H is the magnetic field, and
B = µ0H. We assume that the dielectric coefficient of the medium de-
pends weakly on the position, namely ε(r) = ε̄ + δε(r), and differs only
slightly from ε0. We now limit ourselves for simplicity to a scalar wave, and
further assume harmonic temporal dependence for the electric field, namely
E = ψ(r) exp(iωt). Then, taking the curl of both sides of the third Maxwell’s
equation, using the identity ∇× (∇× V) = ∇(∇ · V) − ∆V, and with the
help of the first and fourth of the equations (1), leads to the wave equation

(

∆ +
ω2

c2
δε(r)

ε0
+
ω2

c2
ε̄

ε0

)

ψ(r) = 0 (2)

where c2 = 1/µ0ε0 is the speed of light in vacuum. Denoting µ(r) = δε(r)/ε̄,
we obtain the Helmholz equation

[∆ + k2(µ(r) + 1)]ψ(r) = 0 (3)

Here k is the light wave number in vacuum, but since we have assumed that
ε is very close to ε0, it can be considered also as the wave number inside the
medium.

As is standard in optics, each multiple scattering event is considered as
a secondary source. Therefore, one uses the Green function of (3), G(r′, r),
which is interpreted as the amplitude of the wave at point r, of a point source
that is placed at point r′. This function is defined as

[∆ + k2(µ(r) + 1)]G(r′, r) = δ(r′ − r) (4)

To see why the Green function is interpreted as above, we assume for the
moment that a charge density ρ(r) is present inside the medium. Equation
(3) should then be modified by putting ρ(r) in its r.h.s instead of 0. The
solution of this source-included wave equation can be expressed as

ψ(r) =

∫

G(r′, r)ρ(r′)dr′ (5)

which is the sum of contributions to the wave amplitude due to all “point
sources” in the medium.

We first calculate the free Green function of (3), which satisfies

[∆ + k2]G0(r
′, r) = δ(r′ − r) (6)
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since µ(r) = 0 in this case. For an infinite and isotropic medium, G0(r
′, r) =

G0(r
′ − r). Fourier transforming (6) yields

(k2 −Q2)G0(Q) = 1 (7)

where Q is the Fourier variable of r′ − r and Q = |Q|. The free Green
function is thus written formally, in Fourier space, as

G0(Q) =
1

k2 −Q2 ± i0
(8)

where i0 denotes an infinitesimally small complex value, which is needed in
order to prevent divergence of this expression. Transforming back to the real
space one finds

G0(R) = − 1

4π

e±ikR

R
(9)

with R = r′ − r and R = |R|. The sign of i0 in (8), and thus of the
exponent in (9), determines whether it is an advanced or a retarded Green
function, which are complex conjugate of each other. These terms correspond
to whether the Green function describes the evolution of the wave towards
the positive (retarded) or negative (advanced) direction of time. To see this,
we insert in (9) k = ω/c and write the Fourier transform

G0(R, t) = − 1

4πR

∫ ∞

−∞
dωeiω(t±R/c) (10)

The sign of the exponent in the integrand therefore determines whether the
evolution is toward positive or negative times.

In a material medium, the Green function (8) (or (9)) is modified due to
the scattering potential. This potential is, up to a proportionality factor, the
fluctuation of the dielectric coefficient of the medium µ(r). For our purpose,
all we need are a few general features of this potential, which are its average
and correlation values. We consider a white noise potential, characterized by

µ(r) = 0

µ(r)µ(r′) = Bδ(r′ − r) (11)

where all higher order cumulants are zero. Here · · · denotes the disorder av-
erage, meaning an average over different realizations (configurations) of the
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medium. In the present case, these realizations correspond solely to the po-
sition of the particles building up the medium (atoms, molecules), assumed
to be random. The second condition in (11) means that the potential cor-
relation is short-range, namely that the scattering events are independent,
where B characterizes the strength of the potential. The independent scat-
terings assumption is also related to the weak disorder approximation which
is discussed later on. The disordered potential satisfying (11) is a special
case of the so called Gaussian disordered potential for which, generally, the
correlation in (11) is not a δ-function.

In order to build the Green function of the wave, it is necessary to take
into account all the scattering events that might take place. This is formally
written as

G = G0 +G0V G0 +G0V G0V G0 + · · · = G0 +G0V G (12)

where V formally represents a scattering event, and in real space is propor-
tional to µ(r), so that we may write

G(r, r′) = G0(r, r
′) +

∫

dr1G0(r, r1)µ(r1)G0(r1, r
′)

+

∫

dr1dr2G0(r, r1)µ(r1)G0(r1, r2)µ(r2)G0(r2, r
′) + · · · (13)

When dealing with random disordered media one usually considers the
disorder-averaged Green function G. Using the model (11) leads for the
disorder average of (13) to terms containing products of an even number of
µ’s. For example, the disorder average taken over the third term on the r.h.s
of (13) gives

G0(r, r1)µ(r1)G0(r1, r2)µ(r2)G0(r2, r′) = BG0(r, r1)G0(r1, r2)G0(r2, r
′)δ(r1−r2) .

(14)
We are left, therefore, with a series written formally as

G = G0 +B2G0G0G0 +B4G0G0G0G0G0 + · · · (15)

where G is the disorder averaged Green function. This expansion may be
written in a more compact way using the self energy Σ, given by the relation

G = G0 +G0ΣG0 +G0ΣG0ΣG0 + · · · = G0 +G0ΣG (16)

12



This expression is called the Dyson equation. Σ accounts for all irreducible
scattering diagrams, namely those that cannot be split into several successive
independent scattering events. These processes may include one scatterer,
two scatterers, etc., so that Σ is expanded into a perturbation series where
the first order corresponds to one scatteter that is involved in the process, the
second order to two scatterers, etc. It can be shown that the small parameter
of this expansion is 1/kl. Within the weak disorder limit, kl ≫ 1, it is thus
legitimate to take into account only the leading order of the expansion of Σ.

Multiplying both sides of (16) by G−1
0 from the left and by G

−1
from

the right yields G−1
0 = G

−1
+ Σ, meaning that in Fourier space G(Q) =

1/(k2 −Q2 − Σ) (see (8)), and in real space

G(R) = − 1

4π

eiR
√

k2−Σ

R
≃ − 1

4π

eikR

R
e(ImΣ/2k)R (17)

where the retarded Green function is considered. Here we have assumed that
Σ ≪ k2 so that

√
k2 − Σ ≃ k − Σ/2k, and also have ignored the real part of

Σ. It should be noted also that actually Σ depends on whether G is retarded
or advanced, namely, on the sign of the exponent ikR. The imaginary part
of Σ thus corresponds to an exponential decrease in the wave amplitude.
This decrease is due to the scattering of the wave, which reduces its intensity
while transferring it into other partial waves. We expect, thus, that ImΣ is
related to the characteristic distance (or time) traveled by the wave before it
is scattered again.

The first order approximation to the self energy can be calculated to give

ImΣ1 = −k
l

(18)

where l, having dimensions of length, is called the elastic mean free path of
the wave in the medium, which is the mean distance between two successive
scattering events. The first order approximation to the disorder-averaged
Green function is therefore, using (17)

G(R) = − 1

4π

eikR

R
e−R/2l (19)

expressing clearly the meaning of l.
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2.2 Intensity propagation

What one usually detects and measures is not the Green function G, or
the amplitude, but rather the intensity of the wave at a certain time and
place. In this section we will thus be concerned with the question: what is
the intensity of a multiply scattered wave at a point r′, provided it has been
emitted by a point source at r. At some given frequency of the wave, or for
some frequency component of a wave packet, the quantity

P (r, r′) =
4π

c
|G(r, r′)|2 (20)

represents the intensity of the wave. As an example of this definition, con-
sider the case of free propagation. Then, substituting (9) in (20), we find
P0(r, r

′) = 1/4πcR2, which is the usual decrease of the intensity, as 1/R2, for
a free spherical wave.

A first approximation (Drude-Boltzmann) to (20) is obtained by setting

PDB(r, r′) =
4π

c
|G(r, r′)|2 (21)

which from (19) yields

PDB(r, r′) = P0(r, r
′)e−R/l (22)

This approximation describes the propagation of the wave intensity in be-
tween successive collisions. In other words, it is the probability that a wave,
emitted at the point source r, will not undergo any collisions until it reaches
r′. The characteristic exponential decrease e−R/l defines the lifetime l/c,
called the elastic mean free time, for propagating without any collisions.

To obtain the complete multiple scattering probability, P (r, r′), we con-
sider the structure of G(r, r′). It is a sum of all possible multiple scattering
trajectories connecting the points r and r′ (Figure 1), and thus can be written
as

G(r, r′) =
∑

i

Ai(r, r
′)eikLi (23)

Here the index i denotes a possible multiple scattering path between r and
r′, Ai is its amplitude and eikLi its phase accumulated along the scattering
trajectory. In (23) we have ignored the time dependent phase since, as it will
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r

r'

Figure 1: An example of two possible multiple scattering trajectories between
two arbitrary points r and r′

be seen later, it does not affect the final results. The intensity of the wave is
thus

P (r, r′) =
4π

c

∑

i,j

Ai(r, r
′)A∗

j (r, r
′)eik(Li−Lj) (24)

Since every multiple scattering sequence is built up, on average, by “steps” of
length l, the characteristic length difference between two distinct sequences
i and j is at least of the order l. We therefore obtain a lower limit to the
phase difference according to |k(Li−Lj)| ∼ kl. At this point the assumption
of weak disorder, which is quantitatively written

kl ≫ 1 (weak disorder) , (25)

becomes significant. It states that the mean distance between successive
scattering events is much larger than the light wavelength. It can be shown
that the second correction to the self energy, Σ2, is of the order 1/kl relative
to the first correction Σ1. Thus 1/kl ≪ 1 is the “small parameter” in the
expansion series of Σ, and its smallness justifies taking into account only
the first term Σ1. A consequence of (25) is that each scattering event takes
place in the far field of the previous one. Thus it justifies the consideration
of the scattering events as being independent. The strong disorder limit is
quantitatively expressed as kl ∼ 1. In this regime, which is not considered
here, the wave becomes localized, meaning that its diffusion coefficient van-
ishes. In particular, a metal-insulator transition is expected in 3 dimensions
(Anderson transition).

The significance of (25) is however revealed when performing a disorder
average. To this purpose, we first notice that the length scale over which the
phase eik(Li−Lj) changes is λ, while for the amplitudes Ai(r, r

′) and Aj(r, r
′) it

15



is l. Since from (25) l ≫ λ, and because the typical length difference between
two distinct trajectories is at least l, we can finally state that cross terms
involving two distinct trajectories in (24), vanish upon disorder averaging
because of rapidly fluctuating phases. This is written

Ai(r, r′)A
∗
j (r, r

′)eik(Li−Lj) = |Ai|2δij (26)

where it is understood that |Ai|2 is a disorder-averaged quantity. Therefore,
the average scattered intensity is given by

Pd(r, r
′) =

4π

c

∑

i

|Ai|2 (27)

In other words, within this approximation, called the Diffuson approxima-
tion (hence the subscript d), we take into account only the contributions to
the intensity, which involve the coupling of two identical multiple scattering
spatial trajectories (see Figure 2). When considering the multiple scatter-
ing of light, the Diffuson approximation is sometimes referred to as radiative
transfer [21], while in the study of electronic transport, it is called the ladder
approximation.

r1

r2

r

r'

Figure 2: A typical contribution to the Diffuson. The two multiple scattering
amplitudes follow exactly the same trajectories, so that their phases exactly
cancel each other.

Expression (27), although quite intuitive, is not convenient for calcula-
tions. This is the reason why it is customary to use a continuous description,
within which the scattering potential is no longer treated as being composed
of discrete scatterers, but rather it is assumed to be continuous as in (11).
This way, we can express the wave intensity within the Diffuson approxima-
tion, Pd, as

Pd(r, r
′) =

4π

c

∫

PDB(r, r1)D(r1, r2)PDB(r2, r
′)dr1dr2 (28)
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The interpretation of the various terms in (28) is as follows. Pd(r, r
′) is the

intensity of a wave at r′, given it was generated by a point source at r, where
r and r′ are any points in the medium. PDB(r, r1) is the intensity of the
wave just before its first scattering event at r1. In other words, PDB(r, r1)
describes the first part of the path, between the creation of the wave at r

and the first scattering event. Similarly, PDB(r2, r
′) describes the last part

of the path, between the last scattering event at r2 and the detection at
r′. The function D(r1, r2), also called the Diffuson, describes the multiple
scattering sequence, from the first to the last scattering events. It is given
by an iterative equation, which symbolically writes

D = V + VWV + · · · = V + DWV (29)

where V and W correspond, respectively, to a single scattering event and to
the propagation between two successive scattering events. In real space, (29)
is written

D(r1, r2) =
4π

l
δ(r1 − r2) +

c

l

∫

D(r1, r)PDB(r, r2)dr (30)

The first term on the r.h.s of (30) corresponds to the possibility that r1 = r2

and only one scattering event takes place, while the second term is the actual
iteration. However, it should be remembered that (30) is a very simplified
expression, since it does not take into account the polarization of the light
and the internal structure of the scatterers. More realistic expressions will
be developed in Chapter 5.

By considering the Diffuson approximation we retain only incoherent
terms, i.e., contributions to the intensity with no phase difference. There
are, however, also coherent contributions to the intensity. These contribu-
tions occur when a Diffuson crosses itself and forms a “loop”. The loop is
built out of two counter-propagating amplitudes, which interfere in a con-
structive way (Cooperon). The probability of this loop to take place is given
roughly, for a disordered medium confined in a cube of linear dimension L, as
1/g = λ2/lL. According to the weak disorder assumption, l ≫ λ, and since
in multiple scattering L≫ l, we have g ≫ 1. When taking into account also
the Cooperons, the intensity becomes an expansion of an infinite series of
terms. Each term corresponds to the number of loops a Diffuson undergoes.
Neglecting any loops thus amounts to the zeroth order of the expansion. The
higher orders are called weak disorder corrections to the intensity propaga-
tion, and we do not consider them here.
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2.3 The diffusion regime

In the limit of a large enough system, which we consider here, one may
take (corresponding to (28) and (30))

|r− r′|, |r1 − r2| ≫ l , (31)

meaning that we take into account only the multiple scattering sequences
composed of a large number of steps of length l, i.e., that includes many
scattering events. This neglects short scattering sequences and constitutes
the diffusion approximation (not the Diffuson approximation), and will be
used throughout this thesis. We now show that within the diffusion approxi-
mation (or regime) the Diffuson, and also the intensity Pd, satisfy a diffusion
equation.

First, we enter the time dependence of (22) by defining t = R/c, so that

PDB(r, r′, t) =
δ(R− ct)e−t/τ

4πR2
(32)

where τ = l/c, with the Fourier transformed function

PDB(r, r′, ω) =
eiωR/c−R/l

4πcR2
. (33)

In the frequency space, we now expand D(r1, r, ω) about r = r2 up to the
second order, which gives

D(r1, r, ω) = D(r1, r2, ω)+(r−r2)·∇D(r1, r, ω) |r2 +
1

2
[(r−r2)·∇]2D(r1, r, ω) |r2 .

(34)
Substituting this expansion in (30) we note that the second term on the r.h.s
vanishes upon integration from symmetry considerations. What is left is

D(r1, r2, ω) =
4π

l
δ(r1 − r2) +

c

l
D(r1, r2, ω)

∫

PDB(r, r2, ω)dr

+
c

6l
∆r2D(r1, r2, ω)

∫

PDB(r, r2, ω)(r− r2)
2dr . (35)

The calculation of the two integrals on the r.h.s of (35) gives l/c + iω(l/c)2

and 2l3/c, respectively, so that finally

(−iω −D∆r2)D(r1, r2, ω) =
4πc

l2
δ(r1 − r2) (36)
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with the diffusion coefficient D = cl/3. The Diffuson D is thus the Green
function of the classical diffusion equation.

Later we will need the solution of the diffusion equation (36) in a slab
geometry (Figure 3). Therefore, we devote a short discussion to the proper-
ties of this equation. We first consider the diffusion problem in an infinite
and translation invariant 3d space. By Fourier transformations we can go
from the (R, ω) space to the (Q, t) space, where Q is the Fourier variable of
R = r2 − r1, and write (36) as follows

(
∂

∂t
+DQ2)D(Q, t) =

4πc

l2
δ(t) (37)

(Q = |Q|), the solution of which is

D(Q, t) =
4πc

l2
θ(t)e−DQ2t . (38)

In real space the equation is

(
∂

∂t
−D∆)D(R, t) =

4πc

l2
δ(t)δ(R) , (39)

with the solution (for t > 0)

D(R, t) =
c

l2
√

4π(Dt)3/2
e−R2/4Dt . (40)

An important feature of free diffusion, is that the mean square distance from
the origin of motion is proportional to time, namely

〈R2(t)〉 = 6Dt . (41)

The next step is to impose boundary conditions. In this thesis we consider
a slab geometry, namely a medium with sharp boundaries at z = 0 and z = L,
while in the XY plane it is practically infinite. Referring to Figure 3, the
diffusion along the Z axis is thus limited due to the slab boundaries. On
the other hand, the diffusion in the XY plane is unlimited. Therefore, we
separate these two diffusive motions and write the solution of the diffusion
equation in this geometry as follows

D(r, r′, t) = D(R⊥, z, z
′, t) =

c

l2Dt
e−R2

⊥
/4DtD(z, z′, t) (42)
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Figure 3: The slab geometry. The sample is bounded along the Z axis between
z = 0 and z = L, while in the XY plane it is practically unbounded (sa,a′

and sb,b′ denote incoming and outgoing directions of propagation, and ε̂a is a
polarization vector).

where (40) for 2 dimensions has been used, R⊥ is the projection of R =
r − r′ on the XY plane, and z and z′ are the components of r and r′,
respectively, along the Z axis. Note that in this case we no longer have
translation invariance, so that D(r, r′, t) does not depend on R only. The
function D(z, z′, t) corresponds to the diffusion only along the Z axis, and it
remains to be determined. The equation to be solved is thus

(
∂

∂t
−D

∂2

∂z′2

)

D(z, z′, t) =
4πc

l2
δ(t)δ(z − z′) (43)

with the boundary conditions D(z, 0, t) = D(z, L, t) = 0, meaning that the
diffusion probability vanishes on the boundaries. This corresponds to the
case in which a wave, which impinges on the boundaries, leaves the medium
and never returns. As can be easily checked, the solution of (43) is given by

D(z, z′, t) =
8πc

l2L

∑

n>0

e−π2n2t/τD sin(nπ
z

L
) sin(nπ

z′

L
) (44)

where the Thouless time, τD = L2/D, is the characteristic time for a diffusive
particle to move from the origin of diffusion a distance comparable to the
system size L.

In the next chapters we will need to describe damped diffusion in the
slab geometry. This damping might generally occur due, e.g., to absorption,
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and it will be plugged in using an exponential factor e−γt, with γ being the
damping rate. For convenience we use the Fourier transform

D(q, z, z′, t) =

∫

dR⊥e
iq·R⊥D(R⊥, z, z

′, t) (45)

The integral on the r.h.s is calculated using (40), and under the assumption
that the diffusion along the Z axis and in the XY plane are independent.
The result is

D(q, z, z′, t) = D(z, z′, t)e−Dq2t . (46)

Here q is the Fourier variable of R⊥, q = |q|. The quantity of interest is the
time integral of this function, since it corresponds to the overall probability
to diffuse out of the system. Including the damping and using (44), we have

∫ ∞

0

dtD(q, z, z′, t)e−γt =
8πc

l2L

∑

n>0

sin(nπ
z

L
) sin(nπ

z′

L
)

∫ ∞

0

dte
−t(Dq2+ π2n2

τD
+γ)

.

(47)
For γ > 0 we obtain

∫ ∞

0

dtD(q, z, z′, t)e−γt =
8πc

l2L

∑

n>0

sin(nπ z
L
) sin(nπ z′

L
)

Dq2 + π2n2/τD + γ
. (48)

which can be found, using the identities

∞∑

n=1

cos(nx)

n2 + a2
=

π

2a

cosh[a(π − x)]

sinh(aπ)
− 1

2a2

∞∑

n=1

cos(nx)

n2 − a2
= − π

2a

cos[a(π − x)]

sin(aπ)
+

1

2a2
, (49)

to be

Dγ(q, z, z
′) =

4πc

l2
Lγ(q)

D

sinh(zm/Lγ(q)) sinh((L− zM)/Lγ(q))

sinh(L/Lγ(q))
(50)

Here, we have used the definitions Lγ(q) =
√

D/(γ +Dq2), zm = min(z, z′),
zM = max(z, z′), and

Dγ(q, z, z
′) ≡

∫ ∞

0

dtD(q, z, z′, t)e−γt . (51)
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Moreover, since 1/γ is the characteristic damping time, and using (41), Lγ(0)
is the characteristic length over which the diffusion process is damped due
to γ.

Finally, multiplying D by the exponential e−γt is equivalent to inserting
γ into (37), so that the modified diffusion equation becomes

(γ +
∂

∂t
+DQ2)D(Q, t) =

4πc

l2
δ(t) (52)

with the solution
D(Q, t) = θ(t)e−DQ2t−γt . (53)

In the (Q, ω) space, this expression is written

D(Q, ω) =
4πc

l2
1

−iω + γ +DQ2
. (54)

For γ = 0, the solution (54) is known as a diffusion pole. Later, we will see
that it is closely related to the conservation of energy.

In this chapter we have developed some basic results of the multiple scat-
tering of waves in random media, under the condition of weak disorder and
within the diffusion approximation. In the next chapter we apply these con-
cepts to find the intensity correlation of the diffusing wave, still treating it
as scalar and assuming classical scatterers (no internal structure).
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CHAPTER 3

The classical speckle pattern

The transmitted intensity of a light pulse, multiply scattered in a random
medium, form a complex interference pattern. This pattern, called a speckle
(Figure 4), is the result of a coherent superposition of a large number of
sources. Despite its complexity, however, a speckle is essentially similar to
the Young interference pattern, since they are both coherent interference pic-
tures. The speckle is a snapshot of the instantaneous position of all scatterers
in the medium, i.e., of the specific spatial configuration. As is shown below,
when taking the disorder average over these configurations, the transmitted
intensity becomes uniform and the speckle pattern disappears.

Figure 4: A speckle pattern.

The properties of the speckle intensity picture are studied by calculating
the disorder average transmitted intensity, and various correlation functions
such as the angular and temporal intensity correlation functions. The in-
tensity fluctuations are obtained, for example, as a special case of these
correlation functions. In this chapter, we apply the methods developed in
the previous one, in order to find the transmitted intensity correlation of a
speckle. We assume classical scatterers, namely, without internal degrees of
freedom, which are treated as point-like classical objects. As stated earlier,
this thesis deals with the intensity correlation of light, induced by atomic
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scatterers. The method of calculation used for this purpose, as presented in
Chapter 5, is based on the classical theory presented in the present and the
previous chapters.

This chapter begins with a more detailed definition of a speckle (Section
3.1). Then, the average transmitted intensity is calculated (Section 3.2). In
Section 3.3 we study the angular correlation function, while in Section 3.4 we
consider the temporal correlation between the intensity transmitted at two
different times.

3.1 Definition of a speckle pattern

A light beam incident on a slab of a random medium, is transmitted to the
other side through many scattering paths. A “scattering path” is a sequence
of scattering events, independent of each other, that the wave may undergo
between its incidence into the slab, until its emergence out from the other
side (Figure 5). These scattering sequences may be composed of any number
of scattering events, and they correspond to scattering amplitudes, which
one should sum and then square in order to find the transmitted intensity.

k

k'

k

L L

Figure 5: The transmitted intensity in the slab geometry. A light beam is
incident from the left and scattered within the slab. The transmitted intensity
emerges to the right of the slab. The single scattering case is shown on
the left. In the multiple scattering regime (right), there are many possible
scattering trajectories for the transmitted light.

We are interested in the transmission coefficients Tab. This notation cor-
responds to the direction of incidence (sa), and of detection (sb), as shown
in Figure 3, where the two directions, sa and sb, defines the ab channel. A
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detector placed at ρsb with respect to the slab, where ρ is much larger than
the dimensions of the slab, and having angular aperture dΩ, captures an
amount ρ2I(ρ, sa, sb) of energy per unit time. Here

I(ρ, sa, sb) =
4π

c
|Aab(ρ)|2 (55)

is the intensity incoming along sa and emerging along sb, at a distance ρ
from the slab. Aab(ρ) represents the sum of all possible scattering light
paths, namely, the total scattering amplitude in transmission. Denoting by
I0 the incoming light intensity, the incoming power is SI0, with S being the
cross section of the slab. The corresponding transmission coefficient, defined
as the light power at the detector divided by the incoming power, is thus
given by

Tab =
ρ2I(ρ, sa, sb)

I0S
(56)

Aab(ρ) is the sum of all scattering amplitudes having the following struc-
ture. At the first stage, the incoming beam is incident along sa and traveling
inside the medium without being scattered until it reaches some point r,
where it undergoes the first scattering event. We denote this amplitude by
ψin(r). Then, at the second stage, a multiple scattering sequence takes place,
from r to some other point r′ inside the medium. This multiple scattering
amplitude is given by the Green function G(r, r′) discussed in the previous
chapter. In the last, third stage, the light emerges from point r′ out of
the medium, along the direction sb, which is represented by the amplitude
ψout(r

′, rD). Here rD = ρsb is the detector position relative to the slab. Fi-
nally, to obtain the full amplitude Aab(ρ), we have to sum over all possible
endpoints, r and r′, of the multiple scattering process. Therefore

Aab(ρ) =

∫

drdr′ψin(r)G(r, r′)ψout(r
′, rD) (57)

The Green function G(r, r′) corresponds to the propagation of the wave
between r and r′, and therefore it is a sum of all possible scattering amplitudes
between r and r′ (see (23) in Chapter 2). Following this, we may express Aab

as a sum of amplitudes as

Aab =
∑

i

A
{ab}
i eikLi (58)
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where for convenience the argument ρ has been omitted. A
{ab}
i eikLi is the

amplitude of a given multiple scattering trajectory, denoted by i. The sum
over i, therefore, amounts to summing over all possible scattering paths. Each
such scattering amplitude involves two parts: A

{ab}
i and the phase eikLi. This

phase depends on the scatterers position via the trajectory length Li. kLi is
the spatial phase accumulated along the trajectory i.

3.2 Average transmission coefficient

We now wish to calculate the disorder-averaged transmission coefficient
T ab. To describe its structure, we consider (55), (56), and (58), from which
we obtain

Tab =
4πρ2

cI0S

∑

i,j

AiA
∗
je

ik(Li−Lj) . (59)

Disorder averaging we find, as in Section 2.2 above, that all terms contain-
ing a non-vanishing phase factor average to zero. This leaves in (59) only
contributions with i = j leading to

T ab =
4πρ2

cI0S

∑

i

|Ai|2 (60)

similar to (27) of Chapter 2. We recall that this approximation, which con-
siders only the incoherent terms i = j, corresponds to the Diffuson. Thus,
the calculation of T ab is done using the Diffuson and the diffusion approxi-
mations introduced in Chapter 2. These approximations allow us to express
the transmission coefficient in terms of the Diffuson function D. Using (57),
(60), and (28) of Chapter 2, we thus have

T ab =
4πρ2

cI0S

∫

drdr′|ψin(r)|2D(r, r′)|ψout(r
′, rD)|2 . (61)

We now wish to find ψin(r), corresponding to the propagation of the in-
coming beam from its source to the point r inside the medium. Assuming
that the incoming beam is a plane wave, ψin involves two parts: one cor-
responds to the incoming plane wave until it reaches the boundaries of the
slab, the other is the decaying amplitude of the wave inside the medium, be-
tween the boundary of the slab and the first scattering event. This amplitude
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decays, as in (19) of Chapter 2, over the length 2l. Thus,

ψin(r) =

√

cI0
4π
e−rs/2le−ikrf (62)

where rf is the distance traveled by the wave in the free space before it
impinges on the interface plane, and rs is the distance from that interface to
the location r, of the first scattering event. The pre-factor in (62) ensures
that I in (55) has dimensions of an intensity.

Next we consider ψout(r
′, r2). Again, this amplitude accounts for the

propagation of the beam in two different media. First, a spherical wave
that originates from the last scattering event, propagates inside the medium
until it reaches the outgoing interface plane. Then, the wave emerges out
of the slab along sb and propagates in free space. The outgoing beam is
therefore a damped spherical wave inside the medium. Using (19) in Chapter
2, ψout(r

′, rD) is

ψout(r
′, rD) =

eik|rD−r′|

4π|rD − r′|e
−r′s/2l (63)

where r′s is the distance traveled by this wave inside the medium. Since the
detector is assumed to be placed in the far field zone of the outgoing wave,
then |rD| ≡ ρ≫ |r′|, so that k|rD − r′| ≃ kρ− ksb · r′, and

ψout(r
′, rD) ≃ e−iksb·r′ e

ikρ

4πρ
e−r′s/2l . (64)

We now approximate rs and r′s by their projections, z and L − z′, on the
Z axis, where z and z′ are respectively the projections of r and r′ along Z.
This approximation makes sense, provided that the directions along which
the beam propagates, before the first and after the last scattering events, do
not differ appreciably from the Z-direction. Therefore, using (61),

T ab =
1

(4π)2S

∫

drdr′e−z/le−(L−z′)/lD(r, r′) . (65)

Since for the slab geometry, the system is translation invariant along the XY
plane, the Diffuson D(r, r′) depends only on z, z′, and of the projection of
R = r′ − r on the XY plane, denoted by R⊥. Hence

T ab =
1

(4π)2

∫

dzdz′d2R⊥e
−z/le−(L−z′)/lD(R⊥, z, z

′)

=
l2

(4π)2

∫

S

d2R⊥D(R⊥, l, L− l) . (66)
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But the expression on the r.h.s of the second equality in (66), is the Fourier
transform of D(R⊥, l, L− l), taken for q = 0 where q is the Fourier variable
of R⊥. Thus,

T ab =
l2

(4π)2
D(q = 0, l, L− l) . (67)

The expression for Dγ(q, z, z
′) has been given in (50) of Chapter 2. To find

D(q = 0, l, L− l) we take γ,q → 0. Moreover, for L≫ l, we identify zm = l
and zM = L− l, so that

D(q = 0, l, L− l) =
4πc

DL
. (68)

Finally, since D = cl/3, we obtain

T ab =
3

4π

l

L
. (69)

T ab is thus proportional to l/L. The inverse ratio L/l is called the optical
depth and is usually denoted by b. In systems where the diffusion approx-
imation holds, and the scatterers are structureless, b is the only parameter
needed to determine the average transmitted intensity.

From (69) it is also clear that the average transmission coefficient is in-
dependent of the angles of incidence and emergence, namely, of the specific
channel. However, this is valid only within the approximation we have used
earlier, namely for sa and sb that differ only slightly from the Z-direction.
Within this small angle approximation, the average transmitted intensity
loses track of the direction of the incident beam. As we shall see later in
this chapter, however, there is a disorder-averaged quantity, namely, the first
order intensity correlation function, that “remembers” the direction of inci-
dence.

3.3 Angular correlation of the transmitted intensity

The definition of the normalized angular intensity correlation function is

Caba′b′ =
Corr(aba′b′)

T abT a′b′
(70)

with the correlation term given by

Corr(aba′b′) = TabTa′b′ − T abT a′b′ . (71)

28



In the following, we will refer to Caba′b′ as the angular correlation, or just
the correlation. Combining (70) and (71), the angular correlation function
is written as

Caba′b′ =
TabTa′b′

T abT a′b′
− 1 (72)

Since we have already calculated T ab and T a′b′ , we need now to calculate
TabTa′b′ . To this purpose we multiply first the non-averaged quantities Tab

and Ta′b′. From (59), and using the notation

Ci ≡
√

4πρ2

cI0S
Aie

ikLi (73)

we obtain
Tab =

∑

i,j

CiC∗
j , Ta′b′ =

∑

k,l

C′
kC′∗

l (74)

so that
TabTa′b′ =

∑

i,j,k,l

CiC∗
j C′

kC′∗
l . (75)

TabTa′b′ is thus the sum of all combinations coupling two amplitudes of the
ab channel and two of the a′b′ channel. Figure 6 shows a typical term of the
sum (75). In the figure, two amplitudes (C1 and C2) that belong to the ab
channel, are coupled to two amplitudes (C3 and C4) of the a′b′ channel. These
four amplitudes have no further restrictions so far.

We now use the more explicit form of the amplitudes and have

TabTa′b′ =
4πρ2

cI0S

∑

i,j,k,l

AiA
∗
jA

′
kA

′∗
l e

ik(Li−Lj+Lk−Ll) . (76)

Upon disorder-averaging, all terms in (76) containing non-vanishing phase
factors average to zero, as explained previously. This leaves two kinds of
terms contributing to TabTa′b′ , that survive the disorder averaging. The first
kind couples amplitudes of the same channel to cancel the phase factors in
(76), namely, i = j and k = l (Figure 7(a)). This possibility of amplitudes
coupling includes, therefore, the set of all terms like |Ci|2|C′

k|2. But from (60),
this is just the product of the two averaged transmission coefficients. Written
in terms of the amplitudes C we thus have

T abT a′b′ =
∑

i,k

|Ci|2|C′
k|2 . (77)
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Figure 6: A typical contribution to TabTa′b′. The figure shows two arbitrary
amplitudes of the ab channel, coupled to two arbitrary amplitudes of the a′b′

channel. The solid and dashed lines correspond, respectively, to direct and
conjugate amplitudes.

The other possibility of amplitudes coupling, that survives the disorder
average in (76), is i = l and j = k, which also sets the phase difference to 0.
From (77) and the definition (71) it thus follows that,

Corr(aba′b′) =
∑

i,k

(CiC′∗
i )(C∗

kC′
k) . (78)

The contributions to the correlation function are therefore products of pairs
of amplitudes, where one of them belongs to one channel and the other be-
longs to the second channel, coupled in such a way that the total phase of
each pair is zero. This coupling scheme is shown in Figure 7(b). The figure
shows also that the contribution denoted symbolically as, e.g., CiC′∗

i , con-
sists of three parts: (i) before the first scattering event, (ii) between the first
and the last scattering events, and (iii) after the last scattering event. In
parts (i) and (iii), one can distinguish between amplitudes belonging to two
different channels, since they propagate along different directions. In part
(ii), on the other hand, if the scatterers are classical one cannot tell which
amplitude belongs to which channel. The mathematical description of part
(ii) of the propagation path is, therefore, the same as for the intensity T ,
but where the two amplitudes belong to different channels. It corresponds
to the propagation between the first and the last scattering events, and is
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Figure 7: (a) A typical contribution to T abT a′b′. Two amplitudes of the ab
channel are coupled together, as well as two amplitudes of the a′b′ channel.
(b) A typical contribution to the correlation function TabTa′b′ −T abT a′b′. The
coupling scheme involves one amplitude of the ab channel with one of the a′b′

channel.

represented by the Diffuson. For the correlation we are thus allowed to use
the same Diffuson function built for the average intensity in the previous
section. We emphasize, that when the scatterers have internal degrees of
freedom interacting with light (e.g. atoms), the two amplitudes are gener-
ally distinguishable even in part (ii), where the directions of incidence and
emergence are irrelevant. This is because light, when interacting with the
scatterers, changes their internal state. Therefore, two amplitudes belonging
to different channels experience generally different internal states of scatter-
ers, even if they correspond to the same scattering path. This point is crucial
when atomic scatterers will be discussed in Chapter 5.

We now write (78) as

Corr(aba′b′) =

(
∑

i

CiC′∗
i

)2

(79)

which states that this function may be expressed as the square of a term,
similar in form to the average transmission coefficient, which is defined as

T (c)

aba′b′ =
∑

i

CiC′∗
i (80)

where the superscript c denotes the fact, that it is related to the correlation

and not to the usual intensity. T (c)

aba′b′ is almost formally identical to T ab or
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T a′b′ , except that it should contain an additional phase factor due to the fact
that a and a′, as well as b and b′, correspond to generally different directions.
Since we have assumed the incoming beam to be a plane wave, and using the
form (64), this phase factor is exp[ik(a · r − b · r′)], where a (b) is defined

as the vector difference sa − sa′ (sb − sb′). Apart from this phase, T (c)

aba′b′ is
described similarly to T ab and T a′b′ . Thus, following (65)

Corr(aba′b′) =

(
1

(4π)2S

∫

drdr′eik(a·r−b·r′)e−z/le−(L−z′)/lD(r, r′)

)2

. (81)

As for the average transmission, because of the translation invariance in the
XY plane, D(r, r′) depends actually only on R⊥, z, and z′. Integrating over
z and z′ yields (see (66))

Corr(aba′b′) =

(
l2

(4π)2
δa,b

∫

S

dR⊥e
ikR⊥·aD(R⊥, l, L− l)

)2

(82)

or

Corr(aba′b′) =

(
l2

(4π)2
δa,bD(q, l, L− l)

)2

(83)

where the Fourier variable q is equal to ka. From (50) of Chapter 2 we have
(γ = 0, q = |q|)

D(q, l, L− l) =
4πc

Dl2
sinh2(ql)

q sinh(qL)
. (84)

As before, we assume that the angles of incidence and emergence of the
beams do not differ appreciably from the Z axis. Quantitatively we set
ql ≪ 1, leading to

D(q, l, L− l) =
4πc

D

q

sinh(qL)
(ql ≪ 1) (85)

from which

Corr(aba′b′) = δa,b

(
3

4π

ql

sinh(qL)

)2

(86)

Finally, using (69) and the definition (70) we obtain

Caba′b′ = δa,b

(
qL

sinh(qL)

)2

(87)
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We have thus found the transmitted intensity correlation function of a
speckle. It is seen from the δ-function on the r.h.s of (87), that the correlation
is nonzero only when the relative angle of incidence is equal to the relative
angle of emergence. This is the memory effect [22], and it means that the
outgoing beams “remember” the incoming beams directions, even though
each of them underwent many scattering events. Consequently, if one keeps
fixed the direction of incidence of one beam (say of the ab channel), while
altering slowly the direction of incidence corresponding to the other channel,
the speckle pattern of the transmitted light will be also changed accordingly.

For q = 0, that is for sa = sa′ and sb = sb′, we obtain the transmitted
intensity fluctuation

Cabab = 1 (88)

or, with the help of (72),

T 2
ab = 2T 2

ab (89)

The result (89) (or (88)) is the Rayleigh law fluctuation. It states that the
root mean square fluctuation is of the same order as the average transmitted
intensity.

As discussed previously, the correlation function Caba′b′ calculated above
is actually only the zeroth order of a perturbation series. The next orders
correspond to the number of times the two Diffusons are allowed to cross
each other. In the literature, the above correlation function is often de-
noted by C(1). The correlation function that takes into account up to one
crossing is denoted by C(2), up to two crossings by C(3), etc. When one is
interested only in the correlation between single channels, as for Caba′b′, the
zeroth order dominates and the contributions of C(2), C(3) etc. are negligible.

3.4 Temporal correlation of the transmitted intensity

The temporal intensity correlation of the transmitted intensity, is defined
and calculated in complete analogy with the angular correlation. Instead of
(70) we now have the definition

C(T ) =
Corr(T )

T (t)T (t+ T )
(90)

with
Corr(T ) = T (t)T (t+ T ) − T (t)T (t+ T ) (91)
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where · · · denotes an average over the initial time t. In (90), the transmission
coefficients at two different times, t and t+T , are playing the role of the two
different channels, ab and a′b′, in the angular correlation function. Due to the
ergodic theorem, which is assumed to be applicable here, we can replace the
average over the time t by a disorder average. It will moreover be assumed
that the average transmitted intensity does not depend on time. Therefore,
(90) becomes

C(T ) =
T (0)T (T )

T 2 − 1 (92)

since Corr(T ) = T (0)T (T )−T 2
. Here T is the average transmitted intensity

at any time. In the literature, one uses also the degree of second order
coherence, g(2)(T ), which is defined as

g(2)(T ) ≡ T (0)T (T )

T 2 = C(T ) + 1 (93)

The value g(2)(T → 0) (and thus of C(T → 0)) is the fluctuation of the
light intensity at a certain observation point. In the case of angular correla-
tion, this is analogous to setting a = a′ and b = b′, which will be discussed
extensively later in this work.

r

0

r1(T)

r1(0)

k0

k1

kN

rN(T)

rN(0)

kn-1

rn(T)

rn(0)

kn

Figure 8: Dephasing due to the motion of scatterers. Between t = 0 and t = T
the scatterers move randomly, and move from ri(0) to ri(T ). The amplitudes
at t = 0 and at t = T , although corresponding to the same scatterers, have a
random phase difference between them.

When the multiply scattered light can be treated within the diffusion
approximation, the temporal correlation function can be a direct measure of
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the motion of the scatterers, a method known as diffusing wave spectroscopy
[14]. To understand why it is so, we first note that, as in (78)

Corr(T ) =
∑

i,k

(Ci(0)Ci(T )∗) (Ck(0)∗Ck(T )) (94)

where the amplitudes Ci are defined in (73). In other words, the contribu-
tions to the temporal correlation are made of pairs of coupled amplitudes,
each belongs to a different time (0 or T ). These contributions are maximal
when the phase difference between pairs like Ci(0)Ci(T ) is zero (constructive
interference). But, when the motion of scatterers is taken into account, and
if T is larger than 0, a random phase difference occurs between two such
coupled amplitudes (see Figure 8), because the motion of the scatterers is
random. It is a source of dephasing, namely a randomization of the phase
difference between amplitudes like Ci(0) and Ci(T ). When this random phase
difference becomes comparable to π, the products Ci(0)Ci(T ) vanish upon
disorder average. The rate of decrease of C(T ) depends, therefore, on the
following factors: first, the mean free path of the light inside the medium,
l, and the size of the slab, L, both determine the order of magnitude of the
number of scattering events the light undergoes; and second, the time scale
τb, over which the scatterers move from their original position a distance
comparable to the light wavelength λ = 2π/k. Assuming that the motion of
scatterers is Brownian, with a diffusion coefficient Db, this time scale can be
evaluated using the relation (see (41) of Chapter 2) λ2 ∼ 6Dbτb, leading to
τb ∼ 1/Dbk

2. A more careful calculation, however, gives the value

τb =
1

4Dbk2
(95)

In experiments such as [11, 23], where the scatterers were classical submicron
spheres in suspensions, τb was of the order of 10−3s, much longer than the
typical time for a multiple scattering path (about 10−11s).

The temporal correlation is calculated in exactly the same manner as the
angular correlation, the only difference between them is the fact that one
labels the two “channels” by 0 and T instead of ab and a′b′. The result is

C(T ) =

(
L/Lγ(T )

sinh(L/Lγ(T ))

)2

(96)

with

Lγ(T ) =

√

2Dlτb
cT

(97)
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Taking the limit T → 0 we obtain for the intensity fluctuation, again, the
Rayleigh law

C(0) = 1 (98)

In terms of the degree of second order coherence, the Rayleigh law is given
by

g(2)(0) = 2 . (99)

Note that the incoming beam is assumed to be a plane wave, for which it is
well known [24] that g(2)(0) = 1. The transmission through the disordered
medium thus increases the fluctuations of the light. In terms of photon statis-
tics, if the incoming plane wave was to fall onto a detector before passing
through the random medium, the photons would be counted randomly, with
no correlation between two photon counts. This is a property of a coherent
plane wave when described quantum mechanically. On the other hand, after
being transmitted through the random medium, the fact that g(2)(0) > 1
indicates that the photons are bunched. This means that there is a positive
correlation among photon arrivals: counting a photon increases the probabil-
ity to count another photon immediately afterwards. The photon bunching,
or more explicitly the fluctuation value g(2)(0) = 2, is a characteristic of the
so-called chaotic light, an example of which is the light coming from the sun.
The fact that the disorder of the scattering medium increases the transmit-
ted light fluctuations was experimentally observed (i.e. [11]). It raises the
following question: if we somehow increase the disorder, will the fluctuations
be enhanced? As we shall see, if one adds additional random degrees of
freedom to the system, e.g. if the scatterers possess internal structure, the
transmitted intensity fluctuations indeed become larger than the Rayleigh
law.

Finally, in the definition (90) it was assumed that the light at all times
corresponds to one channel, i.e., to certain directions of incidence and emer-
gence that do not change with time. Rather, one may define a combined
version of the angular and temporal correlation functions, allowing for the
light at t = 0 and at t = T to belong to different channels, namely

Caba′b′(T ) =
Tab(0)Ta′b′(T )

T ab(0)T a′b′(T )
− 1 . (100)

This is the correlation between two different channels at two different times.
Again, the calculation is formally identical to that presented in Section 3.3,
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and gives

Caba′b′(T ) = δa,b

(
L/L

sinh(L/L)

)2

(101)

with L−1 =
√

q2 + 1/L2
γ and q, a, and b defined as in Section 3.3. This

result is indeed a combination of (87) and (96).
In this chapter we have obtained the angular and temporal correlation

functions for the case of classical scatterers, which will be referred to as the
classical case. We have seen that both correlation functions have a maximal
value (for q = 0 and for T = 0) which corresponds to the Rayleigh law. This
result is due to the existence of certain cross terms that contribute to the
correlation, but not to the average intensity. In the following we show, that
for scatterers with internal degrees of freedom, there are much more such
cross terms, and the correlation is enhanced relative to the classical case.
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CHAPTER 4

Scattering of photons by atoms

The purpose of this chapter is to survey some characteristics of the scat-
tering of photons by atoms. This is a wide field, and we do not present here
a comprehensive description. Rather, we describe only the essential theory
and results, needed for later purposes.

We begin by discussing the Hamiltonian describing the interaction be-
tween light and matter. Then, in Section 4.2, a general quantum mechanical
expression for the scattering cross section of light by atoms is given. In
Section 4.3, the important case of resonant scattering is addressed, and in
Section 4.4 the Wigner-Eckart theorem is discussed. Finally, in Section 4.5
we dwell on the question of “which path” information.

4.1 The Hamiltonian

The Hamiltonian of a spinless particle of charge e and mass µ, interacting
with an electromagnetic field, is given by [25]

H =
1

2µ
(P− eA)2 + eφ+ Φ (102)

where P is the quantum mechanical operator of the particle momentum, A

and φ are, respectively, the vector and scalar potentials of the electromagnetic
field, and Φ is any other potential to which the particle is subjected. These
quantities generally depend on time and position which, for convenience, are
not explicitly shown. Because of the gauge invariance of the field, one can
always choose the vector potential such that [26]

∇ · A = 0 (103)

When this property is satisfied, the field is said to be in the Coulomb gauge. It
can be easily shown [27] that within the Coulomb gauge, P and A commute,
namely

[P,A] = 0 (Coulomb gauge) (104)

which makes it possible to write the Hamiltonian as

H =
1

2µ
P2 +

e

µ
P · A +

e2

2µ
A2 + eφ + Φ ≡ H0 + V (105)
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Here the unperturbed Hamiltonian is H0 = P2/2m+ Φ, and V = e
µ
P · A +

e2

2µ
A2 is the interaction term.

Another important property of the Coulomb gauge [24], is that the vector
potential is solely responsible for the transverse fields, which correspond to
the electromagnetic waves. In the Coulomb gauge, the scalar potential de-
scribes only the electrostatic part of the fields, and thus does not contribute
to the radiation of electromagnetic energy. Since we are interested in the in-
teraction of the particle with the electromagnetic radiation, and not with the
electric charges that create it, it can be assumed that the particle described
by the Hamiltonian (105) is far enough from these charges, so that the term
eφ is negligible. Moreover, in the limit of weak electromagnetic field, it is
legitimate to retain only the first order term in the vector potential, and thus
the interaction Hamiltonian between the particle and the field, V , is reduced
to

V =
e

µ
P ·A . (106)

In the interaction process of light with atoms, the particle (atomic elec-
tron) is bound to some region of space of dimension comparable to the Bohr
radius a0 = ~/me2 ≃ 0.5 × 10−10m. In the long wavelength approximation,
one assumes that the wavelength λ of the electromagnetic wave is much larger
than a0. This is the case, for example, for visible light where λ/a0 ∼ 103.
Within this approximation, one can neglect the spatial variation of the field
felt by the atomic electron, and consider it as being spatially uniform but still
time dependent. Under these conditions, one can transform the interaction
Hamiltonian (106) into the equivalent form

V = −d · E (long wavelength) . (107)

Here E = −∂A/∂t is the electric field of the radiation, and d = er is the
electric dipole operator of the atomic electron (r is its position). The equiva-
lence of (106) and (107), within the long wavelength approximation, is shown
[27] using the unitary transformation T = e−(i/~)(d·A⊥(0)), where and A⊥ is
the transverse part of the vector potential A.

The total Hamiltonian becomes

H = H0 − d · E (108)

This Hamiltonian, sometimes called the electric dipole Hamiltonian, is use-
ful in many cases where light and atoms interact. It is noted that to this
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approximation, the magnetic field corresponding to the radiation does not
appear. This is the reason for the neglect of the electron spin.

4.2 The quantum mechanical description of light scattering

When the electromagnetic field is quantized, the electric field operator is
given by [28]

E(r, t) =
∑

j

i

√

~ωj

2ε0L3

(

ajeje
i(kj ·r−ωjt) − a†je

∗
je

−i(kj ·r−ωjt)
)

. (109)

Here j denotes an eigenmode of the quantized field, aj and a†j are, respec-
tively, the destruction and creation operators of the mode j, ej is the unit
polarization vector of the mode j, kj is its wave vector, and L3 is the quanti-
zation volume. The quantization of the electromagnetic field appears in (109)
through the operators aj and a†j which, when operate on a number state of
the field, destroys and creates, respectively, one photon of the corresponding
mode j.

The scattering of a photon in the mode i by an atom, is described as a
transition from some initial state of the system “atom+photons”

|I〉 = |1, ni = 1, 0〉 (110)

to some final state
|F 〉 = |2, ns = 1, 0〉 . (111)

This notation expresses that in the state |I〉, the atom is in its level |1〉,
while the radiation field contains one photon in mode i, and zero photons in
any other mode. In the state |F 〉, the atom has moved to the level |2〉 as a
result of the interaction with the radiation, the initial photon of the mode i
has disappeared, and a new scattered photon, of some mode s, has appeared.
The scattering is therefore said to be a two-photon process. This transition is
caused by the interaction (107). Energy conservation imposes the constraint

EI ≡ E1 + ~ωi = E2 + ~ωs ≡ EF (112)

where E1 and E2 are, respectively, the energy of the atom in levels |1〉 and
|2〉.
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We are interested in the transition amplitude between |I〉 and |F 〉. From
(107) and (109) we see, however, that to first order in the interaction V one
obtains

T1 ≡ 〈F |V |I〉 = 0 . (113)

This result is due to the fact, that the transition |I〉 → |F 〉 involves one
photon that is destroyed, and another one which is created. Mathematically,
we thus need the combination a†sai to appear in between the ket |I〉 and
the bra 〈F |, in order to make the transition amplitude nonzero. However,
this combination of creation and destruction operators is not possible to first
order in V , hence (113).

In order to describe a scattering process to the lowest order in V , we there-
fore have to consider the second order, for which the transition amplitude is
given by [27]

T2 ≡
∑

M

〈F |V |M〉〈M |V |I〉
EI − EM

(114)

where |M〉 accounts for any state in the relevant space of the “atom+radiation”
system, EI = E1 + ~ωi, and EM is the energy of the state |M〉. Concern-
ing the photons, two kinds of intermediate states are possible, for which
〈F |V |M〉〈M |V |I〉 is nonzero: one is |M〉 ≡ |m, 0, 0〉, the second one is
|M ′〉 ≡ |m′, 1, 1〉. The first possibility corresponds to an initially absorbed
photon of the mode i, inducing an atomic transition to the state |m〉, and
then emission of a scattered photon of the mode s. The second possibility de-
scribes the emission of a photon of the mode s, leaving the atom in the state
|m′〉, followed by the absorption of the photon from the mode i. The energies
of these intermediate states are Em for the first kind, and Em′ + ~ωi + ~ωs

for the second kind, where Em and Em′ are the energies of the atom in the
states |m〉 and |m′〉, respectively. The total transition amplitude is obtained
by adding these two contributions, namely,

T2 =
∑

M

〈F |V |M〉〈M |V |I〉
E1 −Em + ~ωi

+
∑

M ′

〈F |V |M ′〉〈M ′|V |I〉
E2 −Em − ~ωi

(115)

where (112) has been used in the denominator of the last term on the r.h.s.
This is the total transition amplitude, up to second order, between |I〉 and
|F 〉. Using the Fermi golden rule

WFI =
2π

~
|T2|2ρ(~ωs) (116)
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we obtain the transition rate WFI , i.e., the transition probability per unit
time between the two states |I〉 and |F 〉. ρ(E) is the density of states at the
energy E of the scattered photon. It is given by [27]

ρ(E) = E2

(
L

2π~c

)3

. (117)

The differential scattering cross section, dσ/dΩ, is defined by the ratio of
the transition rate WFI to the incident flux of photons f = c/L3 so that

dσ

dΩ
≡ WFI

f
=

L6ω2
s

(2π~)2c4
|T2|2 . (118)

Using in (115) the explicit form of V , with the help of (107) and (109), and
substituting in (118), yields the Kramers-Heisenberg cross section [28]

dσ

dΩ
= r2

0ωiω
3
sµ

2

∣
∣
∣
∣
∣

∑

m

[〈2|r · es|m〉〈m|r · ei|1〉
E1 − Em + ~ωi

+
〈2|r · ei|m〉〈m|r · es|1〉

E2 − Em − ~ωi

]
∣
∣
∣
∣
∣

2

(119)
with the classical radius of the electron r0 = e2/4πε0µc

2, and where |m〉
denotes any internal atomic level with energy Em. The Kramers-Heisenberg
formula (119) is the general quantum mechanical expression, to lowest order
in V , for the differential scattering cross section of a photon by an atom.

We now consider a very important limiting case of (119), in which the
incoming photon energy is resonant with some atomic transition.

4.3 Resonant scattering

From now on, atoms will be modeled as degenerate two level systems, so
that (Figure 9) there are only two possible atomic energy states, a ground
state |g〉 of energy Eg, and an excited state |e〉 of energy Ee, where Ee > Eg.
These states may be Zeeman degenerate. Hereafter we shall use the term
“state” for a set of Zeeman levels corresponding to the same energy in the
absence of an external magnetic field. These states are characterized by some
definite value of total angular momentum, that we denote by jg and je for the
ground and excited states, respectively, where the total angular momenta of
the two states are ~

√

jg(jg + 1) and ~
√

je(je + 1). The quantum numbers jg
and je may generally correspond to a merely orbital angular momenta, orbital
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+ electronic spin angular momenta (fine structure), or orbital + electronic
and nuclear spin angular momenta (hyperfine structure). We will usually
assume that je = jg + 1, which is an allowed electric dipole transition [25].
The ground and excited energy states are therefore composed of 2jg + 1 and
2je + 1 Zeeman sublevels, respectively, which will be often referred to as just
“levels”. These levels are characterized by a magnetic quantum numbers,
which correspond to the Z component of the total angular momentum. In
the following we will use the notation |mi〉 and |m′

i〉 to denote the ground
state Zeeman levels, where −jg ≤ mi, m

′
i ≤ jg, and |Mi〉 and |M ′

i〉 for the
excited state Zeeman levels with −je ≤Mi,M

′
i ≤ je (i = 1, 2, ...). In reality,

the atom have additional energy states with energies other than Eg and Ee.
However, for an incoming light that is resonant with the transition |g〉 ↔ |e〉,
and when other possible atomic transitions are far from resonance with the
light, the atom is well approximated by such a two states system.

me

m1 m4

�me

je

h�'

m1 m2

j �
Figure 9: A two level atom. jg and je are, respectively, the total angular
momentum quantum numbers of the ground and the excited atomic states (in
this picture jg = 1 and je = 2). mi and me, m

′
e are the Zeeman magnetic

quantum numbers of the two states. Γ is the natural width of the excited
state, while the ground state is assumed to be stable. The energy difference
~ω between the two states is resonant with the incident photon. In this figure
two Raman processes are shown.

With the above description of the atom, the scattering process occurs
as follows. An atom is initially in a ground level |m1〉. From the electric
dipole selection rules we know that the intermediate levels are excited states
|Mi〉. This is because the quantum numbers, jg and je, correspond to a
certain value of the orbital angular momentum l. Since the electric dipole
selection rules impose ∆l = ±1 (to have nonzero matrix elements in (119)),
the intermediate levels |m〉 must be an excited state sublevels, given that |1〉
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and |2〉 belong to the ground state. Assuming the atom is in the ground level
|m2〉 after scattering, two kinds of processes are considered. If |m1〉 = |m2〉
the process is called Rayleigh scattering. For a degenerate ground state,
however, a Raman scattering, for which |m1〉 6= |m2〉, may take place. For a
two states atom, thus, the Kramers-Heisenberg cross section becomes

dσ

dΩ
= r2

0ωiω
3
sµ

2

∣
∣
∣
∣
∣

∑

i

[〈m2|r · es|Mi〉〈Mi|r · ei|m1〉
Eg −Ee + ~ωi

+
〈m2|r · ei|Mi〉〈Mi|r · es|m1〉

Eg − Ee − ~ωi

]
∣
∣
∣
∣
∣

2

.

(120)
We note that the notation used here is a shorthand. For example, what is
meant by 〈m2|r · es|Mi〉, is actually 〈jg, m2|r · es|je,Mi〉. As already men-
tioned, the notation |mi〉 will always mean |jg, mi〉, and |Mi〉 ≡ |je,Mi〉

In a resonant scattering process, considered hereafter, ~ωi ≃ Ee − Eg.
One can see immediately that in this case, the second term in the r.h.s of
(120) becomes negligible compared to the first one, because of the values
of their denominators. Then, we can approximate the differential scattering
cross section by

dσ

dΩ
= r2

0ωiω
3
sµ

2

∣
∣
∣
∣
∣

∑

i

〈m2|r · es|Mi〉〈Mi|r · ei|m1〉
Eg − Ee + ~ωi

∣
∣
∣
∣
∣

2

(near resonance) .

(121)
Thus, the process that contributes to the resonant cross section is the one,
in which the incoming photon is first absorbed in the atom, initially in a
ground level, and then the scattered photon is emitted, leaving the atom in
another ground level.

A problem occurs, however, in the case of exact resonance ~ωi = Ee−Eg,
where it seems that the cross section (121) diverges. This spurious diver-
gence is due to our neglect of spontaneous emission from |e〉 to |g〉. Such a
divergence occurs also in the classical description of the interaction between
an “atom” and electromagnetic radiation [26]. In this case, the atomic elec-
tron is bound to the atomic nucleus by a harmonic force. An electromagnetic
wave of frequency ω then forces the electron to oscillate in this frequency. If
ω is equal to the natural oscillator frequency of the electron due to the nu-
cleus, the “atom” absorbs more and more energy from the field. The amount
of energy that can be absorbed is unlimited, leading to a divergence. To
remedy this, one should take into account damping processes of the atom’s
energy. Still in the classical picture, this damping exists because the oscillat-
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ing electron radiates as a result of its electric charge, a process which reduces
its energy and thus balances the energy absorption.

In the quantum picture, the role of the damping mechanism is played
by the spontaneous emission from |e〉 to |g〉, which also makes the atom to
lose energy. Due to the spontaneous emission, the excited state |e〉 has some
lifetime 1/Γ, where Γ is the natural width of this state. The physical meaning
of this lifetime is that the probability of finding the atom in the state |e〉,
assuming it was excited at t = 0, decreases as e−Γt, according to the well
known Wigner-Weisskopf model. Generally, the ground state |g〉 might also
possess a lifetime, 1/Γg, due to spontaneous emission toward lower energy
states. We will however assume, throughout this work, that 1/Γg → ∞,
meaning that |g〉 is stable.

Such an exponential decrease is equivalent to modifying the energy Ee by
adding to it the imaginary value −i~Γ/2, namely

Ee → Ee − i
~Γ

2
. (122)

Then, the time evolution of |e〉 is governed by the exponential e−iEet/~−Γt/2,
and the probability to find the atom in the excited state |e〉 at time t behaves
like

|e−iEet/~−Γt/2|2 = e−Γt . (123)

The cross section (121) then becomes

dσ

dΩ
= r2

0ωiω
3
sµ

2

∣
∣
∣
∣
∣

∑

i

〈m2|r · es|Mi〉〈Mi|r · ei|m1〉
Eg − Ee + ~ωi + i~Γ/2

∣
∣
∣
∣
∣

2

. (124)

To obtain this result in a more rigorous way, one should take into account
all orders in the perturbation V . As a result, the intermediate states are
no longer separated into atomic levels and photon states, but rather become
a continuum of combined states, that include all possible virtual emission-
absorption processes. This calculation is done, e.g., in [27]. The final result
is, however, the same as (124).

The properties of the scattered light, called resonance fluorescence, de-
pend upon the incoming beam. When the incoming wave is monochromatic,
as is assumed here, the scattered light is also monochromatic with the same
frequency [27], that is ωi = ωs ≡ ω. Moreover, it can be shown [29] that the
emitted radiation is coherent with the incident radiation. This means that
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there is a definite, i.e. non-random, phase difference between the incoming
and scattered beams. In this sense, therefore, resonant scattering cannot be
viewed as a simple two-photon case, in which one photon is absorbed and
then another one is emitted. This is because in the latter case, the phase
difference between the incoming and the scattered light would be random
due to the uncertainty in the exact instant of emission.

There are cases in which we do not know what are the initial and final
sublevels, |m1〉 and |m2〉, of the atom. According to quantum mechanics,
one has then to sum over all possible final states and to average over the
initial states. The averaging procedure requires information about the dis-
tribution of initial sublevels in the atom. In other words, we have to know
the quantum state of the atom before the scattering has taken place. Often,
the atom is not in a pure state but in some statistical mixture, so that what
is needed is its initial density matrix. In the case we consider, there are
no pumping mechanisms that can affect this density matrix. Therefore, we
assume equipartition of all initial sublevels, namely, a scalar density matrix.
Since the number of possible initial levels is J ≡ 2jg + 1, the probability of
each sublevel to be occupied before the atom has interacted with the light, is
1/J . At resonance ~ω = Ee − Eg, therefore, the differential scattering cross
section (124) is

dσ

dΩ
=

F
J

∑

j,k

∣
∣
∣
∣
∣

∑

i

〈mk|d · es|Mi〉〈Mi|d · ei|mj〉
∣
∣
∣
∣
∣

2

(125)

with d = er and F = (2ω2/4πε0c
2
~Γ)2

We may calculate from (125) the averaged total cross section toward all
scattering directions and polarizations. The word “averaged” corresponds
to the averaging over initial sublevels of the atom. For exact resonance
~ωi = Ee − Eg, the result is [2]

〈σ〉 =
3λ2

2π
ajgje

(126)

with

ajgje
≡ 1

3

2je + 1

2jg + 1
. (127)
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4.4 The Wigner-Eckart theorem

A useful relation for the calculation of matrix elements like in (125), is
the Wigner-Eckart theorem, which states that [30]

〈jgm|vp|jeM〉 = (−)jg−m〈jg||v||je〉
(

jg 1 je
−m p M

)

. (128)

Here v is some vector and the vp’s (p = −1, 0, 1) are its spherical components
defined as

v0 = vz , v±1 = ∓ 1√
2
(vx ± ivy) (129)

with vx, vy, vz being the cartesean components of v. As before, (jg,m) and
(je,M) are the quantum numbers corresponding to the total angular mo-
mentum and its Z component, related to the ground and excited states,
respectively. The scalar 〈jg||v||je〉 depends only on v, jg, and je, and is
called a reduced matrix element. It corresponds to the radial (as opposed to
the angular) part of the spatial integration in 〈jgm|vp|jeM〉. Since, given jg,
je, and v, the reduced matrix element is constant, it is not essential in our
case, in which jg and je are some given parameters. It will cancel out in the
expression for the normalized correlation. The last term in the r.h.s of (128)
is a 3j symbol, related to Clebsch-Gordan coefficients by definition as

(
jg k je
−m p M

)

=
(−)jg−k−M

√
2je + 1

〈jg, k,−m, p|je,−M〉 (130)

where 〈jg, k,−m, p|je,−M〉 is the Clebsch-Gordan coefficient corresponding
to the addition of two angular momenta, given by the quantum numbers
jg and k. It is the coefficient of the vector state |je,−M〉, in the expan-
sion of the separate angular momenta vector state |jg, k,−m, p〉 (p is the
Z-component quantum number that corresponds to k), in the total angular
momentum basis. The 3j-symbol describes the angular part of the matrix
element 〈jgm|vp|jeM〉, and as such it corresponds to the polarization prop-
erties of the incoming and outgoing radiation. In particular, the 3j-symbol
in (130) is zero, unless

M = m− p . (131)

This selection rule constitutes the interplay between photons polarization and
atomic angular momenta. To show this, we now apply the Wigner-Eckart
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theorem to the matrix elements in (125). But first, we define the spherical
basis unit vectors according to

σ0 = ẑ , σ±1 = ∓ 1√
2
(x̂± iŷ) (132)

where x̂, ŷ, and ẑ are the unit vectors along the X, Y , and Z axis, respec-
tively. σ±1 are the left and right circular polarization unit vectors in the XY
plane, while σ0 is a Z-directed linear polarization unit vector.

Suppose now that ei = σ1, namely, that the incoming beam is left cir-
cularly polarized. Then, referring to the matrix element in (125) and using
(128) we find

〈Mi|d · ei|mj〉 = 〈Mi|d1|mj〉 = (−)je−Mi〈je||v||jg〉
(

je 1 jg
−Mi 1 mj

)

.

(133)
This matrix element describes the absorption part of the scattering process,
namely, a photon which is σ1 polarized is absorbed by the atom initially in
the |mj〉 level of the ground state. The absorption of the photon excites the
atom to the |Mi〉 sublevel. The selection rule (131) then gives

Mi = mj + 1 . (134)

Since a photon with a circular polarization σ1 carries one unit (~) of angular
momentum along the Z-axis [31], the last relation is readily interpreted as
follows: before the scattering process, the Z-component angular momentum
of the atom was mj~, while for the photon it was ~. After the photon has
been absorbed, it gave its angular momentum to the atom, which is then left
with an angular momentum ~Mi along Z. (134) therefore simply expresses
conservation of angular momentum along the quantization-axis Z. It exhibits
the connection between the incoming and scattered photons polarization,
and the corresponding atomic transition. The conservation of total angular
momentum requires that

|jg − 1| ≤ je ≤ jg + 1 (135)

which complies with our default choice je = jg + 1.
Other properties of the 3j-symbols are [32]:

(
j1 j2 j3
m1 m2 m3

)

(136)
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is:
(i) invariant in a circular permutation of the three columns;
(ii) multiplied by (−)j1+j2+j3 in a permutation of two columns;
(iii) multiplied by (−)j1+j2+j3 when changing simultaneously the signs of

m1, m2, and m3.
(iv) Orthogonality:

j1∑

m1=−j1

j2∑

m2=−j2

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j′3
m1 m2 m′

3

)

=
1

2j3 + 1
δj3j′3

δm3m′

3

j1+j2∑

j3=|j1−j2|

j3∑

m3=−j3

(2j3 + 1)

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
m′

1 m′
2 m3

)

= δm1m′

1
δm2m′

2
.(137)

4.5 “Which path” information

Interference effects play an important role in this work, because a speckle
is an interference picture. Interference occurs when a system evolves between
some initial state and some final state through several possible intermediate
states, provided that one cannot detect the specific intermediate state of the
system. As a result, the system evolves through several intermediate states
simultaneously, giving rise to a superposition of a few “paths”. A knowledge
about the intermediate state of a system is termed “which path” information,
and is expected to reduce, and/or eliminate, the interference pattern.

The simplest example of interference is the Young interferometer which
consists of a coherent light beam, shined on an opaque screen having two
slits. The light then falls on a second screen and forms a fringe pattern. In
the classical version of this experiment, in which the light is scattered merely
by the two slits and no additional detectors are present, apart from the one
used for measuring the intensity pattern on the second screen, there is no
“which path” information and the interference effect is maximal. A measure
for the “amount of interference” in the fringes pattern is given by the visibility
at the center of the second screen, defined as (Imax − Imin)/(Imax + Imin).
Here Imax is the intensity at the center of the brightest fringe, and Imin is the
intensity at the center of the closest dark fringe. If there is no “which path”
information, the visibility v equals 1, disregarding experimental imperfections
and technical limitations.
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Itano et.al. [33] have performed a Young-like experiment with two atoms
instead of the original two slits. The intensity pattern of the light scattered
by the two atoms has been measured. In the experiment, two Mercury atoms
(actually ions) have been placed using a trap built out of a combination of
static and rf electric fields (Paul trap). These ions were illuminated by a
linearly polarized CW beam, nearly resonant with the 194nm transition be-
tween the levels 2S1/2 and 2P1/2 of the n = 6 atomic shell. The relevant tran-
sition is thus Zeeman degenerate, since both the ground and excited states
possess a total angular momentum jg, je = 1/2 and therefore are both two-
fold degenerate. Assuming that the ions are initially in their ground state,
the light scattering induces transitions during which the ions are excited and
then relax back to their ground states. Some of these transitions leave the
ion in the same ground state sublevel as the initial one before the scattering
(π transitions), while in the others the initial and final states of the ion are
different (σ transitions). Suppose that only one photon is scattered by the
system of two ions. Then, measuring the initial and final states of the ions
can provide information about the transitions that have actually took place.
If one finds that the ions stay in the same ground sublevels after scattering
(π case), then no information about the path of the light can be obtained
and a full interference effect (maximal visibility) is expected. However, if the
final state of one of the ions is found to be different than the initial (σ case),
it can be concluded that the photon has gone through that ion in his way to
the screen. If there is only one photon, and in the limit of a single scattering
(namely, the photon is assumed to be scattered only once), then one can be
sure that the photon has not interacted with the other ion in his way to the
screen. In this case, therefore, the interference pattern is expected to vanish.

The vanishing of the interference effect in the σ case is expected not only
when there is just one photon in the incoming light beam, but whenever the
incoming intensity is sufficiently weak so that the possibility of both ions
to be excited simultaneously is negligible. In other words, the photons are
assumed to be scattered one by one. In [33] this is specifically emphasized:
“The preceding analysis is valid only in the limit of low laser intensity, so
that the probability of both ions being excited at the same time is negligible...”.
This is readily understood in terms of “which path” information. Suppose,
for example, that two photons are simultaneously scattered by the ions, and
that one measures their initial and final states. Then, no matter what are
these states, the observer cannot determine which photon has gone through
which ion, because the photons are indistinguishable. To be more precise,
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let us assume that ion 1 has made the transition m1i = 1/2 → m1f = −1/2
(σ transition), and ion 2 has undergone the π transition m2i = 1/2 → m2f =
1/2. In the case of only one scattered photon, there is only one possible path
that connects the initial and final states, namely:

The photon was scattered by ion 1.

If, however, two photons (say a and b) are scattered simultaneously, the
same initial and final states may correspond to several different paths, such
as

(1) Photon a was scattered by ion 1 and photon b by ion 2.
(2) Photon b was scattered by ion 1 and photon a by ion 2.
(3) Both photons were scattered by ion 1.

etc. In the experiment [33], the low intensity limit has been considered.
The results clearly show that interference occurs in the π case, while in the
σ case it disappears.

In what follows we consider a classical light (e.g. a laser beam) that is
scattered in an atomic gas. In this case, many photons are being scattered
simultaneously within the cloud of atoms, and there is thus no “which path”
information, as is demonstrated in the above simple example. As a result,
there is an interference effect even in σ cases. In Chapters 5 and 6 it is shown,
that this interference effect plays a central role in the scattered intensity
correlation.

In this chapter we have considered the elementary theory of the interac-
tion between photons and atoms. We have obtained the general quantum
mechanical scattering cross section of a photon by an atom, and also the
cross section for the specific case of resonant scattering. Finally, the subject
of “which path” information has been addressed, and we explained why it is
not relevant in our situation.
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CHAPTER 5

Intensity correlations of the multiply
scattered light in an atomic gas

In this chapter we calculate the transmitted intensity correlation of a
speckle pattern, obtained from scattering by atoms. Atoms will be assumed
to be degenerate two level systems as described in Section 4.3. The main
difference between classical and atomic scatterers is the internal structure,
namely, the possibility of a Zeeman degeneracy of the atomic levels. In this
sense, as we shall see, atoms heaving a non-degenerate (jg = 0) ground state
may be interpreted as if they were classical scatterers. Thus, what distin-
guishes quantum from classical scatterers in this context, is the degeneracy
of the atomic ground state: if it is degenerate - the scatterers are quantum,
if it is not - they are classical. The experimental reference setup is the same
as in Chapter 3.

The exact species of atoms used in the experiment is not important to
the following analysis, as long as a few general assumptions are fulfilled:

(i) The atoms are cold enough so that the theory presented in Chapters 2
and 3 is valid.

(ii) There is one atomic transition that is resonant with the incident light,
the other transitions are far from this resonance. This allows us to treat the
atoms as two level systems.

(iii) The wavelength of the light is long compared to the atomic size, so that
the long wavelength approximation mentioned in Chapter 4 can be used.

These conditions are quite standard in experiments, involving the multiple
scattering of light in an atomic sample. In [18], for example, Rubidium
atoms have been used. The light wavelength is λ = 780nm, and the total
angular momenta of the only two states resonant with the light (criterion
(ii)) are jg = 3 and je = 4. The temperature of the sample is below 0.25K,
corresponding to an average atomic velocity of about v ≃ 0.1m/s. The elastic
mean free path is about l ≃ 0.7mm and the optical depth b ≃ 6. Criterion
(i) is thus fulfilled, using the following simple argument: the typical time a
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photon stays within the sample is b2l/c ∼ 10−10s. During this time the atoms
move a distance of about 10−11m, which is much smaller than λ. Criterion
(iii) is immediately seen to be satisfied since λ is much larger than the Bohr
radius.

We begin in Section 5.1 with presenting our ideas, at a general level, using
a simplified situation where only two atoms are present, and where photons
are scattered only once. In Section 5.2 we apply, still on a general ground,
these ideas to the multiple scattering regime. Section 5.3 deals with the
method used for actually calculating the correlation, and in Section 5.4 we
focus on the development of the single scattering contribution, from which
the multiple scattering series is built up. The results for the intensity corre-
lation, obtained using the methods of Sections 5.3 and 5.4, are presented in
Section 5.5. Finally, in Section 5.6 we show that our predictions are valid in
any physical system satisfying some basic conditions.

5.1 Single scattering

It is instructive to begin with the simple example of two atoms in the gas
“cloud”, and an incident “beam” containing only two photons of wave vector
ka. These two photons are scattered by the system of two atoms, and this
scattering is assumed to be simultaneous, meaning that there is no way by
which one can obtain the intermediate state of the system between individual
scattering events. This point is crucial, since it distinguishes our case from
others, in which the low intensity limit is assumed, thus excluding the situ-
ation of two photons scattered simultaneously off the atoms, as discussed in
Section 4.5. Regarding the atoms, one can only obtain their initial and final
states, i.e. the internal quantum states (in addition to the positions) before
and after the “beam” has interacted with them. Suppose that at t = 0,
before scattering has taken place, the atoms were in the Zeeman sublevels
|m1〉 and |m3〉, and after scattering they were in the |m2〉 and |m4〉 sublevels,
respectively. Since the scattering of the two photons happens simultaneously,
there is no way by which we could assign a given transition (say |m1〉 → |m2〉
of atom 1) to a certain photon. In other words, the fact that the two photons
are indistinguishable and that they were scattered simultaneously, makes any
“which path” information unavailable.

The mean number of photons scattered along kb is proportional to the
mean intensity scattered along this direction. In the case of only two photons
and two atoms, this quantity can be calculated explicitly using identical
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particles [25]. However, our main concern here is in the case where there
are very large numbers of photons and atoms, so that the exact calculation
is not possible. Therefore, we shall ask the following question: “if we had
picked one of the photons incoming along ka, what is the probability, Tab,
for this photon to be scattered along kb after scattering?”. Assuming a slab
geometry, the average scattered intensity along kb would be then Iab = I0Tab,
where I0 is the incident intensity, and Tab is the corresponding transmission
coefficient. Because there is no way by which one can tell whether the picked
photon has been scattered off one atom or another, we have to sum over both
scattering amplitudes, corresponding to the scattering off the two atoms, and
then square the sum to obtain Tab. This is correct provided we consider the
single scattering case, for which each atom scatters, at most, one photon.
Following the description of Chapter 4 we thus write

Tab = G|〈m2|U1|m1〉e−iQ·R1 + 〈m4|U2|m3〉e−iQ·R2|2 (138)

where G = F/S, S is the slab cross section and F has been defined after (125)
in Chapter 4. We have defined the operators Ui =

∑

M(di·e∗
b)|M〉〈M |(di·ea),

M being the Zeeman quantum numbers of the atomic excited state, Ri is the
position and di is the electric dipole moment of atom i, and Q = kb−ka. We
have also defined ea (eb) to be the incoming (scattered) photon’s polarization
unit vector, and assumed a purely resonant scattering.

If the atomic initial and final sublevels are unknown, and their positions
are random, the average transmission coefficient T ab is found by averag-
ing (138) both over the positions R1,2 and the initial quantum states |m1〉,
|m3〉. The summation over undetected final quantum states must also be
performed. Assuming k|R2 − R1| ≫ 1, the cross terms involving products
like e−iQ·R1eiQ·R2 vanish upon averaging over the positions of the atoms (dis-
order average) because of the rapidly fluctuating phase difference. Thus,
with J = 2jg + 1, we obtain

T ab =
G
J

∑

m1,2

|〈m2|U1|m1〉|2 +
G
J

∑

m3,4

|〈m4|U2|m3〉|2 . (139)

We now wish to find the (not normalized) correlation function between Tab

and Ta′b′, namely

Corr(aba′b′) = TabTa′b′ − T abT a′b′ . (140)
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Denoting A
{mm′}
i =

√
G〈m′|Ui|m〉e−iQ·Ri, we have
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∣
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1
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2

∣
∣
∣

2

. (141)

The expression for T a′b′ is similar to (141), except that the internal atomic
states are generally different, so that

T a′b′ =
1

J

∑

m′

1,2

∣
∣
∣A

{m′

1m′

2}
1
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∣
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2
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{m′
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4}
2

∣
∣
∣

2

. (142)

Note that the primes designate only the internal quantum numbers mi. This
is because the other degrees of freedom, namely the positions Ri, are assumed
to be the same for Tab and Ta′b′.

We may thus write

TabTa′b′ =
∣
∣
∣A

{m1m2}
1 + A

{m3m4}
2

∣
∣
∣

2 ∣
∣
∣A

{m′

1m′

2}
1 + A

{m′

3m′

4}
2

∣
∣
∣

2

(143)

which we now average to find Corr(aba′b′). We first notice that (143) contains
products of four amplitudes corresponding to all possible combinations of
internal and external degrees of freedom. Only products involving zero phase
difference survive the disorder average, the others, having rapidly fluctuating
phases, vanish on average leaving in the r.h.s of (143)

(

|A{m1m2}
1 |2 + |A∗{m3m4}

2 |2
)(

|A{m′

1m′

2}
1 |2 + |A∗{m′

3m′

4}
2 |2

)

+
(

A
{m1m2}
1 A

∗{m3m4}
2 A

∗{m′

1m′

2}
1 A

{m′

3m′

4}
2 + c.c.

)

. (144)

By averaging the first term of (144) over internal quantum numbers, we see
from (141) and (142) that it amounts to the product T abT a′b′ . Therefore,
using the definition (140) we find that

Corr(aba′b′) =
1

J4

∑

mi,m′

i

A
{m1m2}
1 A

∗{m′

1m′

2}
1

∑

mi,m′

i

A
∗{m3m4}
2 A

{m′

3m′

4}
2 + c.c.(145)

where the pre-factor 1/J4 results from averaging over initial internal states
of the atoms.
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We now write (145) in its explicit form, which is

Corr(aba′b′) =
G2

J4

∑

mi,m′

i

〈m2|U1|m1〉〈m′
2|U1|m′

1〉
∑

mi,m′

i

〈m4|U2|m3〉〈m′
4|U2|m′

3〉 + c.c.(146)

Looking at (139) and (146), we see that these quantities are composed of
certain building blocks, which we term vertices. For the average intensity
(139), this vertex is written as

V(i) =
G
J

∑

m1,2

|〈m2|U |m1〉|2 , (147)

while for the correlation (146) it is

V(c) =
G
J2

∑

m1,2,3,4

〈m2|U |m1〉〈m4|U |m3〉∗ . (148)

The vertex V(i), up to the factor 1/S, is identical to the differential cross sec-
tion (125) of Chapter 4, and thus have the same physical meaning. Similarly,
we interpret the correlation vertex V(c) as the analog of the intensity cross
section in the case of correlation. It is clearly not a real cross section, but
however it plays exactly the same formal role. What distinguishes these two
vertices, is that V(c) involves the coupling of two scattering amplitudes that
correspond to generally different Zeeman quantum numbers, while in the
intensity cross section V(i), these quantum numbers are identical for both
coupled amplitudes. These two kinds of vertices give rise to two different
Diffuson functions, as discussed in the next section.

For non-degenerate atomic states we have J = 1, and the two vertices
coincide. Therefore, focusing on the case a = a′, b = b′, we find

Corr(abab) = 2|A1|2|A2|2 (non-degenerate) (149)

using (145). Since the two atoms are identical, we have |A1|2 = |A2|2 ≡ |A|2
so that from (141)

T ab = 2|A|2 (non-degenerate) (150)

and

Cabab =
Corr(abab)

T 2

ab

=
1

2
(non-degenerate). (151)

57



This is the Rayleigh law for two scattering atoms (the result Cabab = 1 is the
Rayleigh law in the limit of many atoms). Comparing (151) to (145) and
(139) we notice that the correlation in the degenerate (J > 1) case generally
differs significantly from that of the non-degenerate case. An upper bound of
the correlation in the degenerate case is obtained by taking in (145) all the

amplitudes A
{mm′}
i to be equal. This leads to Cabab = J2/2, a much larger

value than 1/2 obtained for non-degenerate atomic levels.
In the non-degenerate case, J = 1, it is simple to generalize (150) and

(151) for N atoms. We have

Tab = |A|2
∣
∣
∣
∣
∣

∑

i

e−iq·Ri

∣
∣
∣
∣
∣

2

= |A|2
[

N + 2
∑

i>j

cos(q · Rij)

]

(152)

with Rij = Ri − Rj. Because the disorder averaged quantity cos(q · Rij) is
0 for i 6= j, we thus obtain

T ab = N |A|2 . (153)

The generalization of the correlation is also straightforward. We first
observe that

T 2
ab = |A|4

[

N2 + 4N
∑

i>j

cos(q · Rij) + 4
∑

i>j

∑

k>l

cos(q · Rij) cos(q ·Rkl)

]

(154)
Because i 6= j, the second term in the r.h.s of (154) vanishes. Moreover, using
that i > j and k > l, and that cos(q · Rij) cos(q · Rkl) = 1/2 for i = k, j = l,
the third term on the r.h.s of (154) equals N2 −N . Therefore

T 2
ab = |A|4[N2 +N2 −N ] (155)

so that the normalized correlation function Cabab = (T 2
ab − T 2

ab)/T
2

ab gives

Cabab = 1 − 1

N
. (156)

For N ≫ 1, we obtain the usual form of the Rayleigh law, Cabab = 1, which
characterizes the intensity fluctuations of light scattered by a cloud of clas-
sical scatterers.
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5.2 Multiple scattering

We now come back to the case of a large number of atoms, where the
photon is multiply scattered in the medium. The experimental reference
setup, designed for the purpose of measuring Caba′b′ , is presented in Figure
10. The first pulse of light is incident along sa and detected along sb. A time
τ later, a second pulse incomes along sa′ and measured along sb′ . During the
time period τ the scatterers are taken to be of fixed positions. Multiplying the
transmitted intensity of the first pulse, along sb, by that of the second pulse
along sb′ , gives rise to a single measurement of TabTa′b′. To find the disorder
averaged quantity TabTa′b′ , a similar procedure is then repeated, as shown in
the figure, after a time T taken to be long enough to allow the scatterers
to move appreciably between the two measurements. By repeating these
measurements a sufficient number of times, the disorder average is realized.
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mfmi
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Figure 10: A suggested setup for measuring Caba′b′. A pulse of light is shined
along sa and being measured along sb. A time τ later, which is very short
so that the atoms do not move, a second pulse is shined along sa′ and being
measured along sb′. The internal states of atoms, that “representative” pho-
tons of the two pulses experience, are different and practically uncorrelated,
as shown in the insets. ri and r′i denote the position of atoms at times 0 and
T , respectively. After a time T , long enough so that the atoms move dur-
ing it, this process is repeated. Taking the average of a sufficient number of
such measurements, gives the angular correlation function between channels
ab and a′b′.

As before, the transmission coefficient Tab (Ta′b′) is calculated by consid-
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ering some “representative” photon of the first (second) pulse in Figure 10,
and summing all its possible scattering paths. Consider a photon, denoted
by 1, of the first pulse. When this photon is incoming, the sample is in some
spatial configuration denoted by {R}, the set of all scatterers positions, and
every atom is at some internal state. After the photon is multiply scattered,
the sample is still in the spatial configuration {R}, but the internal state
of the atoms might be changed due to the interaction with the light. The
configuration of the scatterers in the sample, corresponding to this photon,
is therefore characterized by (1) a set of external degrees of freedom, {R},
which corresponds to the position vectors of all the atoms, and (2) by a set
of internal degrees of freedom, {m}, which denotes the quantum levels of all
atoms, before and after pulse 1 has been scattered. Now consider another
photon, which we shall denote by 2, of the second (sa′ → sb′) pulse. Accord-
ing to our setup, the external configuration that photon 2 experiences is also
{R}. However, between the arrivals of photon 1 and photon 2, many other
photons have been scattered in the sample. As a result, the quantum states of
the atoms between the scattering of photons 1 and 2 are randomly changed,
so that the internal configuration {m} that photon 1 experiences and that
of photon 2, {m′}, are generally different and uncorrelated. Disregarding
any pumping mechanisms, it is not possible experimentally to know {m}
and {m′}. Therefore, the average transmitted intensity and the correlation
should be averaged both over all possible internal and external configurations.

The transmission coefficients before averaging are

Tab =
∑

ij

A
{R,m}
i A

∗{R,m}
j (157)

and
Ta′b′ =

∑

ij

A
{R,m′}
i A

∗{R,m′}
j (158)

where A
{R,m}
i denotes the amplitude of the scattering trajectory i, corre-

sponding to the sample external and internal configurations {R} and {m},
respectively. In this expression and in the following ones, we do not distin-
guish explicitly between amplitudes of the first pulse and those of the second
pulse apart from the difference between {m} and {m′}. They however do
not describe exactly the same processes. For example, Ai that corresponds
to the first pulse describes the process in which an incoming photon along
sa is scattered toward sb, while the same notation Ai for the second pulse,
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describes different directions of incidence and emergence. In most of the fol-
lowing analysis this distinction is not important. For the case a = a′ and
b = b′, the two processes are identical. We first average (157) and (158) over
{R}, according to the prescription of Chapters 2 and 3: all cross terms, i 6= j,
vanish on average due to fluctuating phase differences. Thus we find

T ab =
∑

i

|A{m}
i |2

{m}
(159)

and

T a′b′ =
∑

i

|A{m′}
i |2

{m′}
(160)

where · · ·{m} denotes an internal configuration average.
To find the correlation, we first multiply the transmission coefficients

TabTa′b′ =
∑

ij

∑

kl

A
{R,m}
i A

∗{R,m}
j A

{R,m′}
k A

∗{R,m′}
l . (161)

The configuration average leaves only terms with zero total phase. Two kinds
of terms in (161) fulfill this requirement: (1) terms with i = j, k = l, and
(2) terms with i = l, j = k, namely

TabTa′b′ =
∑

ik

|A{m}
i |2 |A{m′}

k |2
{m,m′}

+
∑

ik

(A
{m}
i A

∗{m′}
i )(A

{m′}
k A

∗{m}
k )

{m,m′}

= T abT a′b′ +
∑

ik

(A
{m}
i A

∗{m′}
i )(A

{m′}
k A

∗{m}
k )

{m,m′}
(162)

where (159) and (160) have been used. Finally, the unnormalized correlation
function becomes

Corr(aba′b′) =
∑

ik

(A
{m}
i A

∗{m′}
i )(A

{m′}
k A

∗{m}
k )

{m,m′}
. (163)

The r.h.s of (163) is composed of pairs of multiple scattering sequences i
and k. For a large number of atoms, the sequences i and k hardly share any
scatterers. To illustrate this point, we consider a path of n scattering events,
assumed to be smaller than the number of scatterers in the sample, namely,
n≪ N . The total number of trajectories involving n scattering events is

S =

(
N
n

)

n! . (164)
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Given two sets (A and B) containing S trajectories each, there are

P = S2 =

(
N
n

)2

(n!)2 . (165)

possibilities to pair one trajectory from set A with another one from set B.
The number of trajectory pairs, out of this total number, that share exactly
z scatterers, is

Pz =

(
N − z
n− z

)2

[(n− z)!]2
(
N
z

)

. (166)

It is obtained as follows: we pick z scatterers, and find the number of trajec-
tory pairs of length n that share them. Then, we multiply this quantity by
the number of possibilities to choose z scatterers out of N . From (165) and
(166) we find

Pz

P
=

(N − z)!

z!N !
. (167)

Summing (167) over z gives the ratio of the number of trajectory (of length
n) pairs that share at least one scatterer, to the total number of pairs. We
obtain

n∑

z=1

Pz

P
=

1

N !

n∑

z=1

(N − z)!

z!
≤ 1

N !

n∑

z=1

(N − 1)! =
n

N
≪ 1 .

It is thus legitimate to ignore the case for which i and k share scatterers,
and perform separately the averaging in (163), which gives

Corr(aba′b′) =

∣
∣
∣
∣
∣

∑

i

A
{m}
i A

{m′}∗
i

{m,m′}
∣
∣
∣
∣
∣

2

. (168)

The internal configuration averaging is performed as in the previous section.
We average over initial atomic sublevels assuming they are equiprobable,
and in addition we sum over final atomic sublevels. This yields for (159) and
(160), to

T ab =
∑

i

∑

{mi}

|A{mi}
i |2
Jni

(169)
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and

T a′b′ =
∑

i

∑

{m′

i}

|A{m′

i}
i |2
Jni

(170)

where {mi} is the internal configuration of the ni atoms in the sequence i.
For (168), and assuming the specific case a = a′ and b = b′ we obtain, using
the definition (70) in Chapter 3,

√

Cabab =

∑

i

∑

{mi},{m′

i}
A

{mi}
i A

∗{m′

i}
i /J2ni

∑

i

∑

{mi} |A
{mi}
i |2/Jni

. (171)

We note that in the correlation (the numerator on the r.h.s of (171)), averag-
ing over internal quantum numbers involves a factor 1/J2ni instead of 1/Jni

for the intensity. This is because in the correlation we average over two sets
of initial sublevels, that correspond to {m} and to {m′}.

Here again, like the single scattering case discussed previously, we see
that the average transmitted intensity (T ab and T a′b′), and the correlation
(Corr(aba′b′)) are essentially different. The contributions to the intensity in-
volve two coupled amplitudes corresponding to the same scattering sequence
and to the same internal configurations. On the other hand, the contributions
to the correlation are pairs of amplitudes with the same scattering sequence,
but generally different internal configurations of atomic Zeeman sublevels.
In the previous section we have defined the vertices V(i) and V(c) which were
described, respectively, as the building blocks of the average intensity and of
the correlation. These vertices play the same role here. Consider the aver-
age intensity. From (169), (170), and the definition of the amplitudes A, it
contains terms like

|A{m}
i |2 ∝ |〈m1I |U |m1F 〉|2 |〈m2I |U |m2F 〉|2 · · · |〈mniI |U |mniF 〉|2 (172)

where the operator U has been defined in the previous section, and the
subscripts I and F denote initial and final Zeeman sublevels, respectively.
Averaging (172) over the internal quantum numbers miI , summing over miF ,
and using the definition (147) lead to

|A{m}
i |2

{m}
∝ V(i)V(i) · · · V(i)
︸ ︷︷ ︸

ni times . (173)
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Similarly, using (148) and the numerator of (171), it can be easily verified
that the typical contribution to the correlation is

A
{m}
i A

{m′}
i

{m,m′}
∝ V(c)V(c) · · · V(c)
︸ ︷︷ ︸

ni times . (174)

The two vertices, V(i) and V(c), thus account for single scattering events that
build the whole multiple scattering path. Such a scattering event corresponds
to a real physical quantity (cross section) in the case of intensity. For the
correlation, on the other hand, it can be said to be virtual because no process
occurs, in which two photons are actually scattered simultaneously by an
atom. Formally, as already mentioned, the two quantities V(i) and V(c) play
the same role. The vertices characterize exclusively the interaction between
the light and the scatterers.

Another point which was already discussed earlier, concerns the non-
degenerate ground state, J = 1. In this case there is only one internal
configuration, so that {m} = {m′} and there is no meaning for the averaging
over internal degrees of freedom. It is straightforward to show that for non-
degenerate scatterers the Rayleigh law Cabab = 1 is obtained in (171). For
degenerate scatterers with J > 1, the correlation can in principle exceed the
Rayleigh law. To illustrate this, let us assume that all amplitudes are equal.
This gives

√
Cabab =

∑

i J
2ni/

∑

i J
ni which, for ni ≫ 1 and J > 1, is much

larger than 1. Note that this upper bound expression coincides with the one
obtained previously for the two atoms-single scattering case, up to a factor of
1/2 which results from the fact, that in the latter case it is not legitimate to
neglect pairs of trajectories that share scatterers. In what follows we present
an explicit calculation which indeed shows an enhancement of the correlation
above the Rayleigh limit, provided that the scatterers are such that J > 1.
The effect of the internal structure is, therefore, important only for atoms
having a degenerate ground state.

5.3 The method of calculation

In Chapters 2 and 3 we have surveyed the method of calculating the quan-
tities of interest, such as the average transmitted intensity and the function
Corr(aba′b′). The method involves essentially a continuous limit description
of the problem, where diffusion theory accounts for the light propagation
within the medium. This is done by means of the Diffuson function (see (28)
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of Chapter 2) that corresponds, in the real space, to all multiple scattering
sequences between two given scatterers. In particular, we have obtained for
the slab geometry the expression (66) (see Chapter 3)

T ab =
l2

(4π)2

∫

S

d2R⊥D(R⊥, l, L− l) (175)

for the average intensity, and (82) in Chapter 3

Corr(aba′b′) =

(
l2

(4π)2

∫

S

dR⊥e
ikR⊥·aD(R⊥, l, L− l)

)2

(176)

for the correlation. Here it was assumed that a = b, explaining the absence
of the δ-function appearing in (82).

As described in Chapter 2, the Diffusons D account for the propagation
of the scattered intensity between two endpoints inside the sample, and are
thus built out of the iteration of (i) the single scattering vertex, and (ii) the
propagation of the photon between two scattering events, denoted by W. In
Fourier space, the Diffuson is given by (see (29) of Chapter 2)

D = V + VWV + · · · = V + DWV . (177)

In this iterative equation D and W are functions of Q, which is the Fourier
variable of R = r′ − r, where r and r′ are the positions of two scatterers.
All quantities in (177) are dimensionless. Conventionally, the cross section
V is normalized by 3〈σ〉cl/2, where the averaged cross section for classical
scatterers is found by substituting in (126) of Chapter 4, jg = 0 and je = 1,
giving 〈σ〉cl = 3λ2/2π. As a result, the total cross section obtained from V(i)

is 〈σ〉/(3〈σ〉cl/2) = 2ajgje
/3.

There are, however, two essential differences between the results of the
previous chapters and that of the present case. First, the intensity Diffuson,
D(i), obtained from the iteration of V(i), is generally different from D(c),
the correlation Diffuson, which is obtained from the vertex V(c). Second,
as opposed to the scalar description of light in Chapters 2 and 3, here the
photons polarization is important. This can be seen clearly if we rewrite the
expressions for the vertices in the more explicit form

V(i)(e1, e2) =
G
J

∑

m1,2

∑

MM ′

〈m2|d · e∗
2|M〉〈M |d · e1|m1〉

×〈m1|d · e∗
1|M ′〉〈M ′|d · e2|m2〉 (178)
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and

V(c)(e1, e2, e3, e4) =
G
J2

∑

m1,...,4

∑

MM ′

〈m2|d · e∗
2|M〉〈M |d · e1|m1〉

×〈m3|d · e∗
3|M ′〉〈M ′|d · e4|m4〉 (179)

using (147), (148), and the definition of the operator U in Section 5.1. We
note that the correlation vertex, because it is a product of two amplitudes
corresponding to distinct photons, depends on two incoming and two outgo-
ing polarization vectors. Moreover, V(i) is obtained as a special case of V(c)

by setting m1 = m3, m2 = m4, e1 = e3, e2 = e4, and multiplying it by J .
The decomposition of a vector A into the spherical components is [34]

A =
1∑

µ=−1

(−)µAµσ−µ (180)

where the spherical basis vectors σµ (µ = −1,+1, 0) are defined in Section
4.4. From (180) it also follows that

Aµ = A · σµ (181)

and
A · B =

∑

µ

(−)µAµB−µ . (182)

From the definition of the spherical basis vectors we notice that

σ∗
µ = (−)µσ−µ , σµ · σν = (−)µδµ,−ν . (183)

Thus
e1 =

∑

µ

(−)µ(e1)µσ−µ , e∗
2 =

∑

µ

(e2)
∗
µσµ (184)

so that

d · e1 =
1∑

µ=−1

(−)µdµ(e1)−µ (185)

and

d · e∗
2 =

1∑

µ=−1

dµ(e2)
∗
µ . (186)
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It is useful to decompose the vertices into their spherical components, namely

V(i)
αβγδ =

G
J

∑

m1,2

∑

MM ′

〈m2|d · σ∗
γ |M〉〈M |d · σα|m1〉〈m1|d · σ∗

β |M ′〉〈M ′|d · σδ|m2〉

=
G
J

∑

m1,2

∑

MM ′

(−)β+γ〈m2|d−γ|M〉〈M |dα|m1〉〈m1|d−β|M ′〉〈M ′|dδ|m2〉(187)

and

V(c)
αβγδ =

G
J2

∑

m1,...,4

∑

MM ′

〈m2|d · σ∗
γ |M〉〈M |d · σα|m1〉〈m3|d · σ∗

β |M ′〉〈M ′|d · σδ|m4〉

=
G
J2

∑

m1,...,4

∑

MM ′

(−)β+γ〈m2|d−γ|M〉〈M |dα|m1〉〈m3|d−β|M ′〉〈M ′|dδ|m4〉(188)

where α, β, γ, δ = −1,+1, 0. Here dλ denotes the λ = −1,+1 ,or 0 spherical
component of the electric dipole vector d. We have also used the fact that σ∗

λ ·
d = (−)λd−λ. In the next section, we will calculate further these expressions.
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Figure 11: The structure of the tensor P. Between the two successive scat-
tering events, represented by the black circles, the propagation is free of any
other scatterings. The quantity Pµνρσ, built of two amplitudes having po-
larization vectors ε̂1 and ε̂2, corresponds to the µ and ν components of the
polarization vectors at the beginning of the propagation, and to the ρ and σ
components of the polarizations just before the next scattering.

To find the term W, which corresponds to the free intensity propagation
between two scattering events, we first write it as W = WP. W is the scalar
part, i.e. the polarization-independent part, of the free propagator, which in
Fourier space is given by (see Appendix A)

W (Q) =
3

2ajgje

(

1 − DQ2l

c

)

(189)
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where c is the velocity of light, Q = |Q|, and D = cl/3 is the photon
diffusion coefficient. P is the polarization dependent part of W, and it is
decomposed into spherical components in a way similar to (187) and (188),
to form a rank four tensor Pµνρσ. This tensor can be found as follows (see
Figure 11). We consider a pair of amplitudes that correspond to the same
scattering sequence, and look at two successive scattering events. After the
first scattering, the two amplitudes proceed with random but identical wave
vector ŝ = k/k towards the next scatterer. In between the two scatterings,
the direct amplitude (the upper one in Figure 11) can have two independent
polarizations ε̂ and ε̂′. To obtain Pµνρσ we must project ε̂ and ε̂′ onto their
µ and ρ components. The direct amplitude should be multiplied, therefore,
by ε̂∗µε̂ρ + ε̂′

∗
µε̂

′
ρ = δµ,−ρ(−1)µ − ŝµŝρ, where we have used the orthonormality

of ε̂, ε̂′, and s. The complex conjugation results from the µ component that
belongs to an outgoing photon. The second, conjugate amplitude (the lower
one in Figure 11) is multiplied by a similar expression for the components
ν and σ. Finally, since the vector s in between scatterings is random and
unknown, we average over its direction so that

Pµνρσ = 〈(δµ,−ρ(−1)µ − ŝµŝρ)(δν,−σ(−1)ν − ŝν ŝσ)〉ŝ . (190)

The iteration (177) can be now written in the tensorial form

D(i,c)
αβγδ = V(i,c)

αβγδ +W
∑

µνρσ

D(i,c)
αβµνPµνρσV(i,c)

ρσγδ . (191)

We now wish to find an analytic expression for D(i,c) in terms of V(i,c) and
W. As a first step, we note that the rank four tensors D, V, and W have 81
components each and can be arranged as 9 × 9 matrices, as explained later
on. We thus write (191), in matrix form, as

D = (I +WVP + (WVP)2 + · · ·)V (192)

where I is the unit matrix. For the simplicity of notation, we do not differ-
entiate here between the two cases of intensity and correlation. Our method
consists in using the spectral decomposition theorem [35] (see Appendix B),
which allows to decompose a matrix into a sum of projectors. Applying the
theorem to VP we have

VP =
∑

K

uKTK (193)
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with the uK ’s being the different eigenvalues of VP, and the TK ’s constitute
an orthonormal set of matrices with the properties

TiTj = δijTi ,
∑

i

Ti = I . (194)

Substituting (193) in (192), and using the properties of the TK ’s, we find

D =

(
∑

K

TK +W
∑

K

uKTK +W 2
∑

K

u2
KTK + · · ·

)

V

=
∑

K

( ∞∑

n=0

(WuK)n

)

TKV (195)

so that the Diffuson may be written as

D =
∑

K

UKVK (196)

with

UK =
1

1 −WuK

(197)

and the matrices VK = VTK . Taking into account (189) we obtain

UK(Q) =
2c

3l
ajgje

1/uK

γK +DQ2
(198)

The quantities γK are given by

γK =
c

l

(
2ajgje

3uK
− 1

)

(199)

and are the damping rates of the mode K. To see this, let us write (198) in
real space

UK(R, t) =
1

uK
D0(R, t)e

−γK t (200)

where R = r′− r is the Fourier variable of Q, r and r′ are the two endpoints
of the diffusion process, and D0, denoted by just D in Chapters 2 and 3,
is the infinite space Diffuson for the case of classical scatterers and scalar
light. We have thus separated the diffusion mode K into a classical part, D0,
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and another part that accounts for the internal structure of the scatterers,
namely, e−γK t/uK .

The Diffuson tensors are thus found, using (196) and (200), to be

D(i,c)
αβγδ(R, t) =

∑

K

1

u
(i,c)
K

(V(i,c)
K )αβγδD0(R, t)e

−γ
(i,c)
K

t . (201)

where we now distinguish between the two cases of intensity and correlation.
The Diffuson, since it describes the propagation of intensity, is a sum of pairs
of amplitudes that correspond to all possible multiple scattering paths, from
the first to the last scattering events. D(i,c)

αβγδ thus appears as the decomposi-
tion of the Diffuson function into the α and β components of the incoming
light polarization, one component for each of the two amplitudes, and the
γ and δ components of the outgoing polarization. To restore the Diffuson
function that corresponds to the slab geometry and for determined incoming
and outgoing polarizations, we have to (i) substitute the expression for the
Diffuson in a slab (Section 2.3), and (ii) compose all the αβγδ projections
back together. Moreover, since we are interested in the total transmitted
intensity, (201) must be integrated over all scattering times t. We finally
obtain for the Diffuson, in real space and using the notation of Section 2.3,
the expression

D(i,c)(r, r′) =
∑

K

Y
(i,c)
K

∫ ∞

0

dt D0(R⊥, z, z
′, t) e−γ

(i,c)
K

t (202)

with

Y
(i)
K =

1

u
(i)
K

∑

αβγδ

(−)α+δ(ea)−α(eb)
∗
γ(ea)

∗
−β(eb)δ

(

V(i)
K

)

αβγδ
, (203)

and

Y
(c)
K =

1

u
(c)
K

∑

αβγδ

(−)α+δ(ea)−α(eb)
∗
γ(ea′)∗−β(eb′)δ

(

V(c)
K

)

αβγδ
. (204)

Here ea,a′ and eb,b′ are respectively the incoming and outgoing light polar-
ization vectors. We note that for the correlation, there are generally two
incoming and two outgoing directions in (204), respective to the two chan-
nels ab and a′b′. On the other hand, for the intensity a = a′ and b = b′, since
D(i) corresponds to a single channel.
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The meaning of the γK ’s appears clearly in (202). For γK = 0 the mode
K behaves as a vector wave diffusing in a medium composed of classical
scatterers. In particular, it is infinite range (no damping), which expresses
energy conservation. If γK > 0 the mode K is damped with the characteristic
time 1/γK. From (199), 1/γK is given in units of l/c, which is the elastic
mean free time. The ratio (c/l)/γK thus gives the number of scattering events
over which the mode K is damped. Therefore, if (c/l)/γK is small enough
(on the order of 1), the mode K is rapidly damped and its contribution to D
is negligible. On the other hand, if (c/l)/γK is greater than the (normalized)
Thouless time 3b2, where b = L/l is the optical depth of the sample, the
damping is too weak to eliminate the contribution of the mode K. The third
possibility γK < 0 seems peculiar, since it means an amplification of the mode
K. However, we shall see in the following that this amplification is found
for the correlation Diffuson D(c) in the case of degenerate atomic scatterers.
This enhancement effect has been explained previously in this chapter, on a
more general ground than the present diffusion model.

It follows from (199), that the characteristic number of scattering events
for damping (or amplification), (c/l)/γK , depends only on the interaction
between the light and a single scatterer, that is, on the vertices V(i,c). As
discussed previously, the quantity 2ajgje

/3 corresponds to the total scattering
cross section related to the transition jg → je. Therefore, the existence of a
γK = 0 mode is equivalent to the existence of at least one uK that is exactly
equal to the total normalized cross section. An eigenvalue uK that is smaller
or larger than the total normalized cross section amounts, respectively, to a
decaying mode (γK > 0) or an enhanced (γK < 0) mode.

Finally, distinguishing between the two kinds of Diffuson functions, the
expressions for the average intensity and the correlation, (175) and (176),
becomes

T ab =
l2

(4π)2

∑

K

Y
(i)
K

∫

S

d2R⊥

∫ ∞

0

dtD0(R⊥, l, L− l)e−γ
(i)
K

t (205)

and

Corr(aba′b′) =

(

l2

(4π)2

∑

K

Y
(c)
K

∫

S

dR⊥

∫ ∞

0

dteikR⊥·aD0(R⊥, l, L− l)e−γ
(c)
K

t

)2

(206)
where we have also used the results of Section 2.3.
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5.4 The vertex

The tensorial forms V(i,c)
αβγδ of the vertices V(i,c), contain all information

about the interaction between light and scatterers in (191), from which the
Diffusons are obtained. Therefore, most of the physics of the problem is
in the vertices. Also the difference, when it exists, between the intensity
(D(i)) and the correlation (D(c)) Diffusons resides in the difference between
V(i) and V(c). From (147) and (148) we notice that for classical scatterers,
namely J = 1, there is no difference between the two vertices, which leads
to the Rayleigh law. On the other hand, for J > 1 the difference between
V(i) and V(c) is clear. For V(c), shown schematically in Figure 12, the two
scattering amplitudes (on the same atom), correspond to two distinct events,
i.e. to two distinct photons, and thus to generally two pairs of initial and
final atomic internal states. In the case of V(i), the two coupled amplitudes
participating in the scattering, belong to the same photon and thus find the
atom in the same quantum number m1 before the scattering, and leave it
after the scattering in the same quantum number m2.

Our aim in this section is to develop an expression for the interaction
vertex. We focus on V(c), the correlation vertex which we shall denote in this
section by V. As was mentioned, V(i) is obtained as a limiting case of V(c)

by setting m1 = m3, m2 = m4, e1 = e3, and e2 = e4.

ε�^

m1 m2

ε�^
V

ε�^ ε�^m3 m4V

Figure 12: The vertex V(c). mi are the various Zeeman quantum numbers. ε̂i

are the polarization vectors. V denotes an electric dipole interaction Hamil-
tonian.

With the help of the Wigner-Eckart theorem (Section 4.4) we obtain for
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the second matrix element on the r.h.s of (188)

〈jeM |dα|jgm1〉 = (−)je−M〈je||d||jg〉
(

je 1 jg
−M α m1

)

(207)

The first matrix element on the r.h.s of (188) becomes

〈jgm2|d−γ|jeM〉 = (−)jg−m2〈jg||d||je〉
(

jg 1 je
−m2 −γ M

)

(208)

Using the properties of the 3j-symbols defined in Section 4.4, we simulta-
neously multiply, in the last expression, the second row by -1 and make a
permutation of the first and third columns. This gives

〈jgm2|d−γ|jeM〉 = (−)jg−m2〈jg||d||je〉
(

je 1 jg
−M γ m2

)

(209)

Expressing in a similar way the two other matrix elements in (188), the
tensorial form of the vertex becomes

Vαβγδ = C
∑

m1,...,m4

∑

M,M ′

(−)2je−M−M ′

(−)2jg−m2−m3(−)β+γ

×
(

je 1 jg
−M α m1

)(
je 1 jg

−M γ m2

)(
je 1 jg

−M ′ β m3

)(
je 1 jg

−M ′ δ m4

)

(210)

with C = (G/J2)|〈jg||d||je〉〈je||d||jg〉|2. Expression (210) can be evaluated
numerically to give the elements of Vαβγδ.

More information about the vertices can be gained from the following
analysis. Using the operator (previously defined)

U(e, e′) =
∑

M

e′∗ · d|M〉〈M |e · d (211)

the vertex rewrites (see (179))

V(e1, e2, e3, e4) =
G
J2

∑

m1,...,m4

〈m2|U(e1, e2)|m1〉〈m3|U †(e3, e4)|m4〉 (212)

Using the closure relation we have

U(e, e′) =
∑

mgm′
g

∑

M

|m′
g〉〈m′

g|e′∗ · d|M〉〈M |e · d|mg〉〈mg| (213)
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where |mg〉 and |m′
g〉 denote any atomic ground state sublevel. With the help

of the Wigner-Eckart theorem we can then write

U(e, e′) = 〈jg||d||je〉〈je||d||jg〉
∑

pp′

∑

mgm′
g

∑

M

|m′
g〉〈mg|(−)jg−mg+je−M

×
(

jg 1 je
−mg p M

)(
je 1 jg

−M p′ m′
g

)

e−pe
′∗
−p′(−)p+p′ (214)

Summing over M one obtains [32]

U(e, e′) = 〈jg||d||je〉〈je||d||jg〉
∑

kq

∑

pp′

∑

mg

|mg − q〉〈mg|(−)1−mg+je+k(2k + 1)

×
{

1 1 k
jg jg je

}(
1 1 k
p p′ −q

)(
jg jg k

−mg mg − q q

)

e−pe
′∗
−p′(215)

where k = 0, 1, 2 and |q| ≤ k. The 6j-symbol (the quantity with the curly
brackets on the r.h.s) is defined in Appendix C. We now decompose U(e, e′)
by means of a set of irreducible tensor operators [36]

Qk
q ≡

∑

mg

|mg − q〉〈mg|(−)mg−jg

(
jg jg k

−mg mg − q q

)√
2k + 1 (216)

so that

U(e, e′) =
2∑

k=0

k∑

q=−k

Ukq(e, e
′)Qk

q (217)

with

Ukq(e, e
′) = 〈jg||d||je〉〈je||d||jg〉

∑

pp′

(−)1+jg+k
√

2k + 1

×
{

1 1 k
jg jg je

}(
1 1 k
p p′ −q

)

e−pe
′∗
−p′ (218)

V can be now expressed in the form

V(e1, e2, e3, e4) = C
∑

kq

∑

k̃q̃

∑

pp′

∑

p̃p̃′

√

(2k + 1)(2k̃ + 1)

{
1 1 k
jg jg je

}

×

×
(

1 1 k
p p′ −q

){
1 1 k̃
jg jg je

}(
1 1 k̃

p̃ p̃′ −q̃

)

(e1)−p(e
∗
2)−p′(e

∗
4)p̃′(e3)p̃(−)p̃+p̃′

×
∑

m1...m4

〈m2|Qk
q |m1〉〈m3|Qk̃

−q̃|m4〉(−)−q̃(219)
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We further define

Sk
q ≡

√
2k + 1

∑

m

σm(σm−q)
∗(−)m−1

(
1 1 k
m q −m −q

)

(220)

where the σm’s are the spherical basis unit vectors defined in Section 4.4, so
that

√
2k + 1

∑

pp′

(
1 1 k
p p′ −q

)

e−pe
′∗
−p′

=
√

2k + 1
∑

p

(
1 1 k
p q − p −q

)

e−p(e
′
q−p)

∗(−)q−p

= e ·
(

√
2k + 1

∑

p

(
1 1 k
p q − p −q

)

e−p(eq−p)
∗(−)q−p

)

· e′∗

= e · Sk
−q · e′∗(−)q+1 (221)

Taking into account that

∑

mgm′
g

〈m′
g|Qk

q |mg〉 =
∑

mgm′
g

(−)mg−jg

(
k jg jg
q m′

g −mg

)

=
∑

mg

(−)mg−jg

(
k jg jg
q mg − q −mg

)

≡ fjg
(k, q) (222)

we find finally

V(e1, e2, e3, e4) = C
∑

kk̃

sksk̃

∑

qq̃

fjg
(k, q)fjg

(k̃,−q̃)(e1·Sk
−q·e∗

2)(e4·S k̃
q̃ ·e∗

3)(−)q+q̃(−)k̃−q̃

(223)
with

sk ≡
{

1 1 k
jg jg je

}

(224)

The tensor Vαβγδ is obtained by setting

Vαβγδ = V(e1 = σα, e3 = σβ, e2 = σγ , e4 = σδ) =

C
∑

kk̃

√
sksk̃

∑

qq̃

fjg
(k, q)fjg

(k̃,−q̃)(σα · Sk
−q · σ∗

β)(σδ · S k̃
q̃ · σ∗

γ)(−)q+q̃(−)k̃−q̃(225)
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Since k, k̃ = 0, 1, 2, there are generally nine combinations kk̃ in (225) that
describe the change of photon polarization due to scattering.

For the specific case of the intensity vertex V(i)
αβγδ we have m1 = m3 and

m2 = m4. In this case [37]

∑

m1=m3

∑

m2=m4

〈m2|Qk
q |m1〉〈m3|Qk̃

−q̃|m4〉 = Tr[Qk
qQ

k̃
−q̃] = δk,k̃δq,q̃(−)q (226)

Therefore, there are only three combinations kk̃ for the intensity vertex V(i),
and only three different eigenvalues.

The condition k = k̃, which holds for V(i) (226), is related to angular
momentum conservation. From (219) and the properties of the 6j-symbols
(Appendix C), it follows that k, k̃ = 0, 1, and 2, as if they were the sum
of two angular momenta of magnitude 1. Each of the two 6j-symbols in
(219) refers to a different amplitude. In the case of the intensity vertex, V(i)

corresponds to the cross section of a real process, for which the two cou-
pled amplitudes belong to the same photon, and thus to the same physical
process. Angular momentum must then be conserved. Mathematically, this
fact is reflected in that k = k̃, so that there are only three kk̃ combinations,
corresponding to the values 0,1, and 2 as for the addition of two angular
momenta of magnitude 1. In contrast, the two amplitudes involved in the
correlation vertex V(c) belong to two different photons. This is a virtual pro-
cess, in which angular momentum needs not to be conserved. As a result, k
and k̃ are generally different, and the product kk̃ has generally nine different
values, which is the upper limit. As already mentioned earlier, the distinc-
tion between V(c) and V(i) exists only if the lower atomic level is degenerate,
namely for jg > 0. For the classical case jg = 0, condition (226) always holds.

5.5 Amplified correlation

To find the angular correlation function, what is left to do is to solve for
(202), and to substitute in (205) and (206). But to this purpose, we need
to find the damping rates γK . This is done by numerically calculating the
u

(i,c)
K ’s, i.e., the eigenvalues of V(i,c)P, and then using (199). The results are

two sets of damping rates, one that corresponds to the intensity (γ
(i)
K ) and

one for the correlation (γ
(c)
K ).

The matrices that correspond to V(i)P and V(c)P, for the transition jg =
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1 → je = 2, are found to be

V(i)P(1→2) =

















337
1620

0 0 0 151
1620

0 0 0 28
405

0 31
270

0 0 0 13
540

0 0 0
0 0 49

540
0 0 0 0 0 0

0 0 0 31
270

0 0 0 13
540

0
151
1620

0 0 0 149
810

0 0 0 151
1620

0 13
540

0 0 0 31
270

0 0 0
0 0 0 0 0 0 49

540
0 0

0 0 0 13
540

0 0 0 31
270

0
28
405

0 0 0 151
1620

0 0 0 337
1620

















(227)

and

V(c)P(1→2) =

































727
4860

59
972

7
486

59
972

301
4860

− 1
243

7
486

− 1
243

58
1215

41
486

115
972

35
486

7
243

91
972

5
486

7
972

7
972

37
972

23
972

25
486

35
243

5
972

11
243

25
486

7
4860

5
972

23
972

41
486

7
243

7
972

115
972

91
972

7
972

35
486

5
486

37
972

65
972

25
486

35
972

25
486

85
486

25
486

35
972

25
486

65
972

37
972

5
486

35
486

7
972

91
972

115
972

7
972

7
243

41
486

23
972

5
972

7
4860

25
486

11
243

5
972

35
243

25
486

23
972

37
972

7
972

7
972

5
486

91
972

7
243

35
486

115
972

41
486

58
1215

− 1
243

7
486

− 1
243

301
4860

59
972

7
486

59
972

727
4860

































(228)
Each row (column) in the matrices (227) and (228) corresponds to some
combination of two incoming (outgoing) spherical basis components of the
polarizations. The first row (column) denote the combination -1-1, the second
ones denote -10, and so on: -11 for the third, 0-1 for the fourth, 00 for the
fifth, 01 for the sixth, 1-1 for the seventh, 10 for the eighth, and 11 for the
last (ninth). Thus, for example, the matrix element (1,1) (first row, first
column) corresponds to the element VP−1−1−1−1, the (1,2) matrix element is
VP−1−1−10, the (1,3) is VP−1−1−11, the (5,5) is VP0000 etc.
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The eigenvalues of V(i)P in (227) are u
(i)
0 = 10/27 (non-degenerate), u

(i)
1 =

0.14 (3-fold degenerate), and u
(i)
2 = 0.09 (5-fold degenerate), corresponding

to γ
(i)
0 = 0 (since 2a12/3 = 10/27), γ

(i)
1 = 0.6c/l, and γ

(i)
2 = 1.1c/l, where

(199) has been used. The mode denoted by 0 is infinite ranged, while the
other two decay on time scales of the order of two scattering events, namely,
l/c.

The eigenvalues of V(c)P in (228) have been also calculated numerically,
and the corresponding decay rates are shown in Table 1 (the values are
rounded).

γ
(c)
0 γ

(c)
1 γ

(c)
2 γ

(c)
3 γ

(c)
4 γ

(c)
5 γ

(c)
6 γ

(c)
7 γ

(c)
8

-0.18 0.85 0.95 1.85 3.11 3.35 9.00 9.27 23.66

Table 1. Decay rates for the correlation (in units of c/l). These values
correspond to the transition jg = 1 → je = 2

The mode 0 corresponds to the condition u
(c)
0 > 2a12/3 = 10/27, leading to

a negative decay rate. The remaining eight modes have positive decay rates,
and are damped on the time scale of l/c and less. For example, 1/γ

(c)
1 ≃

1.17l/c, meaning that this contribution to the diffusion process decays on a

length scale of about 1.17 times the mean free path l. 1/γ
(c)
3 , ..., 1/γ

(c)
8 < l/c,

so that these contributions decay before even one scattering event has been
taken place. Since any multiple scattering process is at least l-long, it is clear
that modes 1 to 8 contribute very negligibly to the correlation function.

In all transitions we have considered, namely, jg = 0 → je = 1, jg =
1 → je = 2, jg = 2 → je = 3, and jg = 3 → je = 4, a similar situation

occurs: there are only three γ
(i)
K ’s, one of them is zero (γ

(i)
0 = 0), and the

other two are finite and positive γ
(i)
1,2 > 0, both of them are on the order of

c/l. According to (202) and the discussion that follows it, γ
(i)
0 = 0 is related

to energy conservation due to the infinite-ranged propagation of the average
intensity. It ensures that the incoming energy eventually also leaves. The
infinite-ranged mode γ

(i)
0 = 0 corresponds to the free diffusion D(i) ∝ 1/Dq2

as discussed in Section 2.3. The other two modes decay very fast, on a
time scale of one or two scattering events (l/c). These two modes are thus
negligible in multiple scattering, i.e., when the size of the medium L satisfies
L≫ l, so that the typical scattering path involves many scattering events. A
similar behaviour with one infinite-ranged and two rapidly decaying modes,
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is obtained for vector light wave and classical scatterers [2]. In the following
table, the decay rates of the intensity modes for some atomic transitions are
shown.

jg → je γ
(i)
0 γ

(i)
1 γ

(i)
2

0 → 1 0 0.28 0.67
1 → 2 0 0.62 1.14
2 → 3 0 1.12 3.24
3 → 4 0 1.88 5.37

Table 2. Decay rates for the intensity (in units of c/l).

For the correlation Diffuson with degenerate atomic scatterers we obtain
a different result. As in Table 1, among the nine modes γ

(c)
K , for jg > 0

we obtain at least one mode with a negative damping rate γ
(c)
0 < 0, which

corresponds to amplification and thus to an enhancement of the correlation
function as can be verified from (202). The remaining γ

(c)
K ’s are finite, pos-

itive, and usually on the order of a few c/l, so that they decay rapidly and
have a negligible contribution to D(c). There is no infinite-ranged mode for
correlation. The negative γ

(c)
0 can be explained as follows: from (147) and

(148), it turns out that every possible transition that contribute to V(i), con-
tribute also to V(c). However, there are contributions to V(c) that do not
appear in V(i) (see Figure 13). These are cross terms between two coupled

me

m1 m4

�me

je

h�'

m1 m2

j �
Figure 13: A process that contributes to V(c) but not to V(i), because the final
states corresponding to the two amplitudes are not the same.

amplitudes that do not belong to the same process, as previously explained.
As a result, the largest eigenvalue of V(c)P, denoted by u

(c)
0 , exceeds the

largest eigenvalue of V(i)P, namely u
(i)
0 = 2ajgje

/3, thus leading to a negative
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damping rate according to (199). In other words, since we take into account
more terms in V(c) than in V(i), the correlation cross section is larger than
the intensity cross section. On the other hand, the mean free path l is the
same for both cases of intensity and correlation (it is a measurable quantity
characteristic of the transport of real photons in the medium). Thus, each
amplitude, whether it is used for the intensity or the correlation vertices,
describes a multiple scattering path characterized by the mean free path l.
But, l is by definition the characteristic length for a free diffusion without
scattering. More precisely, the probability to diffuse freely without scatter-
ing decays as e−l/R, where R is the distance between the two endpoints of
the path. Therefore, increasing the cross section inevitably amounts, in real
processes, to a decrease in l [2]. In the case of the correlation Diffuson, the
cross section V(c) becomes larger than V(i) while l, obtained from the inten-
sity cross section, remains constant. Within the diffusive limit of multiple
scattering, therefore, it is as if the correlation diffusion is amplified by the
medium. This is reflected in the occurrence of the negative γ

(i)
K . We will

return to this argument in the next chapter. For classical scatterers, i.e.
for jg = 0, there is no difference between the intensity and the correlation
vertices, so that both diffusion processes are identical, leading to one infinite-
ranged mode γ

(i,c)
0 = 0 and to two decaying modes. In Table 3 we list the

negative damping rates of the correlation vertex for some examples of atomic
transitions.

jg → je γ
(c)
0

0 → 1 0
1 → 2 −0.18
2 → 3 −0.23
3 → 4 −0.27

Table 3. Negative decay rates of the correlation diffusion (in units of c/l)
for some atomic transitions. The absolute value of these rates becomes
larger, and thus the amplification effect becomes stronger, as the atomic

levels get more and more degenerate.

The average transmitted intensity is now readily found using (68) in

Chapter 3 and the fact that the infinite-ranged mode γ
(i)
0 = 0 is dominant.

From (205)

T ab =
Y

(i)
0 l2

(4π)2

∫

S

d2R⊥

∫ ∞

0

dtD0(R⊥, l, L− l) = Y
(i)
0

3

4π

1

b
(229)

80



where b = L/l is the optical depth.
What is left is to calculate the correlation Corr(aba′b′). This is done

neglecting all the contributions except for that of the amplified mode γ
(c)
0 < 0.

Using (206) we may write

√

Corr(aba′b′) =
Y

(c)
0 l2

(4π)2

∫

S

dR⊥

∫ ∞

0

dt eikR⊥·a D0(R⊥, l, L− l) eγct (230)

with γc = |γ(c)
0 |. Following Section 3.3, we notice that the integral over R⊥

is the Fourier transform of D0(R⊥, l, L− l), so that

√

Corr(aba′b′) =
Y

(c)
0 l2

(4π)2

∫ ∞

0

dtD0(q, l, L− l, t) eγct (231)

where q = ka is the Fourier variable of R⊥, and q = |q| equals k times the
angle θ between the directions of the two incoming (and outgoing) beams.
The integral in (231) diverges. However, the upper bound is actually not
infinite, but bounded by the Thouless time τD = L2/D, which corresponds
to the typical diffusion path in a sample of linear dimension L. According to
diffusion theory, trajectories which are significantly longer, can be neglected.
To calculate the correlation (231) we need to evaluate the integral (47) of
Chapter 2, where the decay rate is now negative and the integration upper
bound is τD. Thus

∫ τD

0

dtD(q, l, L−l, t)eγct =
8πc

Ll2

∞∑

n=1

sin
(nπ

b

)

sin
(

nπ − nπ

b

)∫ τD

0

dte
−t(Dq2+ π2n2

τD
−γc) .

(232)
Implementing the integration on the r.h.s we find

Ll2

4πc

∫ τD

0

dtD(q, l, L− l, t)eγct =
∞∑

n=1

cos (nπ(1 − 2/b)) − cos(nπ)

Dq2 + π2n2

τD
− γc

−
∞∑

n=1

[cos (nπ(1 − 2/b)) − cos(nπ)]
e−τD(Dq2+π2n2/τD−γc)

Dq2 + π2n2

τD
− γc

. (233)

The term containing the exponent e−τD(Dq2+π2n2/τD−γc) on the r.h.s cor-
responds to the correlation amplification. We notice now that a negative
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decay rate is not enough to obtain amplification. Rather, the amplification
condition is

τDDq
2 + π2n2 − τDγc < 0 → amplification

τDDq
2 + π2n2 − τDγc > 0 → no amplification . (234)

As we have seen above (Table 3), γc is on the order of 0.2c/l. Moreover, in
multiple scattering experiments usually b does not exceed 7, so that τD =
3b2l/c ∼ 150l/c at most, meaning that τDγc is usually not larger than 30.
According to condition (234), this means that correlation amplification is
obtained only if (i) q is small, and (ii) n = 1, since for n ≥ 2 π2n2 ≥ 40. If
(i) and (ii) does not hold, τDDq

2 + π2n2 − τDγc > 0 and the exponent on
the r.h.s of (233) is negligible. Therefore, rather than summing over n in the
second term on the r.h.s of (233), we impose n = 1. In summing over n in
the first term on the r.h.s of (233), we use results (49) of Chapter 2. Defining
X(q)2 = τDγc − (Lq)2 we thus find

Ll2

4πc

∫ τD

0

dtD(q, l, L− l, t)eγct = τD
1 − cos (2X(q)/b)

2X(q) sin(X(q))

−τD [cos(π(1 − 2/b)) + 1]
e−π2+X(q)2

π2 −X(q)2
. (235)

Using (231) we finally obtain

√

Corr(aba′b′) =
3bY

(c)
0

4π

(

sin2(X(q)
b

)

X(q) sinX(q)
− 2 sin2(

π

b
)
e−π2+X(q)2

π2 −X(q)2

)

. (236)

It is instructive to study the classical limit of this expression, namely, the
case for which γc = 0, meaning that there is no correlation amplification. As
already discussed, this happens for a non-degenerate atomic ground state.
In this case X(q)2 = −(Lq)2 and the second term on the r.h.s of (236)
becomes negligible. Furthermore, since X(q) is now pure complex we have
sin(X(q)) = sinh(Lq), and if b is large (multiple scattering) and q is small
enough, we may set sinh(Lq/b) ≃ lq. We obtain thus

Corr(aba′b′) =
∣
∣
∣

√

Corr(aba′b′)
∣
∣
∣

2

=

(

Y
(c)
0

3

4π

lq

sinh(Lq)

)2

(for γc = 0)

(237)
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which agrees with the classical result (86) of Chapter 3. The factor Y
(c)
0

accounts for the effect of light polarization, which has not been taken into
account in Chapter 3.
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Figure 14: The angular correlation function for jg = 1 and je = 2 (solid
line). q is equal to k times the angle between sa and sa′. Here b = 7 and
Λ = 60l/c. Also shown is the classical correlation function (dashed line),
obtained for jg = 0 and je = 1, which gives the Rayleigh law for q ≃ 0.
The above Rayleigh correlation for the degenerate transition in this region is
clearly seen. The inset shows the dependence of the fluctuation Cabab on the
optical depth.

The transmitted intensity correlation (236) thus diverges with L. This
is not a very physical behavior, since other mechanisms of dephasing, such
as Doppler shifts, the motion of scatterers etc., need to be taken into ac-
count. These mechanisms are expected to limit the diffusion processes of the
intensity and the correlation. To include these mechanisms, we introduce
phenomenologically a cutoff Λ as an upper bound for the integral (231).
Result (236) now becomes

√

Corr(aba′b′) =
3bY

(c)
0

4π

(

sin2(X(q)
b

)

X(q) sinX(q)
− 2 sin2(

π

b
)
e−

ΛD

L2 (π2−X(q)2)

π2 −X(q)2

)

.

(238)
The two expressions (236) and (238) coincide for Λ = τD. Expression (238),
divided by T ab, gives

√
Caba′b′ , which is displayed in Figure 14 as a func-

tion of lq = lkθ, and for Λ = 60l/c. Also shown in this figure is a plot
of
√

Corr(aba′b′) for non-degenerate atoms with jg = 0, je = 1. The non-
degenerate curve shows the expected value 1 at q = 0, which is the Rayleigh
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law (Cabab = 1). On the other hand, in the degenerate case we see a
steep decrease and a large intensity correlation near q = 0, as compared
to the Rayleigh law obtained for classical scatterers and atoms with a non-
degenerate ground state.

The intensity correlation for q = 0 (Cabab) is depicted in the inset of Fig-
ure 14 as a function of the optical depth b = L/l. The degenerate fluctuation
(solid line) shows a very different behaviour relative to the non-degenerate
case (dashed line). While in the non-degenerate case the correlation is inde-
pendent of L/l, for degenerate scatterers it is peaked at some value of L/l.
The maximal value of the correlation is much larger that the Rayleigh value
of the classical case. When γc tends to 0, and Λ → ∞, Cabab becomes inde-
pendent of L and converges to the Rayleigh law Cabab = 1, as expected.

5.6 Amplified correlation in the general case

In this section we show that the amplified correlation is not restricted
to the case of photon-atom interactions. Rather, it appears when additional
degrees of freedom are added to the system and enhance the disorder.

Consider a system that can take a few possible paths, connecting its initial
and final states. If each path is denoted by Ck, the probability to find the
system in the final state is

I =

∣
∣
∣
∣
∣

∑

k

Ck

∣
∣
∣
∣
∣

2

(239)

Consider two such systems, denoted by a and b, that are absolutely inde-
pendent of each other, but however have exactly the same ensemble of states.
We would like to find the correlation between Ia and Ib, namely,

Corr(Ia, Ib) = 〈IaIb〉 − 〈Ia〉〈Ib〉 (240)

where 〈· · ·〉 denotes here any relevant ensemble average. Therefore

Corr(Ia, Ib) =

∣
∣
∣
∣
∣

∑

ka

Cka

∣
∣
∣
∣
∣

2 ∣
∣
∣
∣
∣

∑

kb

Ckb

∣
∣
∣
∣
∣

2

−
∣
∣
∣
∣
∣

∑

ka

Cka

∣
∣
∣
∣
∣

2 ∣
∣
∣
∣
∣

∑

kb

Ckb

∣
∣
∣
∣
∣

2

= 0 (241)

In this case, there are no degrees of freedom to average on.
We now disorder the system. It will be plugged into the problem by a

phase φk(R), which characterizes each of the paths Ck. It is assumed that
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if the system evolves through the path Ck0 , say, by the time it reaches the
final states, it acquires a phase φk0(R). This phase, as it is written, depends
on the degree of freedom R. Each value of R corresponds to certain val-
ues of the phases φk(R). However, we do not know the value of R, so that
every physical quantity of interest should be disorder (or R) averaged. In
the case of light multiply scattered inside a medium, for which the positions
of scatterers are not known and random in nature, R corresponds to a cer-
tain scatterers configuration, while the Ck’s represent the various possible
scattering trajectories of the light inside the medium.

Consider first the average probabilities 〈Ia〉 and 〈Ib〉, where the average
〈···〉 is over R. From (239), each of the two probabilities is a sum of terms like
Ck1Ck2. The cross terms, for which k1 6= k2, represent interference between
different paths Ck1 and Ck2. The resulting phase φ(R) = φk1(R)−φk2(R) is in
general nonzero and fluctuates as R changes. We now assume that the order
of magnitude of the fluctuations of φ(R) (for k1 6= k2) is typically larger than
π, so that on average 〈eiφ(R)〉 = 0. This means actually two requirements:
first, that the two paths Ck1 and Ck2 are not too close to each other, and
second, that the dependence of the phases φk on R is strong enough. Under
these conditions we have

〈eiφk1
(R)−iφk2

(R)〉 = δk1,k2 (242)

meaning that the interference terms do not contribute to the average proba-
bility. Thus

〈Ia〉 =
∑

ka

|Cka
|2 (243)

with a similar expression for 〈Ib〉, from which

〈Ia〉〈Ib〉 =
∑

ka,kb

|Cka
|2|Ckb

|2 (244)

On the other hand, we have

〈IaIb〉 =
∑

ka1,kb1

∑

ka2,kb2

Cka1C
∗
ka2
Ckb1

C∗
kb2

〈eiφka1
(R)−iφka2

(R)+iφkb1
(R)−iφkb2

(R)〉

Due to the disorder average, only two kinds of terms contribute to 〈IaIb〉,
namely those in which either (i) ka1 = ka2 and kb1 = kb2, or (ii) ka1 = kb2 and
kb1 = ka2. Possibility (i) yields just 〈Ia〉〈Ib〉, while possibility (ii) involves
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cross terms between a and b. These cross terms, however, do not describe
interference, because they result from a product of probabilities and not of
amplitudes. Only these cross terms contribute to the correlation function,
which is written

Corr(Ia, Ib) =
∑

k,k′

(CkC
∗
k) (C∗

k′Ck′) = 〈Ia〉〈Ib〉 (245)

where for the last equality we have used (243). This result corresponds to
the Rayleigh law, since for a = b one obtains

〈I2
a〉 = 2〈Ia〉2 (246)

The correlation (245) is enhanced relative to (241). This enhancement results
from the presence of the disorder. We emphasize that in (245), the pairs of
amplitudes characterized by the parameters k and k′, contain one amplitude
that belongs to the system a, and another amplitude that belongs to system
b.

Now suppose that we add to the disorder another degree of freedom, α(k),

that characterizes every path. Each path will be denoted thus by C
α(k)
k . We

shall assume that α is random, meaning that it may change from one system
to another, thus “enhancing” the previous disorder that depends only on R.
Because α is not known, we average the possible paths over it. Then, for
example

〈Ia〉 =
∑

ka

∑

α(ka)

|Cα(ka)
ka

|2 (247)

where the summation over α(ka) results from the averaging, and the proba-
bilities of the different values of α are assumed to be implicit in Cα

k . Also, the
parameter α depends on the certain path k, as explicitly shown. Repeating
the steps that lead to (245), we now have

Corr(Ia, Ib) =
∑

k,k′

∑

αa(k),αb(k)

∑

αa(k′),αb(k′)

(

C
αa(k)
k C

αb(k)∗
k

)(

C
αa(k′)∗
k′ C

αb(k
′)

k′

)

(248)
where the amplitudes of a and of b are now characterized also by the param-
eters αa and αb. To show that in this case the correlation may exceed the
Rayleigh law (245), suppose that there are n possible values for the parameter
k, and m possible values for α. The average intensity (247) is a sum of n×m
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terms, so that 〈Ia〉〈Ib〉 contains n2×m2 terms. On the other hand, from (248)
we see, that the correlation includes n2 ×m4 terms which, if m > 1, is larger
than n2 ×m2. The additional disordered degrees of freedom thus essentially
change the correlation function, through the addition of many contributions
that otherwise would not exist. The above-Rayleigh correlation is thus not so
surprising. One “kind” of disorder, e.g. that corresponds to the position of
scatterers, leads to the Rayleigh correlation (245), which is enhanced above
the ordered system correlation (241). Similarly, another disordered degrees
of freedom (e.g. Zeeman quantum numbers), which come in addition to the
previous one, keep enhancing the correlation above the Rayleigh limit. We
note finally that the “internal” degrees of freedom, denoted in this section
by αa,b, are not necessarily quantum. They can be of any kind, quantum or
classical.

In this chapter we have shown that when light is multiply scattered by
atoms, atomic Zeeman degeneracy enhances the scattered intensity correla-
tion above the Rayleigh limit. We have explicitly calculated this enhance-
ment effect, and also explained it qualitatively on a general ground, by show-
ing that the additional degrees of freedom result in many more contributions
to the correlation than to the average intensity. In the case where the atomic
ground state is not Zeeman degenerate, we have obtained the same results
as already known for classical scatterers.
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CHAPTER 6

Effects of an external magnetic field and of
the motion of scatterers

In this chapter we discuss two effects that modify the correlation amplifi-
cation discussed in the previous chapter. The first effect is the application of
an external magnetic field, which removes some atomic transitions from reso-
nance. As we shall see, however, the external field affects only the correlation
cross section, while leaving the intensity total cross section unchanged, thus
reducing the intensity correlation. The result is a sharp resonance-like curve
of the correlation as a function of the field, which might be found useful for
accurate level crossing spectroscopy.

The second correlation-limiting mechanism we shall study is associated
with the motion of scatterers. Unlike the external magnetic field, this effect
cannot be easily monitored, and it leads to a dephasing that reduces the
amplified correlation.

The chapter is organized as follows. In Section 6.1 we modify the model
presented in Chapter 5 so as to include the effect of the magnetic field,
and calculate the dependence of the correlation function on this field. Sec-
tion 6.2 presents the so-called level-crossing spectroscopy, which relies on the
Lorentzian dependence of the scattering cross section on the external field to
measure atomic parameters. This method is based on the Hanle and Franken
effects, which thus serve as a reference to the present available resolution of
level-crossing experiments. In Section 6.3, we consider the motion of the
scatterers and its influence on the intensity correlation function.

6.1 Effect of a magnetic field on the correlation

As discussed earlier, the enhanced correlation cross section, relative to
the intensity one, is at the basis of the amplified correlation. Therefore, an
applied magnetic field H is expected to affect this enhancement, since it gen-
erally changes the single scattering cross section by removing the atomic level
degeneracy (Zeeman splitting). In this section we show that the amplified
correlation is sensitive to the application of a field, and calculate the corre-
sponding functional dependence [1]. In fact, a strong enough field reduces
V(c) so that the enhancement condition V(c) > V(i) does not apply anymore.
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We begin by rewriting the generalized vertex (148) in the presence of an
applied magnetic field

V(c) =
1

J2

∑

mi

〈jgm2|U(ε̂1, ε̂2)|jgm1〉〈jgm4|U(ε̂3, ε̂4)|jgm3〉∗
(ω − ωm1me

+ iΓ/2)(ω − ωm3m′
e
− iΓ/2)

(249)

where we have defined the energy difference ~ωij = Ej −Ei, and for simplic-
ity unimportant pre-factors have been omitted. Also, as defined previously,
U(ε̂, ε̂′) =

∑

M(d · ε̂′∗)|M〉〈M |(d · ε̂). The intensity vertex V(i) is obtained by
setting m1 = m3, m2 = m4, ε̂1 = ε̂3, and ε̂2 = ε̂4. Assuming a broad band
light and averaging over the photon frequency ω, we obtain the Breit-Franken
differential cross section [38]

V(i) =
1

J

∑

m1m2

∑

mem′
e

B12(me)B
∗
12(m

′
e)

iωm′
eme

+ Γ
(250)

where B12(me) = 〈m2|ε̂∗2 · d|me〉〈me|d · ε̂1|m1〉. The broad band assumption
is for convenience only. For a weak enough magnetic field, both broad band
and monochromatic light give similar differential scattering cross sections
[39]. This is valid when H is weak enough so that ωm′

eme
< Γ.

The applied magnetic field H removes the level degeneracy and leads to a
Zeeman splitting ~ωm′

eme
= gµ0H(me−m′

e), so that two kinds of terms appear
in (250). Terms for which me = m′

e, are independent of the magnetic field
and they lead to the incoherent scattering cross section. The terms me 6= m′

e

depend on the magnetic field and they describe interferences between two
distinct scattering amplitudes. Suppose that for H = 0, the excited level is
degenerate. As the magnetic field increases, the interference contribution is
gradually suppressed, because of the difference in the evolution of the two
states |me〉 and |m′

e〉. Alternatively, the quantities ωm′
eme

get larger and
reduce the contribution me 6= m′

e. This shows up as a Lorentzian resonance
about the level-crossing point (Hanle and Franken effects, see Section 6.2),
whose width ∆HF is determined by the condition ωm′

eme
≃ Γ (for me 6= m′

e),
so that [38, 40]

∆HF ≃ ~Γ

gµ0
(251)

up to a prefactor that depends on the slopes of the crossing levels [41].
Although the differential scattering cross section (250) depends on H , the

total cross section σ obtained from it does not. To see this, we perform the
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summation over the two independent outgoing polarizations in (250). The
relevant terms has the form
∑

ε̂2⊥k

〈m2|ε̂∗2·d|me〉〈m′
e|ε̂2·d|m2〉 =

∑

k

(ε2αε2β+ε′2αε
′
2β)〈m2|dα|me〉〈m′

e|d−β|m2〉 ,

(252)
where k is the outgoing wave vector, and α, β are the polarization com-
ponents that allow the transitions according to the electric dipole selection
rules. The integration over k imposes α = −β, which implies that the H-
dependent interference terms me 6= m′

e do not contribute to σ. Since the
average transmitted intensity is proportional to l/L = 1/nσL [2] (see also
(229)), T ab is also independent of H within our approximations.

To observe the effect of the field H on the multiple scattering speckle
pattern, we thus have to consider the correlation functions. To this purpose
we use (236), which is the expression for the enhanced correlation (γ

(c)
0 is

negative). Looking at (236), we see that the effect of the field H enters

only in γc ≡ |γ(c)
0 | that we now evaluate. From (199), γ

(c)
0 depends on u

(c)
0 ,

the largest eigenvalue of V(c)P. For small enough H , we can express this
eigenvalue to lowest order in the dimensionless field

s =
gµ0H

~Γ
(253)

as
u

(c)
0 (s) ≃ u

(c)
0 (0) − βs2 (254)

where β is a constant that depends on the specific scattering atom. This
expression results from (249), inserting ω − ωm1me

≃ ω − ωm3m′
e
≃ gµ0H/~.

Therefore, for small enough s we may write

V(c)(s) ≃ V(c)(0)
1

1 + 4s2
≃ V(c)(0)(1 − 4s2) (255)

so that the eigenvalues of V(c)(s) behave as in (254). The corresponding
damping rate becomes

γ
(c)
0 (s) ≃ γ

(c)
0 (0) +

2β c ajgje

3u
(c)2
0 l

s2 (256)

which allows us to write the dependence of X0 ≡ X(0), defined before (235),
on s as

X0(s) = b
√

|f0 − f2s2| (257)
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with f0 = (2ajgje
/u

(c)
0 )− 3 and f2 = 2ajgje

β/u
(c)2
0 . To obtain the field depen-

dence of the correlation we thus have to find the factor β (all other quantities

in (257) are already known). β is found by calculating numerically u
(c)
0 (s)

for many values of s and then, by fitting, evaluating β from (254). All is left
now is to substitute (257) into (236), leading to the dependence of C ≡ Cabab

on the dimensionless field s, presented in Figure 15. It shows a resonance
line whose FWHM ∆HM is about 0.2~Γ/gµ0, a fifth of the FWHM ∆HF

corresponding to the Franken and Hanle effects. The curve in Figure 15 is
obtained for b = 5, and its FWHM is a specific case of the more general
result

∆HM = ∆HF
a

b
, (258)

where the factor a is of the order of unity. Relation (258) has been obtained
numerically by considering various atomic transitions and values of b. Figure
16 shows the results, which are in a complete agreement with the linear
dependence (258). From the exponential term in (236), and after substituting
(257), the slope a is given roughly as 1/

√
f2.
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C

Figure 15: The dependence of C ≡ Cabab on the dimensionless field s =
gµ0H/~Γ. In this figure b = 5, and the FWHM is accordingly about 0.2.

The result (258) is unique in that it does not provide any “natural” bound
on the accuracy achieved in level-crossing spectroscopy. Practically, techni-
cal considerations like Doppler shifts, absorption, and other dephasing and
damping mechanisms that were ignored here, are supposed to limit the accu-
racy. However, according to the present analysis the accuracy is, in principle,
not limited. Various authors discuss possibilities to improve the accuracy of
level-crossing experiments (see next section) by a factor of 2 or 3, while from
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(258) one can improve it by orders of magnitude by just increasing the optical
depth. We now try to explain, in a somewhat intuitive way, this nontrivial
result.
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Figure 16: A numerical calculation of the FWHM ∆ for various values of b.
The linear dependence of ∆ on 1/b = l/L is clearly observed.

The correlation decrease due to the magnetic field originates in the fact
that most of the contributions to V(c), that do not contribute to V(i), are
suppressed by the field. An example of such a process is shown in Figure 13
(Chapter 5). Most of these contributions get smaller as the Zeeman splitting
grows. As explained above, the total cross section of a photon scattering
upon an atom does not change with H (for small enough field). However,
the previous derivation of this property of the total cross section does not hold
anymore for the correlation. Trying to calculate a correlation cross section σc

from V(c), the outgoing polarization dependent part is now
∑

ε̂2,ε̂4⊥k〈m2|ε̂∗2 ·
d|me〉〈m′

e|ε̂4·d|m4〉, and we cannot conclude from summing polarizations and
integrating over k’s that the field-dependent terms do not contribute. From
(199), the behavior of the correlation is mainly determined by u

(i)
0 − u

(c)
0 ,

while the intensity is dominated by the stable mode γ
(i)
0 ∝ u

(i)
0 −u

(i)
0 = 0. As

already mentioned, u
(i)
0 = 2ajgje

/3 is proportional to the true total scattering

cross section. By analogy, u
(c)
0 is proportional to the correlation cross section

σc, determined by V(c), in the same way σ is determined by V(i). Therefore,
the correlation, which depends strongly on σc, is much more sensitive to the
external field than the intensity.

The free propagation of intensity inside a random medium, i.e. between
two scattering events, decays as e−R/l where R is the distance of propagation
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(see Chapter 2). In other words, the probability to propagate freely, without
any scattering, for time periods longer than l/c is negligible. Since σc > σ,
we have l > lc because l = 1/nσ and lc = 1/nσc. This means that, theoret-
ically, the free propagation probability which corresponds to the correlation
Diffuson D(c), should decay as e−R/lc . However it does not. Each amplitude
building up D(c) still decays as e−R/l, since it is the real cross section σ that
dominates the propagation properties of the wave amplitudes. Only the cou-
pling of two amplitudes, related to two different photons as explained above,
is what forms σc. This brings about an effective gain, eG, which can be found
from

eGe−R/lc = e−R/l (259)

leading to

G = R
(l − lc)

llc
=
R

l

3

2ajgje

(u
(c)
0 − u

(i)
0 ) (260)

where we have used the fact that u
(i)
0 = 2ajgje

/3 ∝ σ and u
(c)
0 ∝ σc, with

the same proportionality factor, so that l/lc = u
(c)
0 /u

(i)
0 . The total gain in a

typical multiple scattering path, eGT , is obtained by replacing R in (260) by
the length of a typical diffusive path cL2/D. Thus

GT =
9

2ajgje

b2(u
(c)
0 − u

(i)
0 ) . (261)

We now replace u
(c)
0 by u

(c)
0 (0)− βs2. The total gain along the whole path is

eGT = Ae
− 9

2ajgje
b2βs2

(262)

with A = exp[ 9
2ajgje

b2(u
(c)
0 (0)− u

(i)
0 )]. From this we can find the width ∆HM

by imposing 9
2ajgje

b2β(∆s)2 = 1, leading to

∆HM ≃ ∆HF
1

b
, (263)

(∆HF is defined in (251)) in agreement with (258).
Another intuitive argument for the dependence of ∆HM on 1/b arises

from (249). Assuming the typical value for the detuning, δ = sΓ ≃ ωmimj
,

we see that

V(c)(H) ≃ V(c)(0)
Γ2

δ2 + Γ2
(264)
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which shows the well known Lorentzian behavior of the resonance fluores-
cence scattered intensity as a function of δ. In this case the total cross
section, in the presence of a magnetic field, also behaves like 1/(δ2 + Γ2). It
is therefore reduced to half its maximum value 1/Γ2 for δ = Γ. If, for exam-
ple, the photon undergoes two successive scattering events, then for δ = Γ
the two-scattering cross section is reduced to 1/4 of its maximum value. This
is because every single scattering cross section is reduced by a factor of 1/2.
The half width of the two-scattering cross section is therefore achieved for
δ = ∆2, where ∆2 is the detuning for which the single scattering cross sec-
tion is reduced by a factor of 1/

√
2. According to the same reasoning, if the

photon undergoes n scattering events before emerging, the half width of the
n-scattering cross section will be achieved for δ = ∆n given by

∆n = Γ
√

21/n − 1 (265)

∆n is the detuning for which the single scattering cross section is reduced by
a factor of 1/ n

√
2 (for example, ∆1 = Γ). Since 21/n = eln2/n, then for n≫ 1

it holds that
∆n = Γ

√

ln2/n . (266)

Finally, as already mentioned, for diffusive multiple scattering we have n =
(L/l)2 so that

∆n=(L/l)2 ≃
l

L
Γ (267)

which also agrees with (258). This means that if the characteristic Zeeman
splitting exceeds (l/L)~Γ, most of the contributions to the correlation become
negligible, and the correlation returns (more or less) to its nondegenerate
value. The enhanced correlation is thus a phenomenon much more sensitive
to a magnetic field, than other phenomena such as the Franken or Hanle
effects. In the so-called level-crossing spectroscopy discussed below, one uses
effects like Franken or Hanle to measure the energy width of atomic states.
The full width at half maximum (FWHM) of these phenomena are directly
related to the accuracy of measurements that can be achieved. It is clear
therefore, that a phenomena as described here, that is orders of magnitude
more sensitive to a magnetic field (i.e., its FWHM is orders of magnitude
smaller), might be very useful to improve the precision of these experiments.
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6.2 Level-crossing spectroscopy

The changes in the differential scattering cross section of light, resonant
with the 61s0 → 63p1 transition in Mercury, as a function of an applied mag-
netic field is called the Hanle effect, after W. Hanle, who has studied this
problem in 1924 [42]. This is a variant of the level-crossing spectroscopy,
which takes advantage of the dependence of the differential scattering cross
section on an applied magnetic field, in order to obtain experimentally atomic
parameters, such as the natural width Γ. In the experiment of Hanle, the
two atomic levels are Zeeman degenerate in the absence of a magnetic field,
so that the application of the field removes this degeneracy. Other experi-
ments use an atomic structure which is non-degenerate in zero field, while
at some specific values a level-crossing occurs which creates degeneracy. For
example, the earliest level-crossing experiment was performed by Colegrove
et.al. [43, 44]. In this experiment, the scattering of light corresponding to
the transitions 23s1 → 23p1 and 23s1 → 23p2 of Helium was studied. In this
case, the two excited states have different energies at zero field. However,
for some value of the field a level-crossing occurs between the m = 2 sub-
level of 23p2 and the m = 0 sublevel of 23p1 for a field strength of about
0.08T . Measuring the differential scattering cross section about this and
other crossing points, allowed Colegrove et. al. to determine experimen-
tally the fine-structure separation between the 23p1 and 23p2 levels. In both
cases, sweeping the magnitude of the field about the level-crossing (or zero
field) point and measuring the resulted scattered intensity line, allows for the
experimental determination of atomic parameters.

Consider the Breit-Franken cross section (250), and suppose that the
ground state |g〉 is non-degenerate, while the excited state is two-fold degen-
erate and composed of the sublevels |m〉 and |m′〉, (250) then becomes,

V(i) =
|B12(m)|2

Γ
+

|B12(m
′)|2

Γ
+ 2Re

B12(m)B∗
12(m

′)

iωm′m + Γ
. (268)

The first two terms on the r.h.s of (268) are the incoherent contributions of
the scattering processes |g〉 → |m〉 → |g〉 and |g〉 → |m′〉 → |g〉, and are
field independent. The third term amounts to the interference between these
two kinds of scattering processes. It is seen that the interference term con-
tributes as long as ωm′m < Γ. This corresponds to a width, in terms of the
magnetic field, of ∆H = ~Γ/gµ0 ≡ ∆HF mentioned above, which determines
the accuracy (or resolution) of the level-crossing experiment. The possibility,
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presented in the previous section, of reducing significantly ∆H by a factor
l/L, typically of the order of 1/10, in the case of intensity correlation, thus
may be experimentally useful.

6.3 Motion of the scatterers - time dependent correlation

In Section 3.4 of Chapter 3 we have described the temporal dependence of
the classical intensity correlation, which results from the random motion of
the scatterers. The quantity of interest is the temporal correlation function
C(τ), which is the correlation between the transmitted intensity at two differ-
ent times, t and t+ τ , averaged over both the disorder and the initial time t.
The result, (96) in Chapter 3, depends on the quantity Lγ(τ) =

√

2Dlτb/cτ ,
where τb is defined in (95) to be the characteristic time for the scatterers to
move a distance comparable to the light wavelength λ. In Chapter 2 we have
given an expression for the Diffuson function in the slab geometry. The result
(50) depends on the characteristic length Lγ(q) =

√

D/(γ +Dq2). The first
expression for Lγ is a special case of the second one, obtained for q = 0 and

γ =
cτ

2lτb
. (269)

Using this identification and the results of Chapter 2, we can express the
τ -dependent Diffuson also as

D(c)(r, r′, τ) =

∫ ∞

0

D0(R⊥, z, z
′, t)e−γt (270)

where D0 is the Diffuson obtained for γ = 0, and the superscript (c) indicates
that this Diffuson corresponds to the correlation. The intensity Diffuson is
obtained, in this classical case, by setting γ = 0. A more rigorous calculation
leads to exactly the same result [2].

We now wish to find the temporal correlation function in the case of de-
generate atomic scatterers. A suggested setup for measuring this function is
shown in Figure 17. As we saw in the previous chapter, when the scatter-
ers are Zeeman degenerate atoms, an amplification term shows up via the
exponential eγct that multiplies the Diffuson. Combining the result (202) of
Chapter 5 and (270), we find

D(c)(r, r′, τ) = Y
(c)
0

∫ ∞

0

dt D0(R⊥, z, z
′, t) e(γc−γ)t (271)
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Figure 17: A suggested experimental setup for measuring C(τ). A laser beam,
incoming along sa, falls on the atomic gas and is measured along sb. A first
measurement of the outgoing intensity is taken at t = 0, corresponding to a
bunch of photons represented as “photon 1”. A time τ later, a second mea-
surement is taken corresponding to “photon 2”. The time τ is short enough
so that the atoms stay at rest between t = 0 and t = τ . Therefore, photons
1 and 2 see the same spatial configuration of scatterers. The two photons,
however, experience different internal atomic states due to all other photons
that have been scattered between the arrivals of photon 1 and photon 2. This
measuring process is repeated after a time T , during which the scatterers
move, what realizes the spatial disorder average.

where we have ignored all diffusion modes except for the amplified mode,
and where γc ≡ |γ(c)

0 |. Also, here γc > 0 corresponding to correlation amplifi-
cation, and γ > 0 by the definition (269). There is a competition, therefore,
between γc and γ, and an immediate conclusion is that the amplification
exists as long as γc > γ, namely for τ < τamp where

τamp =
2lτb
c
γc . (272)

The dimensionless quantity defined as

χ ≡ l

c
γc (273)

characterizes the “amount” of amplification in the medium, since it is the
ratio between the characteristic time for amplification and the elastic mean
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free time between two successive scattering events l/c. As such, χ ∼ 1, for ex-
ample, means that the amplification occurs on a time scale of only one or two
scattering events, and thus corresponds to strong amplification that becomes
significant after only few scatterings. On the other hand, if χ ≪ 1, many
scattering events take place before the amplification starts to be important.
The limit χ ≪ 1 therefore corresponds to weak amplification. The relation
τamp = 2χτb, obtained from (272) and (273), leads to the identification of
the regime τamp ∼ τb with strong amplification, and of τamp ≪ τb with weak
amplification. For strong amplification, the correlation is enhanced as long
as the temporal separation τ is less than the dephasing time τb, which is the
classical limitation (Section 3.4). For a weak amplification, the correlation
ceases to be enhanced already for a very small temporal separation, namely,
for a very small dephasing between amplitudes that belong to different pulses.

The integral in (271) may be evaluated as in Section 5.5. The result is
similar to (236) of Chapter 5, except for the additional dependence on τ via
the decay rate γ

√

Corr(τ) =
3bY

(c)
0

4π

(

sin2(X(τ)
b

)

X(τ) sinX(τ)
− 2 sin2(

π

b
)
e−π2+X2(τ)

π2 −X2(τ)

)

(274)

with X(τ) = L
√

(γc − γ)/D, which is the quantity X(q) defined before (235)
of Chapter 5, with q = 0 and including the additional decay time γ. X(τ)
is real as long as γc > γ. For γc = 0 we restore the classical results of
Chapter 3, in the same way it was done for the angular correlation function
after (236). As before, the last term on the r.h.s of (274) corresponds to
the amplification. From this term we may conclude a modified condition for
correlation amplification, that is

X2(τ) > π2 (amplification) (275)

which leads to

τ < 2τb(χ− π2η) = τamp − 2τbπ
2η (amplification) (276)

with η ≡ 1/3b2. In the diffusive limit, however, η ≪ 1 and we restore the
previous condition, τ < τamp.

From (274), we can also estimate the characteristic time scale for the am-
plified correlation to decrease as a function of τ , by defining exp[−(3L2/2l2τb)τ∆] =
1/e. This characteristic time τ∆ is therefore

τ∆ = 2τbη . (277)
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This is quite an intuitive result, because η is the inverse of the number of
scattering events in a typical diffusion trajectory, namely, the Thouless time
τD divided by l/c. Moreover, τb is the characteristic time for one scatterer
to move a distance λ from its origin. As a result, if two pulses, separated
in time by τb, are scattered off this scatterer, a dephasing comparable to
π is brought about between scattering amplitudes corresponding to differ-
ent pulses. Accordingly, if a trajectory includes 1/η scattering events, it is
sufficient that every scatterer move only ηλ from its origin to cause a total
dephasing of about π. This is because each scatterering event contributes to
the total dephasing along the scattering trajectory.

Finally, we would like to comment on quantum mechanical motion of the
scatterers, which may be subjected to a certain potential, as in electromag-
netic trapping for example, that holds them in some small region of space. In
this case it is convenient to consider each atom as a quantum mechanical har-
monic oscillator, denoting by |{n}〉 its quantum state corresponding to the
external degrees of freedom. Restricting ourselves to the case of two atoms,
and ignoring internal atomic degrees of freedom, the scattered intensity is
given, by analogy to (138) in Chapter 5, as [33]

T = F |〈{nf}|e−iq·R1+e−iq·R2|{ni}〉|2 = 2F [1+cos(q·d)e−〈(q·u)2〉q/2] . (278)

Here |ni〉 (|nf〉) are the initial (final) states of the atoms motion, û is a quan-
tum mechanical operator which corresponds to the atoms relative position’s
departure from the equilibrium d, and 〈· · ·〉q is a thermal average over the
quantum numbers |ni〉. The classical disorder discussed above, if it exists,
concerns only the classical relative position d. In other words, the above
averaging 〈· · ·〉 is performed only over d. Two limiting cases appear in (278).
The first is the quantum limit, in which the characteristic departure from d

is significant, namely ρ ≡
√

〈û2〉q ≫ λ. In this case, for |q| ∼ 2π/λ,

e−〈(q·u)2〉q/2 ≃ 0 (279)

and T = 2F does not depend on d. Therefore, the correlation function is
0. This result is quite obvious, since a significant quantum motion means
also a large uncertainty in atoms position. If this uncertainty exceeds λ, no
interference can occur since the various amplitudes are no longer coherent
among themselves. The quantum motion, therefore, “kills” the cross terms
which is at the basis of the enhanced correlation. On the other hand, there
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is the classical limit where the quantum motion is negligible, namely ρ≪ λ.
In this case,

e−〈(q·u)2〉q/2 ≃ 1 (280)

and we restore the classical disorder results discussed above.
In this chapter we have considered two mechanisms that reduce the cor-

relation function, namely, an applied magnetic field and the motion of scat-
terers, and obtained the functional dependence of the correlation on both
of them. In the first case, we have found that the correlation decays as a
function of the field, with a FWHM that depends on 1/b, which might be
useful experimentally. In the second case, the correlation decays roughly as
1/b2 as a function of time. We have also obtained the times for which an
amplification of the time-dependent correlation holds.
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APPENDIX A

The propagator W

In (189) of Chapter 5 we have defined the function W (Q) which corre-
sponds to the polarization independent part of propagation of the intensity
between two successive scattering events. As such, its form may be derived
from the scalar theory discussed in Chapter 2, in which the Drude-Boltzmann
approximated propagator, PDB, was said to represent also the free propaga-
tion between scattering events. The two quantities must therefore be pro-
portional, W ∝ PDB. In the real space-time representation, PDB(r, r′, t) has
dimensions of 1/volume. Assuming translation invariance, the spatial de-
pendence of PDB is only on R = r′ − r. The Fourier representation PDB(Q)
(which is also time integrated) with Q being the Fourier variable of R, has
thus dimensions of time. Since W (Q) is a dimensionless quantity, it is con-
ventionally defined as

W (Q) =
3

2

c

lcl
PDB(Q) (A.1)

where lcl is the mean free path corresponding to classical scatterers.
The diffusion regime amounts, among others, to the condition ω(l/c) ≪

1. This condition results from the approximation, according to which the
typical time for a diffusion process, t, is much larger than the typical time
between two successive scattering events, namely, t ≫ l/c. Within this
approximation, the Fourier space representation of PDB is given as [2]

PDB(Q) =
l

c

(

1 − DQ2l

c

)

(A.2)

whereD = cl/3 is the 3-dimensional diffusion coefficient. The functionW (Q)
is thus given by the dimensionless expression

W (Q) =
3

2

l

lcl

(

1 − DQ2l

c

)

. (A.3)

In (126) of Chapter 4 the total cross section was given, which depends on the
degeneracy of the atomic scatterer. Since the case jg = 0, je = 1 corresponds
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to classical scatterer, we see that 〈σ〉/〈σ〉cl = ajgje
, leading to l/lcl = 1/ajgje

.
Finally, thus

W (Q) =
3

2ajgje

(

1 − DQ2l

c

)

. (A.4)
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APPENDIX B

The spectral decomposition theorem

Taken from [35].

Version 1
Let A be an n × n matrix with n distinct eigenvalues λ1, ..., λn. Then A

can always be represented in the form

A = λ1T1 + · · · + λnTn (B.1)

where the n× n matrices T1, ..., Tn have the following properties:
a) T 2

i = Ti.
b) TiTj = 0 for i 6= j.
c) T1 + · · · + Tn = I, with I being the n× n unit matrix.

Version 2
Let B be an n× n hermitian matrix with k (not necessarily equal to n)

distinct eigenvalues λ1, ..., λk. Then B can always be represented in the form

B = λ1T1 + · · · + λkTk (B.2)

where the n× n matrices T1, ..., Tk have the following properties:
a) T 2

i = Ti.
b) TiTj = 0 for i 6= j.
c) T1 + · · · + Tk = I, with I being the n× n unit matrix.
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APPENDIX C

The 6j symbols

Consider the sum of three angular momenta

J = j + j′ + j′′ (C.1)

The summation process can be done, for example, by first coupling g′ = j+j′,
and then J = g′ + j′′. It can also be performed as follows: first g′′ = j + j′′,
and then J = g′′+j′. These two coupling schemes correspond to two different
basis sets for the state space. The 6j symbols are related to the coefficients
that connect these two bases, and play a similar role to the Clebsch-Gordan
coefficients. The definition of the 6j symbols is [32]

〈j′g′′, JM |g′j′′, J ′M ′〉 = δJJ ′δMM ′

√

(2g′ + 1)(2g′′ + 1)(−)j+j′+j′′+J

{
j′ j g′

j′′ J g′′

}

(C.2)
where the l.h.s is the product of two state vectors corresponding to the two
coupling schemes.
Some properties:

1) In order for the 6j symbol not to be zero, the triads (jj′g′), (j′Jg′′),
(j′′jg′′), and (j′′Jg′) should satisfy the triangular inequality and have an
integral sum.

2) A 6j symbol is invariant in a cyclic permutation of its columns, and in
an exchange of two elements of the first line with the corresponding elements
in the second line.

3) Relation to the 3j symbols

∑

gm

(−)g+m(2g + 1)

{
j1 J1 g
J2 j2 f

}(
j1 J1 g
m1 M1 −m

)(
j2 J2 g
m2 M2 m

)

= (−)j2+J1+f+g
∑

M

(
j1 j2 f
m1 m2 −M ′

)(
J1 J2 f
M1 M2 M

)

(C.3)

4) Orthogonality:

∑

x

(2x+ 1)

{
a b x
c d f

}{
c d x
a b g

}

= δfg
1

2f + 1
(C.4)
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APPENDIX D

Publications

This appendix includes three articles we have written [1]. The first one,
concerning the amplified correlation (Chapter 5), is already published in the
Physical Review Letters. The second article has been accepted for publi-
cation in the Journal of Modern Optics. It summarizes the results of both
Chapters 5 and 6 (except for Section 6.3). The third one, submitted to the
Europhysics Letters, focuses on the study presented in Section 6.1.
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