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Abstract

In this thesis the effects of interactions between electrons in mesoscopic systems are studied.
One part is devoted to the study of mesoscopic super-conductors in which the size of the
system is comparable to both coherence length and London penetration depth. In recent
experiments performed on small aluminium disks the jumps of magnetisation as a function of
external magnetic field were observed. We show that these jumps are due to the penetration
of the magnetic field into the sample in the form of vortices and determine the number of
vortices by solving the Ginzburg-Landau equations in some geometries analytically at the dual
point and in the London regime. In both cases the resulting expressions for magnetisation
are in good qualitative agreement with the experimental results. Magnetisation curves at the
dual point are in good quantitative agreement with experiments, since this regime is relevant
for the most experimental situations. The Ginzburg-Landau equation in the London regime
can be used to study the topology of magnetic field profile. Each solution can be classified
by the set of topological numbers (index), the number of vortices being one of them. The
topological study of the solutions of the Ginzburg-Landau equations is not specific to the
London regime and can be extended to other experimentally relevant regimes as well as to
the more complicated geometries of the sample.

Another part of this work deals with an interacting electrons in mesoscopic conductors.
In parallel to the recent studies of such systems we study the localization in the Hilbert
space of Tomonaga-Luttinger model. For the standard version of this model, the states are
found to be extended in the basis of Slater determinants, representing the eigenstates of the
non-interacting system. The linear dispersion which leads to the fact that these eigenstates
are extended is replaced by one with random level spacings modeling the complicated one-
particle spectra of realistic models. The localization properties of the eigenstates are studied.
The interactions are simplified and an effective one-dimensional Lloyd model is obtained.
The effects of many-body energy correlations are studied numerically. The eigenstates of the
system are found to be localized in Fock space for any strength of the interactions, but the
localization is not exponential.
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Chapter 1

Introduction

The present Ph.D. manuscript is devoted to the study of effects of interactions between elec-
trons in mesoscopic systems. Recent developments in technology opened the possibility to
carry out experimental research on systems of small (submicron) size, such that the geometric
shape of the boundaries plays an important role in the physics of such systems. This systems
still have a large number of atoms, so they cannot be considered microscopic. On the other
hand, the small size of these systems allows for quantum phase coherence of electron wave
functions to play an important role in their physics. Such systems are said to be mesoscopic,
examples are the quantum dots or small superconducting grains of size comparable to the co-
herence length of electronic wave-functions (quantum dot) or superconucting order parameter
(superconductors). In these systems the interactions between electrons are important, since
it leads to effects such as finite life-time of electrons in a quantum dot or it is responsible
for the onset of superconductivity in a superconductors. In this work we study the combined
effects of interactions and finite size and geometry on the observable physical quantities. In
order to achieve this goal the usual theoretical approaches to the interacting systems, such
as perturbation theory, non-perturbative methods and exact solutions when applied to the
mesoscopic systems are modified in order to take into account the finite geometry and the
discreteness of the spectrum of the mesoscopic systems. Our research was motivated by the
recent experimental and theoretical observation of non-trivial effects of interactions in meso-
scopic systems. One of them is the discontinuous behavior of magnetization of a type II
superconductor which can be attributed to the sudden appearance of the vortex inside the
sample. It is worth mentioning here that the vortex interactions plays an important role even
in the case of infinite system and it remains essential for the vortices in a mesoscopic sam-
ple. Another interesting problem considered in this Ph.D. thesis is related to the existence
of the quasiparticle excitations in small conductors and their stability as compared to the
Landau Fermi liquid theory which is the main theoretical tool to describe the properties of
macroscopic conductors. Mapping the interacting system onto a problem of hopping on an
effective lattice we study the life-time of a quasiparticle within the framework of Anderson
localization.

The study of magnetic behavior of small superconductors was triggered by recent exper-
iments [1, 2] where the magnetization of small aluminum disks was measured. It has been
observed that instead of going to zero abruptly at the critical field as in the bulk type I super-
conductors or decreasing smoothly down to zero as in the type II materials, the magnetization
of the disks shows a series of discontinuous jumps, see Fig. 1.1. The periodicity of these jumps
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Figure 1.1: Magnetizations of Al disk of radius R = 120pum at T=0.5 K. Inset shows
magnetization response when the field is swept up continuously from zero to high fields and
then back to zero, as the arrows indicate.

for low fields corresponds to the entrance of additional quantum flux into the sample and in-
dicates the appearance of an additional vortex inside the samples the magnetic field reaches
a certain critical value. There is no controversy between the observation of vortices and the
fact that aluminum is a type I superconductor. It has been known for a long time [3, 4] that
thin films made of type I superconducting material can show the type II behavior such as
stable vortex phase. At each value of the external field the true equilibrium corresponds to a
certain vortex number, while states with different vortex number are metastable, separated
from the equilibrium state by an energy barrier. When the external field is varied the system
chooses the equilibrium state with different number of vortices which results in discontinuous
jumps of magnetization. When the direction of the field sweep is reversed one observes the
hysteretic behavior of the magnetization with the possibility of the paramagnetic magneti-
zation (paramagnetic Meissner effect). This is to be compared to the diamagnetic behavior
of a superconductor in the thermodynamic limit. In the more recent experiments [5] more
fine transitions within the same number of vortices were reported. The vortices can form
a giant vortex in the center of the disk as well as different geometrical patterns, Fig. 1.2.
The structural transition between these geometrical patterns is driven also by the external
magnetic field and shows the same hysteretic behavior as the transition between the states
with different number of vortices.

The hysteretic behavior is the manifestation of the metastability: thermodynamically un-
favorable states are very robust and can persist for hours at temperatures less than T, = 1.3K
so the transition to the other state depends on the field sweep direction. To explain these
experiments several numerical and analytical computations were performed. These compu-
tations are based on the phenomenological Ginzburg-Landau theory. Though the Ginzburg-
Landau theory is formally valid only close to the transition, the numerical results [6, 7] based
on this is theory were in remarkably good agreement with experimentally observed magne-
tization curves deep inside the superconducting phase. These works have revealed physical
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Figure 1.2: Structural transitions for seven vortices. The drawings show schematically the
expected distribution of magnetic flux for different branches of the magnetization curve.

phenomena that play an important role in such systems, like the role of surface barriers for
vortex nucleation and hysteresis [8, 9, 10]; the interplay between vortex-vortex and vortex-edge
interactions that explains vortex structures in mesoscopic disks [9, 8]; the transition between
a giant multiple vortex state and a state with several vortices carrying a unit quantum of flux
[11].

The thickness of disks in the experiments is small compared to both coherence length
and penetration depth, so the order parameter and vector potential can be considered as
constant across the thickness and the system is effectively two dimensional. Analytical studies
of the Ginzburg-Landau equations in two-dimensional systems require the use of various
approximations since, in general, exact solutions can not be found due to the non-linearity.
One approach is to neglect the nonlinear quartic term assuming |1| < 1, and to decouple them
by supposing that the magnetic field inside the sample is equal to the applied field H,. This
approach describes correctly the super-conducting-normal phase boundary [12, 13, 14, 15, 16],
but fails to explain the behavior of the sample deep inside the super-conducting state, where
the order parameter is large and the quartic term is important. In the linearized theory, the
order parameter profile is given by the solution of Scrédinger-like equation for an effective
charge -2e particle. In the disk geometry the eigenfunctions of this equation are classified
according to their angular momentum m, which represents the number of vortices or the
winding number of the order parameter phase. For each value of m the magnitude of the
corresponding eigenfunction has a minimum at the origin, so all the vortices are situated at the
center of the disk [16] therefore one can not study the role of surface barriers, the interaction
between vortices, and the fragmentation of a giant vortex into unit vortices. The critical
field for the entrance of the first vortex is obtained form the equality of the eigenenergies
for m = 0 and m = 1 states. Since these energies are certain functions of the external flux
® = wR?H,, the condition on ® makes the first entrance field to scale as inverse square of
the disk radius. This is to compare with the experimentally observed scaling of the first
entrance field as 1/R. In the vicinity of the upper critical field [16] the linearized theory



agrees quantitatively with the experimental results, since in this regime the vortices occupy a
big part of the sample so the order parameter is small. The superconductivity remains at the
boundaries and the upper critical field is essentially the surface critical field for a mesoscopic
disk. The non-linear term is therefore important for the physics of the superconductor and
must be taken into account when temperatures and magnetic fields are far below its critical
values and the number of vortices is small. We shall describe other analytical methods which
describe at least approximately the non-linearity of Ginzburg-Landau equations later on in
this introduction. Now we pass to the second problem studied in this Ph.D. work, that of
quasiparticle life-time in a mesoscopic conductor.

The validity of the quasiparticle concept is important for effective one-particle descrip-
tion of the physical properties of mesoscopic conductors and it has been a subject of recent
experimental [17] and theoretical works [18, 19, 20, 21, 22, 23, 24]. The central problem
is the possibility to describe the low energy excitations of small electronic systems, such as
quantum dots as a superposition of few-particle states which behave as a single particle with
a finite life-time, the picture which is valid for the macroscopic conductors and is the basis
of the Landau Fermi liquid theory. For a mesoscopic conductor there appears an additional
energy scale: the spacing of one particle levels, which is zero for macroscopic systems. The
excitations containing more than one particle also have discrete spectrum, which prohibits
the application of the Fermi Golden Rule for the calculation of the life-time. The problem
is to determine the range of interactions and excitation energies for which the quasiparticle
picture is valid for a finite size conductor. For this purpose the mapping of the Hilbert space
of interacting electrons onto an effective lattice was introduced in [20] and the problem of
quasiparticle life-time was considered within the framework of the Anderson localization [25].
Each site of the effective lattice represents the eigenstate of the non-interacting system (the
Slater determinant of one-particle orbitals) and the bonds represent the interaction matrix
elements. The states connected by interactions are organized in generations according to the
number of particle-hole pairs excited form the Fermi vacuum. Introducing the concept of the
distance between the Slater determinants according to the number of occupied one-particle
orbitals the effective model is tight binding, since the interactions have finite range and cou-
ple only the states belonging to generations, whose particle-hole content is not very different.
Similar models appeared earlier in the studies of the scattering of a proton by heavy nuclei
[26]. The authors of [20] make several approximation, namely they neglect the transitions to
the states of the same generation and to the generation with the smaller number of pairs,
since the number of such transitions is much smaller than the number of transitions to the
next generation with additional electron-hole pair. In this approximation the effective lattice
have no closed loops and have structure of the tree (Cayley tree). Each site on the Cayley
tree has K + 1 neighbors and K is the branching number. In the many-body context the
branching number is related to the energy e of the initial particle excited above the Fermi sea.
The Anderson hamiltonian, used to study the localization transition is characterized by the
diagonal (on-site) energies distributed randomly with the typical value W and the off-diagonal
hopping amplitude V. These two energies can be combined into the dimensionless parameter
Z = W/V which measures the strength of the disorder. The Cayley tree model provides the
exact solution of the localization problem. It was studied [27] using the self-consistent equa-
tion for the self-energy of the Green’s function. This is essentially the mean-field approach
which is exact above the upper critical dimension. The effective dimension of the Caley tree
lattice is infinite, since the number of sites grows exponentially with the size of the system,



and the self-consistent equation is exact. Studying the fixed points of this equation the local-
ization transition for the value of parameter Z = Z, = K In K was found. For the disorder
parameter Z above this value the discontinuity of the self-energy across the real axis is zero,
which results in the point-like spectrum and the wave-functions are exponentially localized in
the range of localization length. For small disorder the wave-functions are extended and the
self-energy has a finite discontinuity across the imaginary axis. The criterion for the localiza-
tion given above is valid when the energy of the eigenstate is in the center of the energy band.
For weaker disorder the states with energies in the band center are extended and those close
to the band edge remain localized, defining the mobility edge E. separating the two regions
of the spectrum. The mobility edge for the Cayley tree lattice was studied in [28] and the
it was shown that the localization length as a function of energy diverges when the mobility
edge is approached from below with critical exponent ¥ = 1. The study of the conductivity
on the Cayley tree composed of one-dimensional random scatterers [29] predicted the critical
exponent for the conductivity to be s = 2. Using the results of the scaling approach to the
localization [30] and the fact that the mean field theory is exact on the Cayley lattice it was
argued in [31] that the upper critical dimension for the localization transition is four. It is
interesting [27] that though the states are extended for the disorder less than the critical value
Z < KInK they are not extended uniformly over the whole tree. A typical state occupies
an infinite random subtree, formed by a small fraction of the whole tree. To delocalize the
system completely the disorder must satisfy Z < K.

These results were used in [20] to predict the appearance of a quasiparticle picture in a
mesoscopic conductor. The existence of quasiparticles with finite life-time corresponds to the
extended regime in a many-body system, while in the opposite localized regime the initially
introduced particle is coupled by interactions to a small number of states and has no definite
life-time. Using the relation between the energy of the particle above the Fermi level € and the
branching number K the many-body system is in the localized regime for a particle energy
below the lower threshold ¢** = Ay/g/Ing, where A is the one-particle level-spacing and g
is dimensionless conductance, i.e. conductance in units of e?/h. Due to the existence of two
different delocalized regimes it was shown that until the excitation energy e reaches another
critical value €* = A,/g > €** the states are not completely delocalized, i.e. they do not mix
large number of non-interacting states, but rather a small portion of them, corresponding to
a subtree of the whole lattice. The quasiparticle picture is valid, therefore, for excitations
with energy above €*.

Recently the system of interacting particles was studied numerically [22, 23] and analyt-
ically [21, 32, 24] from the point of view of localization in the Hilbert space. The inverse
participation ratio and the spectral statistics were computed as a function of interactions
between the particles. The inverse participation ratio is the fourth power of amplitude of the
wave-function on some particular site summed over all sites of the lattice. It is designed to
characterize the degree of the localization: for localized system the wave-function is peaked
around one site, so the inverse participation ratio is finite, while for an extended wave-function
the site amplitude is roughly an inverse square root of the total number of sites and the in-
verse participation ratio vanishes in the thermodynamical limit. The spectral statistics is
also sensitive to the localization behavior: for a localized system the energy levels are dis-
tributed independently according to the Poisson law, while for an extended system there exist
strong correlations between the levels (level repulsion) given by the Wigner-Dyson distribu-
tion. Using these criteria it was observed that the choice of the type of the lattice affects
the localization-delocalization transition point. The spectral statistics and the properties of



eigenstates such as inverse participation ratio were shown to be sensitive to the type of the
lattice. It was doubted that the actual transition and the properties of states in the delocal-
ized phase can be accounted for properly using the pure tree-like structure of the lattice. The
Cayley tree model with a large branching number was studied by super-symmetry methods
in [21] and the existence of the special, not completely delocalized, phase between ¢** and
€* was not confirmed. It was found there that the states are strongly correlated above the
threshold € > ¢**. The Cayley tree model was questioned in [32]. Taking into account the
possibility of closed loops on the lattice using the random-matrix theory no delocalization
transition was observed, rather the participation ratio and spectral width of the eigenstates
of the interacting system exhibited a smooth crossover from almost localized to delocalized
states. In the analytical study [24] of the perturbation series convergence for the self-energy it
was claimed in that the infinite tree-like lattice used in [20] may be inadequate for description
of the quasiparticle decay. So, the study of the Anderson localization on effective lattice with
different structure representing the many-body Hilbert space, especially the structure of the
extended stateson this lattice would certainly be of interest.

Now we discuss the methods we used in order to deal with interacting mesoscopic systems
described above. To find an approximate solutions to the Ginzburg-Landau equations and
to calculate the thermodynamical properties of small superconducting discs and cylinders we
employed two approaches. These approaches are valid in different regimes of a superconductor,
namely they depend on the value of the dimensionless Ginzburg-Landau parameter x =
A/€, defined as the ratio of the two fundamental lengths: the London penetration depth A,
describing the spatial variations of the magnetic field and the correlation length ¢ describing
the order parameter. For type I superconductor x is less than 1 /\/5 and for type II & is
greater than this critical value. The difference between the two types of superconductors can
be rephrased in terms of vortex interactions. For type I the vortices attract each other, so
no stable one-vortex configuration can be observed in such materials. For type II the vortex-
vortex interactions are repulsive and the bulk materials the vortices appear in stable triangular
lattice configuration, the Abrikosov lattice. The special value x = 1/4/2 is called the dual
point and corresponds to the non-interacting vortices for an infinite system. At this particular
value of the parameter the equations in an infinite plane reduce to first order differential
equations that can be decoupled [33, 34, 35] and the expression for the Ginzburg-Landau free
energy is particularly simple. At the dual point the existence of vortices can be demonstrated
analytically [36]. For aluminum, which was used in the experiments A = 70 nm and ¢ = 250
nm, so k = 0.28 and aluminum is a genuine type I superconductor. However, x depends on the
sample thickness and characteristic type II behavior was observed experimentally [4] in thin
films of type I superconductors. It is known [3] that for thin sample the effective penetration
depth is A\?/d, where d is the thickness. Using the fact that the effective Ginzburg-Landau
parameter of aluminum disk used in the experiments is larger than its bulk value we try
the approach valid at the dual point when x takes the special value 1/ V2. Tt is based on
an exact result for the free energy of infinite superconductor described by two-dimensional
Ginzburg-Landau equations. To apply this result to a disk of finite size we observe that
the solution valid for an infinite plane approximates very well the order parameter and the
magnetic field in the inner region of the disk. For the disk boundary a simple variational ansatz
can be used to find the contribution of this domain to the total free energy of the sample.
Assuming thermodynamical equilibrium, the matching fields (critical fields corresponding to
the entrance of the n-th vortex) are obtained from the minimization of the free energy with
respect to the number of vortices. We study the Ginzburg-Landau free energy not only at



the dual point £ = 1/4/2 but also in its vicinity where vortices start to interact weakly [37].
Taking into account non-linear effects, our calculations describe the magnetic response of the
sample as its size changes, providing an understanding of the non-linear Meissner effect and
of the multi-vortex state. We also study non-equilibrium vortex configuration in order to
determine the interaction between a vortex and edge currents.

A second approach is to use the London equation which can be derived from the Ginzburg-
Landau equations by supposing that || = 1 everywhere except on a finite number of isolated
vortex locations where |¢)| = 0. Many theoretical results have been derived from the London
equation, such as discrete nucleation of flux lines in a thin cylinder [38, 39] or in a thin disk
[3, 40], the existence of surface energy barriers [41, 42], and the computation of polygonal ring
configurations of vortices in finite samples [43, 44]. London’s equation is valid rigorously when
the parameter k goes to infinity, i.e. for extreme type II super-conductors in which vortices
are indeed point-like. Despite the fact that in the experiments x is of order of unity, we resort
to the London limit due to the simplicity of the resulting equations which enables us to study
the topological properties of different vortex configurations unsensitive to the vortex size.
We believe that the topological properties obtained in this limit remain valid for the whole
range of the Ginzburg-Landau parameter. Using known results [38] for the magnetization
of an infinite cylinder with a circular cross-section, we derive, in the mesoscopic regime,
closed expressions for the magnetic field and the free energy that are suitable for analytical
calculations. The equilibrium magnetization is curve is obtained through the minimization of
the free energy and the series of matching fields are calculated. The metastable states can be
also studied within the London regime. We obtain the energy barrier for a vortex to reach the
sample center (Bean-Livingston barrier) and study the vortex nucleation in the sample. The
paramagnetic Meissner state can then be explained using a simple scenario for the hysteretic
behavior of the magnetization, involving the appearance and the disappearance of this surface
barrier.

Once the existence of metastable states established, a criterion to classify them is re-
quired. The number of vortices is a simple topological number but it is not precise enough
to distinguish between all different type of states. An attempt to classify different vortex
configurations was done in [45]. In this work the uniform magnetic field distribution was
assumed and order parameter was expanded in eigenstates of linearized Ginzburg-Landau
equation belonging to different values of angular momentum m. The solution was found by
minimizing the Ginzburg-Landau functional with respect to the coefficients of this expansion
in the restricted subspace defined by finite set of angular momentum values. Including more
angular momentum components to this set the transitions from the giant vortex state to
different ring-like configurations of vortices were observed, so this set of integers was pro-
posed as classifying numbers to characterize a given metastable vortex state. However it is
not obvious to relate them to the geometric features of a given pattern. A more geometrical
path is followed here to present a topological description of vortex patterns. Our study is
based on an analogy between a configuration of vortices and a dynamical system, obtained
by interpreting the super-conducting current as the local (phase-space) velocity of a particle.
The Hamiltonian of the associated dynamical system turns out to be the magnetic field. We
shall show that a configuration of vortices can be characterized by the critical points of the
magnetic field (or equivalently the points where the current vanishes). The number of critical
points of a given type (maxima, minima, saddle-points) will provide a natural set of topolog-
ical invariant integers associated with a configuration. This geometrical analysis reveals the
existence of structural transitions between states with the same number of vortices: indeed,
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the number and the nature of the critical points can vary abruptly when the applied field
exceeds some specific values, provoking topological phase transitions. For a simple polygonal
configuration of vortices, we calculate the corresponding transition fields. These topological
changes are in fact best visualized considering the geometrical properties of special closed
curve I', first introduced in [46], which is everywhere orthogonal to the current lines and
which passes through the critical points of the system. Any structural change affecting the
critical points, will manifest itself in a topological change of the shape of I'. This curve thus
provides an efficient and elegant tool to characterize vortices patterns and to understand qual-
itatively the topological transitions between different configurations. It must be mentioned
that it is the curve I' which separates the inner paramagnetic and outer diamagnetic regions
of a superconducting sample and exists for any value of the Ginzburg-Landau parameter. In
particular at the dual point discussed earlier it defines the boundary region of the sample and
allows to obtain an analytic expression for the free energy. Having described the methods for
calculation of the properties of mesoscopic superconductors we pass to the methods we used
for the study of quasiparticles in mesoscopic conductors.

To deal with the interacting ballistic conductors we adopted the approach used in [20] and
applied the analogy between hopping of particles on a real space lattice and the interactions
matrix elements between the states of non-interacting system. The goal is to study localization
in the many-body Hilbert space of a system for which the properties of the extended states
are known exactly without any assumptions on the structure of the effective lattice. To
this end we considered the one-dimensional interacting systems [47] and we choose the chiral
Tomonaga-Luttinger model due to its simplicity and the possibility to find the eigenstates
for any strength of interactions by bosonization [48]. The transformation from the non-
interacting fermionic to the interacting bosonic basis is given by the irreducible characters
of the permutation group and a numerical algorithm can be implemented to diagonalize the
interacting Hamiltonian. We used this transformation to compute numerically the inverse
participation ratio of the bosonic eigenstate in the non-interacting basis we found that that
the eigenstates are extended. This can be attributed to the fact that due to the linearity of the
one particle energy-momentum relation the non-interacting eigenstates are degenerate. The
interactions lift this degeneracy mixing the Slater determinants into coherent superpositions
which are described by the bosonic quantum numbers. Thus the bosonic eigenstates of the
full interacting model can be viewed as a generalization of the extended Bloch states in the
tight-binding models with degenerate on-site energies. We employed this analogy to find the
possible mechanism which would lead to the localization of the interacting states.

It is well known that the linearization of the dispersion is the required to solve the
Tomonaga-Luttinger model [48]. In analogy to the disordered systems a random dispersion
was introduced into the Tomonaga-Luttinger model to study the properties of its eigenstates
as a function of the disorder. It is expected to model a system where the single particle spec-
trum is complicated. The question we address is whether this model exhibits localization,
since the randomness introduced into the dispersion leads to randomness of the diagonal ma-
trix elements of the many-body Hamiltonian analogous to the diagonal disorder introduced
into tight-binding Anderson models.

We found that the states remain localized in the basis of Slater determinants, i.e. resemble
the states of the non-interacting systems. To obtain this result the special properties of the
interaction matrix were used, i.e. its non-zero elements are concentrated along the diagonal
so the interactions are in some sense of short range. This enable us to map the interacting
problem into one-dimensional localization model similar to the exactly solvable Lloyd model
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[49]. The difference is that the parameters of the diagonal disorder derived from the random
dispersion are position-dependent. Introducing a position dependent localization length we
obtain a non-exponential localization of the eigenstates. The dependence of the localization
length on the energy of the excitation is then studied in the weak and strong coupling regimes.

Our presentation is organized as follows. In chapter 2, some basic features of the Ginzburg-
Landau theory of super-conductivity are recalled. In chapter 3 the dual-point solution for an
infinite system is modified to take into account the effects of the boundary. This description
is then applied to study the thermodynamics of the mesoscopic super-conductors in different
geometries such as infinite cylinder and thin mesoscopic disk. The magnetization curves are
obtained and compared with the exact numerical solutions of the Ginzburg-Landau equations.
In chapter 6 the case of the infinite cylinder is studied using the London limit of Ginzburg-
Landau equations. The topological aspects of the analytical solutions are of main importance
since the topological description remains valid for the general . In chapter 9 we review some
known facts about the standard Tomonaga-Luttinger model. We describe the structure of the
Hilbert space as an effective lattice and discuss the bosonization solution in this context. In
chapter 10 we introduce randomness into the dispersion law of the Tomonaga-Luttinger model
and simplify the interaction matrix. Then we solve the resulting model with assumption of
independence of the on-site energies. Chapter 11 is devoted to the study of relevance of the
correlations between the energies. In chapter 12 we present the conclusions on our studies
of the mesoscopic superconductors and localization in the Hilbert space of the Tomonaga-
Luttinger model. The results are discussed and further investigations are proposed. The
appendices provide the mathematical details of the calculations.
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Chapter 2

The Ginzburg-Landau theory of
super-conductivity

We recall here some basic features of the Ginzburg-Landau theory and define our notations.
The order parameter 1) is a complex number defined by its magnitude and phase:

p = [ple™ (2.1)

As in the general theory of second order phase transitions one writes down the free energy as
an expansion in powers of the order parameter and its gradient:
B B 12
Fs=Fy + [ alyl® + St + 1 [ |

2 dm

(2.2)

where the integration is performed over the volume of the sample and we omit the volume
element in what follows. Here Fy is the free energy in the normal state (i.e. for ¢ = 0); 3 is
a positive coefficient independent of the temperature and « is a function of the temperature
given by

a~(T-T,), a>0 (2.3)

so « is positive above the transition and negative below. The coeflicient of the gradient term
implies that the particles has mass 2m. Here the mass m is identified with the mass of the
electron, since as we know from the microscopic BCS theory Cooper pairs consist of two
electrons. However this choice is not crucial for the following discussion and we use it as
convention.

Now we consider our system in magnetic field described by the vector potential A satisfies
VxA= E, where B is the local magnetic induction. When a magnetic field is present the
expression (2.2) has to be modified in two ways. Firstly, the magnetic field energy density
B?/8m must be added to the free energy density. Secondly, the gradient term has to be
changed so as to satisfy the requirement of the gauge symmetry:

o L e o
Vip — (v - %A) $SGinzbu (2.4)
Thus we have the following basic expression for the free energy of a super-conductor:
B? o B 4 B 2ie 2\ |2
= — — — ——A 2.
Fo(B) = Fy() + [ -+l + Gl + 4 | (V- 224) v (2.5
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where Fy(0) = Fy is the free energy of the sample in the normal state in the absence of
the magnetic field. It must be emphasized that the coefficient 2ie/hc in th expression is
not arbitrary (in contrast to the above-mentioned conventional choice of the h?/4m). The
doubling of the electron charge is due to the Cooper effect; this coefficient could not be fond
by purely phenomenological means.

In a homogeneous sample, with no magnetic field, the order parameter v is independent
of the coordinates. Then the expression (2.2) reduces to

Fs — Fy = Vi + 2l (2:6)

where V' is the volume of the sample. For T' > T, the minimum is obtained for ¢y = 0 as
expected in the absence of the super-conductivity. In the super-conducting phase (for T' < T¢)
the non-trivial solution

> = —a/B (2.7)

appears and the free energy reaches its minimum:
Fs — Fy = —Va?/2p. (2.8)

This value can be related to the thermo-dynamical critical magnetic field by the following
argument. The condition for the super-conducting transition at external field He = H. is the
equality of the Gibbs free energies Gg(H.) = Gn(H,.), where we express the free energy as a
function of the external magnetic field H, rather than the magnetic induction B by means of
the Legendre transform

G = F——/B (2.9)

Since the magnetic field can exist only at the boundary of a macroscopic super-conductor its

free energy is the same as for zero magnetic field: Gg = Fg. On the other hand the magnetic

field penetrates completely the normal metal B = H,, neglecting small magnetism of these

materials, and the Gibbs free energy of the normal metal is given by G(H,) = Fy — V H? /8.

Therefore

VH?

8T

This expression sets the energy units of the Ginzburg-Landau free energy functional.
In a more general situation th solutions minimizing the Ginzburg-Landau functional are

found by independent variation of the fields 1, 9* and A. Varying the integral (2.5) with

respect to 9* and integrating by parts the term (61& - (2ie/hc)/f¢) V*, we find

Fy —Fs =Va?/28 = (2.10)

5F5:/[—% (V—m—eA) b+ o + Bl qp] S +—/(v¢—2“—6,4¢>5¢ .d§

(2.11)
where the first integral is taken over the volume and the second — over the surface of the
system. Therefore we obtain one condition for the stationarity of the Ginzburg-Landau func-
tional:

m

2
o (_iw - 2_,4) ¥+ atp + Bl = 0. (2.12)
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Varying the functional with respect to v gives the complex conjugate equation. Now we vary
the integral (2.5) with respect to A to obtain the Maxwell equation of electrodynamics:

L L 4
VxB= ?” 7 (2.13)
where the current density is
ieh - - 22 5o
7=——@W"Vy¢ — ") — — ||  A. 2.14
= = WV =y Tyt -y (2.14)

The equations (2.12)-(2.13) form the complete set of Ginzburg-Landau equations. The bound-
ary conditions on the solutions of these equations are found from the condition that the surface
integral in the variation of §Fs is zero. Thus it follows from (2.11) that

- (vqp - %A’qp) =0 (2.15)

where 7 is the normal vector at the surface of the system. As a result of this condition
the normal component of the current (2.14) is also zero as can be seen by multiplying the
boundary condition (2.15) by ¥* and subtracting from it the complex conjugate expression.
The boundary conditions on the magnetic field depends on the particular geometry of the
sample and will be discussed in what follows.

In order to obtain the characteristic length scales of the Ginsburg-Landau equations we
consider first the solution of (2.12) in the absence of the magnetic field in a situation when
varies smoothly in the space. In the linear approximation the equation (2.12) is

2
h—v%p +ayp=0 (2.16)
4m
which defines the typical length, the correlation length ¢? = 72 /4ma over which v varies. The
second characteristic length related to the space variations of the magnetic field is obtained by
substituting the value (2.7) for the order parameter to the second Ginzburg-Landau equation
(2.13) and taking the curl operation on both sides. In this way one obtains the London
equation: ,

V25 =" C 5 _ B/a? (2.17)

me? B

which defines the second characteristic length, the London penetration depth A\? = mc?3/8me?a.
Both characteristic lengths diverge at the transition as can be seen from the expression (2.3)
for a(T). The two characteristic lengths A and £ appear as phenomenological parameters.
Their ratio k = A/€ is called the Ginzburg-Landau parameter. Now we show that it is the
only dimensionless parameter which describes the super-conductor. To this end we make the
following change of units:

2
r—V2ir, B-— “

L 5 D T
\/iﬁ, ’ ’ 47 ’

(2.18)
which amounts to measuring lengths in units of Av/2, the magnetic field in units of ¢y/47\2
and the vector potential in units of ¢g/2v/27\, where the flux quantum ¢y is given by ¢g =

hc/2e. The order parameter is rescaled by its value for homogeneous system in the absence

i, _he
2v/2e SKk2m
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of magnetic field (2.7) and the density of Ginzburg-Landau free energy F'/V, is measured in
units of H2/8k?m where H,, the thermodynamic field, satisfies H. = ko/2v/2m\2.

Since we are interested in variation of the free energy with magnetic field we can subtract
the constant energy of the super-conductor for homogeneous system without magnetic field
Fs(0) = —a/28 = H?/4w and define F = Fg(B) — Fs(0). In the dimensionless form it is
given by

B? 2 - )
Fe [ 4R (1= tP) + |9 - iduf (2.19)
The Ginzburg-Landau equations (2.12)-(2.13) become
—(V—id)yp = 2&>p(1—[y]’) (2:20)
VxB = 27 (2.21)

The current density is now given by 7= Im(y*V)) — |'¢|2f_1' and is related to the super-fluid
velocity ¥ by
s = J/|9[* = Vx — A (2.22)

Outside the super-conducting sample, 9 = 0. The boundary condition (2.15) on the surface
of the super-conductor in dimensionless form are

-

n-(V —iA)p = 0. (2.23)

The London fluxoid is the quantity (v_; + /T), that is identical to 6){. Since x is the phase

of the univalued function v, the circulation of the London fluxoid along a closed contour C is
quantized [41, 50]:

]{(v_;+ff)-a?2:fﬁx-(ﬂ:27m (2.24)
c c

The integer n is the winding number of the phase of the system along the contour C and is a
topological characteristic of the system.

In this study, the super-conducting sample is either an infinite cylinder or a thin disk,
with cross-section of radius R, placed in an external magnetic field parallel to its axis. When
the variation of the order parameter and magnetic field in axial direction is small the system
can be regarded as effectively two-dimensional. For infinite cylinder the order parameter and
magnetic field are uniform due to the translational symmetry along the axis. The situation
of magnetic disks encountered in the experiments must be analyzed more carefully. The flux
lines deviate a ditance of order R over the effective screening length A.. The expression of
the effective screening length is unknown in the general case. In the limit of large R it is
given by A\?/d [51, 40]. For a finite and small enough R we assume that the condition R < A,
holds, so the flux lines are straight in the vicinity of the sample and the magnetic field is
independent of the position along the axis. For the order parameter the thikness must be
compared to the correlation length ¢ ~ 250nm. In the experiments the thickness d is of order
70nm and the relation d < ¢ is satisfied. In what follows we write down directly the two-
dimensional Ginzburg-Landau energy functional (2.19) for the Ginzburg-Landau free energy
per unit length in the axial direction. The integral are performed over the surface €2, the
circular area of radius R, perpendicular to the axis. Since the radius of the cross-section, R,
is an important parameter, we define the dimensionless quantity: a = A\/v/2R; a is supposed to
be small compared to 1 (typically a ~ 1/10 in the experiments) unless stated otherwise. The
flux created by the external and uniform magnetic field H, (expressed in units of ¢g/4m\2)

16



through the cross section wR? of the sample is equal to mR2H ¢ /47 \? = H.po/2a?. The flux
¢e, in units of the flux quantum ¢y, is thus given by:
H,
2a?

Pe = (2.25)
We emphasize that, in the units we have chosen, the flux ¢, of a magnetic field B through a
surface 2 is obtained via the following formula:
1 — — ]_ —_ —
qu:—/B-dS:— A.d (2.26)
2 Ja 27 Joq
An extra factor 1/27 appears here because B is given in units of ¢g/47\2, the surface in units
of 2A? and the flux in units of ¢.
The Gibbs free energy G obtained from F' via a Legendre transformation (2.9) reads in
the dimensionless form:

G=F-H, / B=F — H2n¢y = F — 4ma’dechy (2.27)
Q

In a normal sample, 9y = 0 and B = H,. Therefore, the Gibbs free energy G of a normal
sample is given by:

Gy =Fy — H, / B = Fy — 2mad®$? (2.28)
Q

At thermodynamic equilibrium, the super-conductor selects the state of minimal Gibbs free
energy. The quantity that we are interested in, and which is measured in experiments, is the
magnetisation M of the super-conductor due to the applied field given by 4w M = B—H,. It is
obtained, at thermodynamic equilibrium and up to a constant equal to the super-conducting
condensation energy, from the difference of the (dimensionless) Gibbs energies

G=Gs— Gy =F +2ma’¢? — 4wa’ dpedy (2.29)
using the thermodynamic relation [41]:

_ 199
M=o (2.30)

These are the basic quantities and notation which we use in the following sections.
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Chapter 3

Dual point of the Ginzburg-Landau
equations

We now study the particular case of the dual point, defined by k = 1/ V2. At this value the
non-linear second-order differential equations for ¢ and A can be reduced to first-order ones.
Since we consider a geometry of a long cylinder or a thin disk the system under considera-
tions are essentially two-dimensional. In two dimensions we have the following mathematical
identity:

(V —idyp| = DY+ x 7+ BlyP (3.1)

where 7'is the current density and the operator D is defined as D = 0, + 10, — i(A; + 1A4y).
Using this identity at x = 1/4/2 the free energy (2.19) of a two dimensional domain  can be
written as [34, 52]:

F=[(3(E-1+1P) + o)+ § G+ )-d (32)

The second integral over the boundary of the domain {2 results from the Stokes theorem. If
we suppose that the domain €2 is infinite and super-conducting at large distances [34], i.e.
|| — 1 at infinity, then the boundary integral in (3.2) is identical to the fluxoid. Using the
quantization property (2.24), we obtain

1
F=2m+ [ (3B -1+ P+ DY) (33
Q
The free energy is thus minimum when Bogomol’nyi equations [34] are satisfied, that is when,

Dy = 0 (3.4)
B = 1-[¢

These two equations can be decoupled and one obtains that |1 is a solution of the second-
order nonlinear equation

VP =2 (jy* ~1) (3.6)

This equation is related to the Liouville equation. It was proven that this equation as well as
(3.4, 3.5) admit families of vortex solutions [36]. For infinite systems, it can be shown that
each vortex carries one flux quantum and that the winding number n is equal to the number
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of vortices in the system. Thus, the total free energy results only from the boundary term in
(3.2) and is a purely topological number:

F =2mn . (3.7)

The free energy is proportional to the number of vortices: at the dual point, vortices do not
interact with each other [34, 37].

3.1 Finite size systems

In a finite system with boundaries, vortices do not interact with each other at the dual point
but they are repelled by the edge currents. Therefore, at thermodynamic equilibrium, all
vortices collapse into a giant vortex state. Since the super-conductor under discussion has
a circular cross-section, this giant vortex (or multi-vortez) is located at the center and the
system is invariant under cylindrical symmetry. In a finite size mesoscopic super-conductor at
the dual point, the boundary integral, in (3.2), can not be identified with the fluxoid because
|4| is in general different from 1 on the boundary of the system. This quantity is no more
a topological integer but a continuously varying real number. The two terms of (3.2) can
not, therefore, be minimized separately to obtain the optimal free energy. In [52], we found
a method to circumvent this difficulty: if the system is invariant under cylindrical symmetry,
i.e. all the vortices are at the center of the disk, then the current density has only an azimuthal
component 79. The current jy has opposite signs near the center (where the vortex is located)
and at the edge of the disk (where Meissner currents oppose the penetration of the external
field). Hence, there exists a circle I' on which g vanishes [52]. Along I', we have

T+ A= 7/l + A =Vyx and therefore ﬁ (j'—l— /T) .dl = 2mn (3.8)

The domain €2 can thus be divided into two sub-regions, 2 = Q;U€y, such that the boundary
between €21 and 2 is the circle I'. By convention, we call €; the bulk and the annular ring
)y the boundary region (see Fig. 3.1).

Numerical solutions of the Ginzburg-Landau equations in a two dimensional super-conductor,
with cylindrical symmetry, clearly show the separation of the sample cross-section into two
distinct subdomains. In Fig. 3.2, we have plotted the order parameter and the magnetic field
in a cylinder of radius R = 10\v/2 with one vortex at the center. These two quantities vary
only near the center and near the edge: there is a whole intermediate region in which || and
B remain almost constant. When the system is large enough, these constant values are, to
an excellent precision, identical to the asymptotic values of || and B in an infinite system.
The current vanishes for a value of r for which ’fl—f = 0, and this determines the radius of the
circle I'. In Fig. 3.2, this corresponds approximately to r ~ 5.5, though practically, the circle
I" can be placed anywhere in the saturation region where the current is infinitesimally small.

Although the Bogomol’'nyi equations (3.4, 3.5) do not minimize the Ginzburg-Landau free
energy [53], we notice that the behaviour of |1| and B in the bulk sub-domain € is still
given by the relation B = 1 — |#/2,(3.5) which, as shown in Fig. 3.3, represents indeed an
excellent approximation. Thus, using (3.2) and (3.8), we conclude that at the dual point the
free energy of 21 can be calculated as that of an infinite domain, namely

.7:(Q1) =27mn (39)
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Figure 3.1: The sample cross-section is divided into two subdomains by the circle I'. The
arrows indicate the direction of the current.
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Figure 3.2: Behaviour of the order parameter and the magnetic field at the dual point for a
cylinder of radius 10 Av/2 containing one vortex.
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Figure 3.3: Comparison between B and 1 — |1|? in a cylinder of radius 10 A\v/2 containing
one vortex.
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We also emphasize that the flux in ; is quantized and one has:

1
— B = 3.10
27 /Ql " ( )

To calculate F(€2), the identity (3.2) valid at the dual point is of no use anymore, since
|1| is in general different from 1 at the boundary, and the boundary integral in (3.2) can
not be identified to the fluxoid. We therefore have to go back to the definition (2.19) of the
Ginzburg-Landau free energy which becomes at the dual point:

2 22
P = [ D (ol + - A+ S (3.11)
2

The assumption of cylindrical symmetry implies that x = n@ where 0 is the polar angle and
n the number of vortices present at the center of the disk. Examining again Fig. 3.2, we
observe that in (25, the order parameter and the magnetic field vary from their values on the
edge to their saturation values over a region of width &, which is of order 1 in units of Av/2'
The length § therefore represents the typical distance over which the integrand in (3.11) has
a non negligible value.

With the help of this observation, we shall estimate F(£23) using a variational Ansatz: we
shall consider that the modulus of the order parameter has a constant value 1 over a ring of
width §, included in Q5 and that A and B decay exponentially with a characteristic length §
from their boundary value to their bulk value. Clearly, our approximation will be valid only if
the width of 5 is large enough compared to 1. We first remark that our Ansatz is compatible
with the boundary condition (2.23), which reduces here to diy/dR = 0 and that it allows us
to neglect the curvature term (V|t])2 in (3.11). To evaluate the term proportional to the

'Indeed, one has for a thick system & ~ A at the dual point. For a thin film of thickness d, § ~ A\?/d in the
London limit [3]. Since we are considering a mesoscopic regime in which d ~ A, both expressions indicate that
§ is of order 1.
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super-fluid velocity vs(r) (2.22), we first notice that, due to the Meissner effect, it decreases
from the boundary at r = R with a behaviour well described by

vs(r) = vg(R)e B/ (3.12)

with vs(R) = a(n — ¢p). To obtain the last equality we used that the boundary value of the
vector potential is A(R) = a¢gyliy, where ¢y is the total flux through the system. Hence, for
a constant amplitude 1y of the order parameter, we have

%f(m) = % (ydu2(R) + (1-43)?) + i/m 37 (3.13)

27

The magnetic contribution in (3.11) is obtained from the typical magnitude B of the
magnetic field in Q9 determined using (2.26) and (3.10) as

1 1 1 6

¢b:—/B:— B+ — B=n+—

2m Ja 2 Jo, a

B (3.14)
2 Ja,

Thus, using the fact that B? decrease exponentially with a characteristic length §/2, we
estimate the contribution of the magnetic energy to F(22) as being:

1 B? 5 B? a 9
%/{227—%7—5(”’_@)) (3.15)

After substituting this expression into (3.13) we minimize F(€9) with respect to 1. The
optimal variational value of 1y is given by:

“L2(R)=1—2L(n—¢y)? i _
w(z) — 1 2Vs (R) =1 2 (n ¢b) }f |a(n ¢b)| < \/i (3.16)
0 if |a(n— )| > V2
Inserting these expressions in (3.13), we obtain the variational free energy F(€s):
1 Av3(R) — BvX(R) if |a(n — ¢p)| < V2
—F(Q) = § N _ Z 3.17
21 (€22) { % + 4}WUE(R) if |a(n — )| > V2 ( )
with A and B defined by
J 1
A = 20 (1 + W)
)
B = — 1
S (3.18)

The total free energy of the mesoscopic super-conductor containing n vortices, at the dual
point, is thus:

! - { AvX(R) — BuA(R) if |a(n — ¢)| < V2 (3.19)

%f(n, %) = §/2a +vi(R)/4aé if |a(n — ¢p)| > V2

This energy is the sum of two contributions:

i) a bulk term proportional to n which is a topological quantity at the dual point.

i) a bulk t tional t hich is a topological tity at the dual point

(ii) A boundary term, reminiscent of the well-known ‘Little and Parks’ free energy [41]
(this boundary term can be given a geometric interpretation in terms of a geodesic curvature
[62, 54]).
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3.2 A cylinder at the dual point

We now apply the relations (3.19) to the simple case of an infinitely long super-conducting
cylinder of radius R > A, lying in an external field H, directed along its axis. There are two
contributions to the total flux ¢;: the flux of n vortices present at the center of the sample
and a fraction of the applied flux ¢, localized near the boundary and proportional to A/R
(due to the Meissner effect). Hence,

H
¢y =n+ 2a¢, with ¢, = —= (3.20)
2a2
The exact numerical coefficient in front of the term a¢, does not affect the result of our
calculation; we take it equal to 2, the value obtained in the London limit [38]. The total free
energy, using (3.19) and the fact that v,(R) = —2a2¢., is given by

(3.21)

1 ,H{ 40t (AQ? —4a'Bgt) it alg.| < 1/V2
2

—F(n,¢p) = 2 %qsg if |a®(¢p] > 1/v2

Using (2.27) and (3.21), the Gibbs free energy, G(n, ¢.), of a cylinder containing n vortices
at the dual point is given by:

1

%g(na $e) =n (1 - 2a2¢6) + P(¢e) (3.22)

where P(¢.) is a polynomial in ¢, that does not depend on n. Hence, all the curves G(n, ¢.)
meet at

1
b = 202 (3.23)
For values of ¢, less than this critical value, the free energy is minimized if there are no
vortices. At ¢, = # all vortices are nucleated simultaneously and the sample becomes

normal. This value corresponds to a critical applied field H, which is equal to 1 in our units,
or restoring the units back, and recalling that x = 1/v/2

¢ o
He = 4TA2 T 2/2NE (3.24)

This is precisely the formula for the thermodynamic critical field of a super-conductor [41]
(which, for a cylindrical super-conductor with x < —=, is the same as the upper critical field).

V2
The magnetisation M of the cylinder satisfies the linear Meissner effect:
1 9G(n, ¢e) . 1

The macroscopic result [41] is —M = H,; the finite-size correction to the susceptibility is
proportional to R~ .

Thus, the well-known results for an infinite super-conducting cylinder can easily be re-
trieved from the dual point approach. We now proceed to the study of the magnetic response
of a thin disk.
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3.3 A mesoscopic disk at the dual point

To model the experimental sample of [1, 2], we consider a mesoscopic disk of thickness d
smaller than ¢ and . Because the disk is very thin, we take the order parameter and the
magnetic field to be constant across the thickness d of the sample [52]. This enables us to
study the disk as an effective two-dimensional system. However, unlike the case of a long
cylindrical sample, strong demagnetisation effects are present in a thin disk. The value of B
near the edge of the disk is larger than the applied field H, because geometric demagnetisation
effects induce a distortion of the flux lines [8]. Hence the continuity condition B(R) = H,
(3.20) valid for a long cylinder does not apply to describe a thin disk.

In order to find a more suitable choice for the boundary condition for a thin disk, we
notice that the higher value of the magnetic field at the boundary, a feature which has been
obtained from numerical computations [51], results from a demagnetisation factor N close
to one, such that [41] H = lf—jv‘ in the Meissner phase. The flux lines are distorted by the
sample and they pile up near the edge of the disk. To describe this, we shall thus take as
boundary condition for a thin disk, the expression proposed in [52], which consists in taking
the potential-vector at the edge of the disk equal to its applied value, i.e.

A(R) = peaisy (3.26)

or
Pb = Pe (3.27)

Again, this relation does not mean that the field B is uniform and equal to its external
strength. A more refined value for the boundary condition could have been obtained by using
the expression N ~ 1 — %% in the limit d < R of a flat disk. Then, H ~ %He or equivalently
dp =~ %5458. But, since § ~ d, we shall use for convenience the simpler boundary condition
given above.

Substituting vs(R) = a(n—¢.) in (3.19), the free energy F(n, ¢¢) of a thin disk containing
n vortices is found to be

1

E]:(naqsb):n—i_{

Ad?(n — ¢e)? — Bat(n — ¢e)*  if al(n — ¢¢)| < V2

St &(n— g, it oa(n— g >vz B

and the corresponding Gibbs free energy is obtained using (2.29). In our previous work
[62], we obtained an expression which can be retrieved from (3.28) by taking 6 = 1 and by
neglecting the magnetic energy as well as the a3 term. Despite these crude approximations,
our analytical results agreed satisfactorily with experimental data, though they could not
describe neither the behaviour of a disk with a radius smaller than A and £, nor its behaviour
when R is increased. We apply our present approach to a thin disk with a radius R much
smaller than &, and then we consider the case R > £.

3.3.1 Fractional fluxoid disk and Non-Linear Meissner Effect

We now consider a disk small enough so that no vortices can nucleate i.e. its radius R is
less than & (such a system is sometimes called a fractional fluzoid disk [6]). If there are no
vortices, the domain € is empty and Q = Q5. Since the radius of € is small with respect to
both A and &, we can no more use the expression (3.28) for the free energy, but we can assume
that the amplitude || of the order parameter has a uniform value 1 all over the disk and
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Figure 3.4: Magnetisation of a fractional fluxoid disk. Comparison between the
experimental measurements [56] (for R = 0.31um) and the theoretical curve taken from the
expression (3.30).

that the magnetic field equals the external applied field B = H,. Moreover, in the absence
of vortices Vy = 0 and we can choose the Landau gauge A(r) = rB/2. Starting from (3.11),
and after minimizing the free energy with respect to 1y, we find the difference between the
free energies of the super-conducting and the normal states to be:

7 ﬁ(l—%ﬁ) if age < V2

27 4
g = 0 otherwise (3.29)
27

From (2.30) we deduce the magnetisation M of the sample:

1 og 1 a? 3 —
M= g —5(‘%—5%) if age <V
M = 0 otherwise (3.30)

The curve representing this magnetisation is a cubic. The upper critical field is ¢, = 1/a, i.e.
H, < R™1; this scaling agrees with the linear analysis of [16] in the limit R < ¢. The transition
between the super-conducting phase and the normal phase is of second order. In Fig. 3.4,
we plot the relation (3.30) for —M as a function of the external flux ¢.. The dots represent
the experimental points obtained from [2]. The analytical curve has been scaled so that the
maximum value of the magnetisation and the critical flux coincide with the corresponding
experimental data.

3.3.2 Mesoscopic disk with vortices

We now consider a disk with R > £. The Gibbs free energy difference G(n, ¢e) of the disk
with n vortices is given by (2.29). The entrance field H,, of the n-th vortex is obtained by
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solving the equation G(n, ¢.) = G(n — 1, ¢¢) which, using (3.28), reduces to

2 a’

a5 (=142~ = 90?) =% ((n-1— g (- 40)*)  (33)

Using the following change of variable
¢e:n—§+— (3.32)

we obtain an equation for y
2 1 y3

g = (1 + ﬁ)y - g (3.33)
(a term a?/8 has been neglected in comparison to 1). The solution of (3.33) that satisfies
y > 0 (because ¢, > 0) depends on the value of the parameter §. One can show that the
polynomial P(y) = (1+ %)y — % — % always has a positive root. We retain only the smaller
positive root yy of (3.33) because in thermodynamic equilibrium, the system always chooses
the state with minimal Gibbs free energy. Restoring the usual units, and using (3.32), the
nucleation fields are found to be:

$o o)
H, =
! Yo 27vV/2R)\ + 2 R?
Hpr = Hy+ 'n% (3.34)

When the applied field H, lies between H,, and H, 1, the disk contains exactly n vortices and
its magnetisation is calculated using (2.30). In Fig. 3.5, we have plotted the magnetisation
of a mesoscopic disk with R = 10Av/2 both from exact numerical solutions of the Ginzburg-
Landau equations and from the expression (2.30). The agreement is very satisfactory. For
larger values of the number n of vortices, a discrepancy between the theoretical and the
numerical expressions appears which results from the interaction between the vortices and
the edge currents that we have neglected until now.

The expression (3.19) is also in good agreement with previous experimental and numerical
results [1, 6]. A non-linear Meissner behaviour still exists before the nucleation of the first
vortex as well as between successive jumps. The field H; of nucleation of the first vortex
scales as R~ !. The transition between a state with n vortices to a state with (n + 1) vortices
is of first order since the entrance of a new vortex induces a jump in the magnetisation. These
jumps are of constant height and have a period ﬁ"%. If we use the experimental values of [1]
for R and )\ we obtain a value for the period of the jumps which is in very good agreement
with the experimental value.

If R is smaller than a threshold value, the system is a fractional fluxoid disk with a second
order phase transition. If R ~ 1, a vortex can nucleate in the disk and a first order transition
occurs. When R increases, the number of jumps increases (as R2). These qualitative changes
of behaviour with increasing R, which are the important features obtained from the present
model, have been indeed observed in experiments carried out on disks of different sizes. In an
earlier study [52], we obtained satisfactory values for the nucleation fields but the fractional
fluxoid disk, and the different regimes obtained by increasing R could not be explained because
we neglected subdominant terms that are retained here.

It has been observed experimentally that the period and the height of the jumps cease
to be constant when the number of vortices increases. These effects are related both to
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Figure 3.5: Behaviour of the magnetisation of a disk with radius 10 A\v/2, at the dual point.
Dots represent the numerical solution and the solid curve the expression (2.30) together
with (3.19). The only free parameter ¢ has been taken to § = 0.76\.

interactions between the vortices and between vortices and edge currents. The purpose of the
next section is to take into account these interactions and to obtain a better estimate for the

free energy and the magnetisation of a mesoscopic disk.
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Chapter 4

Weakly interacting vortices in the
vicinity of the dual point

So far we have obtained analytical expressions for the free energy and the magnetisation of
a thin super-conducting disk at the dual point. When the Ginzburg-Landau parameter has
the special value, K = 1/ V2, vortices do not interact. This fact, discussed in [34, 37|, implies
that the bulk free energy does not depend on the location of the vortices. However, when &
is away from the dual point, the vortices start interacting among themselves; therefore the
bulk free energy ceases to be a purely topological integer n and the vortex interaction energy
must be taken into account. Because of this interaction the vortices are no longer necessarily
placed at the center of the disk: in an equilibrium configuration, the cylindrical symmetry
can be broken and the optimal free energy may correspond to geometrical patterns such as
regular polygons, polygons with a vortex at the center, or even rings of polygons [9, 44, 55].
It is the competition between the interaction amongst vortices and the interaction between
vortices and edge currents that determines the shape of the equilibrium configuration.

Analytical studies were mostly carried out in the limit K — oo and were based on the
London equation [38, 40, 44| for which vortices are point-like and have a hard-core repulsion
[41]. We shall study a regime where & is slightly different than 1/4/2, i.e. a regime where
vortices interact weakly. We shall determine, to the leading order in (k—1/+/2), the interaction
energy of the vortices.

4.1 The interaction energy

In order to obtain an estimate for the free energy of a system of interacting vortices, we
have solved numerically the Ginzburg-Landau equations for a cylindrically symmetric infinite
system with n vortices located at the center (these equations are explicitly written in Ap-
pendix A). The free energy per vortex is plotted in Fig. 4.1 as a function of , forn = 1,2, 3,5
and 10. At the dual point, the free energy per vortex is equal to 1 and is independent of n:
all the curves pass through this point. When & is different from % the interaction between
the vortices changes the value of the free energy. One can deduce from figure 6 that vortices
attract each other for x less than % while they repel each other when x > %

From our numerical results we observed that in the vicinity of the dual point, the free
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Figure 4.1: Behaviour of the free energy per vortex F/n = F/2mn as a function of v/2x for

different values of n, the number of vortices. At the self-dual point v/2x = 1, the energy
F(n) = nF(1) so that the interaction energy between the vortices vanishes identically.

energy F(k,n) satisfies the following scaling behaviour:

1

2—.7-"(#;,71,) = n(kV/2)*™ (4.1)
T

We note that the relation (4.1) is exact at the dual point. For n = 1, F(k, 1) is nothing but

the self energy Ug of a vortex. In the vicinity of the dual point we can write:

%}'(m, 1) =1+ a(1)(kV2 - 1) (4.2)

The values of the function a(n), as determined from numerical computations, for n ranging
from 1 to 30 are given in the following table

n|amn) | n|an) | n| an
1 10417 || 11| 0.785 | 21 | 0.841
2 10544 || 12 | 0.794 || 22 | 0.845
3 | 0.613 || 13 | 0.802 || 23 | 0.847
4 10.658 || 14 | 0.809 || 24 | 0.850
5 | 0.690 || 15 | 0.815 || 25 | 0.853
6 | 0.715 || 16 | 0.821 || 26 | 0.855
7 |10.734 || 17 | 0.826 || 27 | 0.857
8 1 0.750 || 18 | 0.830 || 28 | 0.859
9 |0.764 | 19 | 0.834 || 29 | 0.860
10 | 0.775 || 20 | 0.838 || 30 | 0.862

We can now derive an approximation for the free energy of a n vortices configuration
located at the center of the disk and for x close to 1/4/2. Since this configuration is cylindrically
symmetric, one can again use the circle I' to separate the system into two subdomains €
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Figure 4.2: Magnetisation curve of a disk of radius 10 A\v/2, as a function of the applied field
for kKv/2 = 0.9. Dots represent the numerical solution and the solid curve the expression
(2.30) together with (4.4, 4.1). The only free parameter ¢ has been taken to § = 0.76\.

and {29 and then estimate separately the two contributions to the total free energy. From
our numerical scaling result, we deduce a formula for the bulk free energy of a finite system
which is valid for  close to the dual point. Expanding (4.1) in the vicinity of the dual point,
we obtain:

1
E}—(Ql) =n+ (kV2 — 1)na(n) (4.3)
and the boundary contribution, obtained via a variational Ansatz is now given by:
1 _ | Av}(R) - B(k)vg(R) if la(n — ¢¢)| < 26
ﬂ}—(QQ) N { k%5/a + v?/4ad if  |a(n — ¢e)| > 2k (44)

where A is still given by the relation (3.18) while B(k) is now given by B(k) = §/16ax>.

The magnetisation curve of Fig. 4.2 shows both the numerical results and a plot of the
magnetisation deduced from (4.4) using (2.30). We notice that the magnetisation of a meso-
scopic disk is modified when the interactions between vortices are taken into account. The
period and the amplitude of the jumps are not constant anymore; besides, the non-linearity of
the curve between two successive jumps is enhanced. These important features of the M — H,
curve were observed in previous experimental and numerical results [1, 56]. Here we have
shown that these features are a consequence of vortex interactions.

4.2 The energy of a large multi-vortex

In the limit of very large number of vortices n — oo some analytical results can be obtained
from a simple Ansatz for the solutions of Ginzburg-Landau equations. We observe that the
numerical solution to the equations (2) for n = 30, shown on the Fig. 4.3 is close to the
rectangular shape for both f(r) = |¢(r)|> and B(r). Therefore it would be plausible to
approximate both functions in the limit n — oo by simple expressions. Using the notations
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Figure 4.3: The function f(r) and h(r) for n = 30 and v/2x = 1.5.

of Appendix A we write

-l (B8 w

The solutions depend on three parameters: a, the ”radius of the vortex”, b, the ”"radius of
magnetic field penetration” and By = B(0), the value of the magnetic field at » = 0. The
approximate function p(r), related to the super-fluid velocity p = rv, is therefore

p(r)z{ BOTbZ(lgTQ/b?) :;;’ (4.6)

In order to find three parameters a, b and By the following equations are used:

e Flux quantization
_ Byb?

[e.e]
/ rdr B(r) =n = p(0) 5 (4.7)
0
o Identity (A.15) of Appendix A, true for an value of k.
o) B2b2 fe's) 2,2
/ rdr B%(r) = 22— = K)Q/ rdr (1 — f2(r)) =54 (4.8)
0 2 0 2

o Identity (A.10) of Appendix A that follows from the integration of the Maxwell equation
(A.3)

o) 2 b 2 2
Bo = 2/0 %p(r)ﬂ(r) - B‘;” %(1—73/1)2) _ % lZlogg - (1 - Z—Qﬂ (4.9)

a

Using (4.7) and (4.8) the last equation can be rewritten in terms of By only. Let us define
X = By/k. In terms of this variable we have

k1 1 1
B g — 4 (x— = 41
n XOgX2+< X) (4.10)
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Figure 4.4: Graphical solution to the equation (4.10). Two solutions are shown

This is the (transcendental) equation to determine X as function of k. The right hand side
is shown on Fig. 4.4 as a function of X. There are always two solutions to (4.10) for each
value of v/2k/n. The solution X (k) > 1 is to be chosen when k < 1/4/2 and X (s) < 1 for
k > 1/4/2. One interesting consequence of the relation (4.10) is that in the limit n — oo
for fixed k one finds X — 1. The exact way of approaching this value can be deduced from
the Taylor expansion up to the second order of the function in the rhs of (4.10) near X that
yields X = 1+ +/k/2n in the limit n — oco. The sign is determined by the value of x, whether
it is less/greater than 1/4/2.
The free energy is found from the expression (A.16):

T o™ 9 _ Kk2a? _ ng2
—27TF =K /0 rdr (1 —f (r)) =5 = (4.11)
It can be rewritten as
1F( )/ —ngQ—X( V2 (4.12)
o K)/n = 5 = ) K .

which in the limit n — oo has the form (4.1) with @ = 1. This gives us the limit a(n — c0) =1
consistent with the numerical values in section 4.1. The comparison with numerical values for
the energy per vortex F'/27n is shown on Fig. 4.5. The relative error goes to zero as o< 1/4/n,
but for specific values of n it decreases slowly from 20% to 8%. It is however important that
the expression (4.12) gives qualitative understanding of the stability of vortices: for v/2x > 1
one sees that X (k,n) is increasing function of n so the energy per vortex F'/n grows with
n and the multi-vortex is unstable with respect to decomposition to n vortices, while for
V2K > 1 one finds that X (x,n) is decreasing function of n so the energy per vortex F/n
diminishes with n and the multi-vortex is stable.

4.3 Two-vortex interaction energy

The exponent «(n) in the relations (4.1) or (4.3) allows to describe the interacting potential
between vortices. It is interesting to compare the result (4.1) with the energy of n vortices
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Figure 4.5: Energy per vortex F/n as a function of vorticity n for v2x = 2.

obtained by assuming a two-body interaction. In this case the energy of the whole system of
n vortices can be written as a sum of two terms

1 —1
L s+ M=V 0) (4.13)
2 2

where Ug represents, as noted before, the self-energy of a vortex and U; the two body inter-
action potential. Using the data of [37], we can estimate these two energies to the leading
order in (kv/2 — 1). We obtained:

Us = 1+B(kV2 1) with B ~0.4 (4.14)
U(r) = Bo(kv2— 1) min <l,exp(—C(r - %))) (4.15)

with Gy ~ % and C ~ % From this analysis, and assuming only two-body interaction, we
derive an approximate value for the free energy of a configuration with n vortices placed at
the same point:

(n—1)

1 n
g]:(ﬁ,n) = nlds + —a

Ur(0) ~n+ (kW2 - 1)n (51 +52”;1) (4.16)

If we compare this relation to the previous expression (4.3) we find that instead of the sub-
linear function a(n) we have a linear behaviour g8; + ”T_l B2. Hence, the function «(n) takes
into account not only two-body interactions among vortices but also multiple interactions
which are present for values of x around the dual point unlike the large « limit where only
the two-body contribution remains.
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Chapter 5

Free energy of a system without
cylindrical symmetry

In this section, we calculate the energy at the dual point of a system with only one vortex
that is not located at the center of the disk. Such a configuration is not in thermodynamic
equilibrium and its free energy can be related to a surface energy barrier (analogous to the
classical Bean-Livingston barrier in the London limit). We first show that even when the
cylindrical symmetry is broken, the system can still be separated into bulk and edge domains.

5.1 Bulk and edge domains. The curve I

We have seen in section 3.1 that when one or more vortices are located at the center of the
disk, there exists a circle I' on which the current vanishes identically. This circle allowed us
to define a bulk and an edge domain and to identify the bulk energy with the fluxoid.

If all the vortices are not placed at the center of the disk (i.e. the configuration is not
cylindrically symmetric) there is in general no curve of zero current. However the curve T’
has now the following property: at each point M of I" the current 7 is normal to I'. The
existence of such a curve is shown by the following argument. Consider a disk with only
one vortex V situated at a point different from the center of the disk. Take a line segment
joining the vortex V' to the closest point S on the boundary of the disk (see Fig. 5.1). The
component of the current density normal to the V.S segment changes its sign when one goes
from V to S. Hence, there exists a point M along this segment where the current either
vanishes or is parallel to V' S. To draw the curve I" we start from M in a direction orthogonal
to the VS segment, and then I' is constructed via infinitesimal steps by imposing that at a
point M' = M + dM, very close to M, the direction of I is orthogonal to the direction of the
current at M'.

Although we lack a general proof, we believe on topological grounds that for vortices
at arbitrary positions, there always exists a I' curve which is everywhere orthogonal to the
current (one should note that I' does not necessarily have only one connected component). In
[67], we shall present a numerical construction of I'. In the sequel of this work we assume that
I" exists, that it encircles all the vortices, and consists of one or many simple closed curves.
We shall call the curve I' the separatriz.

Using I', the domain  can be decomposed in two regions 21 and 2 such that:

(1) LU =9;
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Figure 5.1: The separation of a system without cylindrical symmetry in two subdomains by
a curve I'.

(ii) 1 contains all the vortices ( 1 may have multiply connected components);

(iiii) 9 contains the edge of the disk;

(iv) the separatrix I is the boundary between ©; and €25 and is everywhere normal to the
current density.

The remarkable property of the separatrix implies that along I' one can write:

ﬁ(j+ﬁ)-ﬂ=7§(#+ﬂ)-ﬂ:ﬁﬁx-d7 (5.1)

since along I, 7- dl = 0. Since the separatrix is the boundary of Q;, the property (5.1) ensures
that the total magnetic flux through 2, is quantized. Hence, at the dual point, we can again
use the method of Bogomoln’yi and find the free energy of 2; to be a purely topological
number, just as for an infinite domain, even if the cylindrical symmetry is broken.

5.2 Free energy of one vortex: the surface energy barrier.

As before, we estimate the contribution F(£23) to the total free energy via a variational
Ansatz, taking the modulus of the order parameter to be constant. To obtain a qualitative
result for the surface energy barrier we neglect the magnetic energy so that, at the dual point,
we have:

. . 1— 2\2
2 F(On) ~ [ - AP+ S
1)
~ oo (W) + (1 - %)) (5.2)
where 00
(0} = [ 5 IVx - AR (53)

is the super-fluid velocity square averaged over the boundary of the disk. As before, we have
replaced the integral over Q9 by a line integral along the boundary of the sample (i.e. the
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Figure 5.2: Confining energy of a vortex inside a disk due to edge currents.

disk of radius R) multiplied by an effective length ¢. The function x appearing in (5.2) is the
phase of the order parameter, and the vector potential is taken, as before, to its value on the
boundary of the sample. Optimizing (5.2) with respect to 1y we find that:

Yo = 1-

1 _ ¢ 2 (v3)?
5T () = —<<U5)—T> (5.5)

(5.4)

for (v2) < v/2. The phase function x and the vector potential near the edge of the disk are
calculated in Appendix B. Using these results, we obtain (for n=1):

)

a3
S F() = o <a<1 —9)? - 21— ¢e>4> + 1(@,0,4. — 1)0 (56)

The function f(z,a,$. — 1) determines the dependence of the free energy on the position x
of the vortex; hence, it measures the interaction energy between the edge currents and the
vortex as a function of its position. It is given by

2 2
F(@,a,9e 1) = (e 1) (1 - %) 6.7
From this expression, we observe that the edge currents tend to confine the vortex inside the
system. In Fig. 5.2 the surface energy as a function of the position z of the vortex is plotted.
According to (5.4), only the increasing part of the curve is physical. We nevertheless plot
the curve defined by (5.7) in the whole range 0 < z < 1 in order to emphasize the similarity
between our result and the well-known Bean-Livingston surface barrier effect that was first
derived using the London theory [42, 41].
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Chapter 6

The London limit of the
Ginzburg-Landau equations

In the London limit Kk — oo vortices are point-like and the amplitude of the order parameter
|| does not vary. It can be taken to one except at the position of the vortices where it
vanishes. The Ginzburg-Landau free energy (2.19) reduces to

= [ (5 +l@-ia)of ) (6.

Using this equation and |¢|? = 1, except at the position of the vortices, we can write
- SN2 )
(V—id)y| = (VxB) (6.2)

so that the free energy is given by the expression

F= / <B2 (¥ x B) ) &2r (6.3)

which in our units is independent of k. To obtain the equation for B, we notice that the
phase x is non singular except near a vortex (say at r = 0) where it has the property that

fﬁx -dl =2 (6.4)

on any closed contour encircling the singularity at point 7 = 0. Using Stokes theorem,
fﬁx-ﬂ:/ dS -V x Vy = 2, (6.5)
we deduce that the 2-component of V x Vy equals 278 (7). The equation for B is then given

by !
V2B — 2B = —4n4(F) (6.6)

1t should be noted here that in order to obtain this equation we must be in the I;ond(ln limit and impose
[4]> = 1 since starting from (2.21), we have —Ah = |1|*(V x Vx — h) and where (V x Vx); = 272(F), we
must in principle take |1|> = 0.
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This equation can be generalized to the case of N vortices placed at points 7%

N
V2B — 2B = —4r Y _ §(7 — %) (6.7)
k=1

In the next section we shall present the solution of this equation in the particular case of a
cylinder with circular cross section.

6.1 Solution for N vortices in a circular cylinder

We shall study a circular cylinder of radius R. The magnetic induction and Gibbs energy of
a system of N vortices in this geometry has been studied first in [38]. The detailed derivation
of the results is presented in the Appendix C. The solution B(r,6) of the equation (6.7)
satisfying the boundary condition B(R,8) = H, can be written as a sum of three terms:

B(r,0) = By(r) + By(r,0) + By (r,0) (6.8)
The first term
Bu(r) = HeIo(V2r)/Io(V2R), (6.9)

where Iy(z) is the modified Bessel function of first kind, describes the Meissner effect in the
absence of vortices. The second term is the magnetic induction of N vortices placed at points
7% = (7%, 0k) for Kk =1,..., N and it is given by

v(r,0) =23 Ko(V2|7 — ) (6.10)
k=1

The third term, written with help of the modified Bessel function of first and second kind
I,(z), Kn(z) as

By (r,0) = —2 +ZOO K,(V2R % (vV/2ry) cos (6 — 6y) (6.11)

n=—oo

ensures the boundary condition B(R,0) = H,. We are interested in polygonal rings of vortices.
For this particular configuration ry = d, 6, = 2wk /N and the expression for By (r,6) can be

simplified
_ I,(V2r) In(v/2d)
By (r,0) = 2Nn;wK (V2R)=2 (V)

The corresponding Gibbs energy has also been obtained in [38]. The expression of the
dimensionless Gibbs energy is given by

cos Nnf (6.12)

G—F—H, / B(7) d*r + nR2H?/2 (6.13)

The field By diverges at the positions of the vortices and the corresponding part of the
free energy must be regularized. The singular contribution coincides with one calculated by
Abrikosov [58] for the case of infinite system and is given by

Foo=NE+21 " Ko(V2|Fj — %)) (6.14)
i#k
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where £ = 2n(Ink + 0.081) is the one-vortex energy.
The regular part of the Gibbs energy is calculated in the Appendix D. Using the expres-
sions (6.9),(6.10) and (6.11) for the magnetic field, one obtains

- = T 75 — T T —M>
Gn—Go = NEH+2 ;KO(\@M ) 2Hl;1<1 VaR)

. (fm V) o

where Gy = TRH? (— — % ?Egﬁ;) is the Gibbs energy in the absence of vortices i.e. in the
Meissner state. For the particular case of vortices distributed on a regular polygon of radius

d, the previous expression (6.15) simplifies and becomes

Gy —Go _ _ L(v2d)
= 5+2WZK0 |2\/_d ) — 27 H, (1 710(\@%))

s Knn(V2R)Ing(V2d)?
n=—o00 INn(\/ER)

— 27N (6.16)

Similar expressions have been already obtained previously in [38, 59] and we shall now discuss
them in the limit of a small radius R in order to use the particularly elegant structure of the
corresponding solutions to derive analytical expressions for the field and the energy.

39



Chapter 7

The limit of a small system

We shall now consider the limiting case where R < X for which the corresponding Gibbs free
energy was obtained in [60]. In this limit the previous expressions greatly simplify. Since
all the distances are given in units of \v/2, we can expand the expression for the magnetic
induction using the expansion of the Bessel functions for small argument, so that

B(z,2) — H, = ¢e(|2]* — —I—QZln (7.1)

z— 2z

where ¢, = H.R?/2 is the flux of the external field through the system and we use the complex

notations,
z= (%) ¢ and z, = (%) et0k (7.2)
together with complex conjugate z and z;. This expression for the magnetic induction is
solution of the modified London equation
Rz o
5257 B(z,2) —He=—7Y_0(z — z)8(2 — %) (7.3)

1=1

which can be obtained from (6.7) for small variation of the field on the scale of R.

In the particular case, we shall consider from now on, of vortices distributed along a
regular polygon of radius d, we have r, = d and for the N vortices sitting on a shell, the
angle 0y, of the k-th vortex is 0 = 2mk/N. Then, defining the real quantity z = d/R < 1, the
relation (7.1) becomes

_ 9 1— 2V
BN(Z,Z)—He:¢e(|Z‘ —1)+21n w (74)
whereas the Gibbs energy (6.16) becomes
w =& - 2mh.(1 — 2®) + 2rIn(1 — 2*Y) —27x(N — 1)Inz — 27 In N (7.5)

where Gy = 7¢2/2 and &' ~ 27 In (R/£).
The relation between the radius x of the polygonal configuration and the external flux ¢,
is obtained by minimizing Gy (z, H.) with respect to z at fixed ¢, namely

N—-1 Ng2N-2

212 1— z2N (7.6)

¢e:
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Figure 7.1: Behavior of the Gibbs energy as a function of the position x of the N = 3 vortex
shell. The maximum which exists for high enough applied field corresponds to the unstable
equilibrium point for the vortex configuration and gives the height of the Bean-Livingston

barrier.

7.1 The Bean-Livingston barrier

The relation (7.6) has, as a function of the applied flux ¢, either zero, one or two solutions.
The latter case corresponds for the Gibbs energy (7.5) to the existence of a Bean-Livingston
potential barrier [42] for which one solution is stable and gives the equilibrium position of the
vortices while the second solution is unstable and gives the height of the potential barrier as
shown in the Fig. 7.1. It should be noticed that for more than one vortex (N > 1), the energy
Gn diverges logarithmically at the origin x = 0 due to the repulsion between the vortices.

The potential barrier disappears for low enough applied flux below a characteristic value
Gmin given by the minimum of the function fx(z) in the rhs of (7.6) as represented in Fig.
7.2. Defining y = z?, we have

N—-1 NyN-1

Inw) = ST (7.7)
) _ N—-1 NN-1)yV=2 N%pN-2
fN(y) - 2’!/2 + 1 — yN (1 — yN)Q (78)

For large values of N, we have yY. ~ 1/2N so that
N-1 N-1
2VaN ~ 2
For ¢ < ¢min, there is no stable solution and then no equilibrium position for N vortices
exists.

¢min = (79)

7.2 Matching fields

By plugging the expression (7.6) into the expression (7.5), we obtain the behavior of the Gibbs
energy for NV vortices as a function of the applied flux ¢.. This expression is the counterpart,
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Figure 7.2: Graphical solution of equation (7.6). The curve shows the behavior of ¢(x).
The two solutions z; and z,, correspond respectively to the stable and unstable positions of
the vortex shell for values of the magnetic field above ¢, -

in the London limit, of the parabolae obtained at the Bogomoln’yi point [46] for k = 1/+/2.
For a given value ¢, of the applied field, the optimal number of vortices corresponds to the
envelop of the set of curves Gy (¢e) as represented in the Fig. 7.3. The matching values ¢y
are the values taken by the flux of the external field at which Gy_1(¢n) = Gn(édn)- They
correspond to the transition between configurations with N — 1 and N vortices respectively.

Using the relation (7.5), it is straightforward to obtain the field at which the first vortex
penetrates the system; it is given by ¢; = £'/2m = In(R/£). This field is larger than the
field at which the Bean-Livingston potential barrier disappears. For larger values of N, in
the limit ¢ > dpmin, we approximate the relation (7.6) by ¢. = (N — 1)/2z? so that

gN - gO 2¢e
27 N -1

N(N —1)
2

~ N (¢ — de) + (1 +In ) ~NInN (7.10)

Equating this to the similar expression for Gy_1(¢.) we obtain that the matching fields for
N — oo are given by solution of the following equation

N -1 2
¢N=¢1+T(1+2ln%) —InN +1+ O(1/N) (7.11)
We use the following ansatz ¢ = 5(aN +bIn N +¢). Substituting it to (7.11) we obtain the
coefficients 5 5
a a a
= = 1+ ¢y — = 12
b a—2 c a_2( +¢1 2)5 (7 )

where the coefficient a satisfies the transcendental equation:
a=1+2lna (7.13)

This equation has one obvious solution a = 1 which is compatible with (7.11). However from
the exact numerical calculations of the matching fields using the relation (7.6) we infer that
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Figure 7.3: Dependence of the Gibbs energy as a function of the applied flux ¢.. The
equilibrium behavior of the system is described by the envelop of the curves for Gy (H,).
Arrows show the direction in which the magnetic flux is varied.

the second root a ~ 3.5129 is realized in the solution for the matching fields. It leads to the

formula
¢n = L.T6N —2.32In N + 2.324; — 1.76 + O((In N)?/N) (7.14)

In the Fig. 7.4 the values of the matching fields obtained from the computed free energy are
compared with our prediction. The discrepancy is attributed to the slow convergence due to
the term O((In N)2/N).

7.3 Magnetisation and paramagnetic Meissner effect

A paramagnetic behavior for the total magnetisation results from the existence of a high
enough Bean-Livingston barrier and the long life-time of the corresponding metastable states.
We propose the following scenario for the hysteretic behavior of the magnetisation when the
magnetic field is increased and then swept down.

If thermal equilibrium is maintained while increasing slowly the external flux ¢, the
results of the preceding section hold and the magnetisation is given by the derivative of the
envelop of the curves Gy (¢pe) according to the thermodynamic relation (2.30). This behavior
corresponds to the upper curve in the Fig. 7.5.

When the applied field is decreased, the vortices that are already in the system are confined
by the Bean-Livingston barrier and cannot escape the sample until the flux ¢, reaches a certain
minimum value at which the barrier can be overcome, for instance, by the effect of thermal
fluctuations. For the present discussion we use the ultimate criterion of zero barrier as a
definition of the transition field.

We deducedi, from the discussion of section 7.1, that the potential barrier for IV vortices
disappears for a characteristic field given for large N by the relation (7.9), ¢min ~ (N —1)/2.
The number of vortices is then decreased by one at this field and the energy drops as shown by
the arrows in Fig. 7.3. The magnetisation calculated from (2.30) is shown by the lower curve
in Fig. 7.5. It shows clearly a paramagnetic behavior, although it disagrees quantitatively
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Figure 7.4: Comparison between the relation (7.14) for the matching fields ¢ and the
numerical results for ¢; = In(R/¢) = 3.

14

Figure 7.5: Magnetisation of the disk as a function of flux ¢, for ¢; = In(R/{) = 3. The
hysteretic behavior is indicated by the arrows.
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with experiments and the numerical simulations based on the exact solution of the Ginzburg-
Landau equations. This discrepancy results from the rather unrealistic London limit we
used for systems for which ¥ ~ 0.3 in order to obtain an analytic expression for the Gibbs
energy. We emphasize that the system is not at thermal equilibrium but in a metastable
state. It is worth noticing that for values of the parameter ¢; = &'/2r = InR/{ ~ 2, the
paramagnetic Meissner effect can be observed as well for an equilibrium configuration, ¢.e.
for a minimum of the Gibbs free energy. But this corresponds to R ~ £ so that the delta-like
vortex approximation, crucial for the present discussion, is not justified.

45



Chapter 8

Topological phase transitions
between metastable vortex patterns

Up to now, we have considered vortex configurations for which the position x of the vortex
ring was given by (7.6) resulting from the minimization of the energy. We shall now relax
this condition and study the behavior of the metastable vortex patterns as a function of the
applied magnetic flux ¢.. Physically, this corresponds to a situation where N vortices are
pinned by a potential and remain on fixed positions.

8.1 An effective Hamiltonian system

When varying the field ¢., transitions in a vortex pattern with fixed number N of vortices
will appear. To characterize them, we shall study the behavior of the magnetic field B
given by (7.4). To that purpose, it is interesting first to notice that, in two dimensions, the
Maxwell-Ampére equation 7= V x h2 is the Hamilton equation of a system whose generalized
coordinates (p,q) are the coordinates (z,y) such that j, = &, j, = ¥ and the canonically

conjugated momentum:
s _ _9B
{p %8 (8.1)

g = B

Then, the magnetic field corresponds to the Hamiltonian of the system and the current lines
are the phase space trajectories. For a Hamiltonian system, the flow can be characterized by
its critical (fixed) points at which

VB=0 (8.2)

Using (8.1), we see that critical point correspond to zero velocity points such that 7= 0.

In such a description, a vortex corresponds to a maximum in phase-space. However there
also exist in the system other critical points, such as minima and saddle-points. The number
Ny = N of maxima (i.e. vortices), N, of minima, and N; of saddles are not independent,
because of the Euler-Poincare relation [61], namely the Euler-Poincaré characteristic x is
given by

X =Ny — Ng+ Np, (8.3)

The integer x is a topological invariant and is equal to 1 for a disk thus providing a constraint
between the numbers of the different types of critical points. Hence, for a system with a given
number of vortices, the difference N; — N,;, between saddles and minima, is fixed. However,
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Figure 8.1: Paramagnetic and diamagnetic zones separated by the curve I'.

each of them can vary and the set of these numbers provides a complete description of the
topology of the vortex configurations, namely each topological phase can be described using
this set of integers.

A different way to encode the position and the distribution of the critical points of the
magnetic field in the disk is to use a special contour T, introduced in [46]. The curve T is
defined by the condition that at each point 7 it is perpendicular to the current density 7{7).
The equation of I' is then

dr  ,0.B

a0~ " 9B
To this definition we must add the requirement that I' must pass through the critical points
at which 7(7) = 0. The curve I" has several branches; one of them encircles all the vortices and
defines a natural boundary between the diamagnetic (Meissner) domain near the boundary
and the inner paramagnetic domain which includes the vortices (Fig. 8.1). An example of
this curve is shown in Fig. 8.2 in the case of a disk with one vortex.

The study of the critical points and the resulting behavior of I' provides a complete descrip-
tion of the vortex states either for thermodynamic or metastable states and of the transitions
between different sets of topological numbers when varying the applied field. ;From the be-
havior of the curve I' as a function of the applied field ¢, it might be interesting to draw the
analogy with the pressure exerted on a closed membrane separating two systems.

(8.4)

8.2 Topological study of a vortex ring

We now consider the simple case where all the vortices are placed on regular polygon at a
distance z from the center of the disk. The critical points can be classified (see Appendix E)
according to their stability properties, obtained from the Hessian matrix H;; = 0;0;h. We
review the various topological structures obtained and the transitions between them.

For a ring configuration of N vortices located at the distance x from the center the general
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expression (7.1) for the field B in circular coordinates r, 6 reads

8.5
22N — 22NN cos NG + r2N (8.5)

B _¢ (7‘2 _ 1) +1n (1_2$N7'NCOSN9—|—x2Nr2N>
— Ve

At the critical point the partial derivatives of B vanish. The condition 9, B = 0 leads to
N cos NO (r?N + 1) — (22 + 1)V

N (2N _1) N1 _ _
ger—N(z )T (1 —2zNrN cos NO + 2Npr2N) (2N — 22N ¢N cos NO + r2N) 0 (8:6)
while the condition JyB = 0 rewrites as
1— 2N 1— 2N
NrVNO (1—a” )1 —r7) -0 (8.7)

(1 — 22NN cos NO + 12N r2N) (12N — 22NN cos NO + r2N)

The solutions of equations (8.6) and (8.7) are studied in detail in Appendix E. One main
feature is that one has to distinguish between the cases N =1, N =2 and N > 2 where N
is the number of vortices. We now describe these three cases separately.

8.2.1 Metastable configurations for N =1

For one single metastable vortex located at distance x from the center there is no other critical
point for weak flux ¢, < ¢, (1), with

11—z
1+
At ¢e = ¢m(1) a critical point appears at the point r = 1,0 = —x. For a flux slightly above
¢m(1), this point splits into a minimum at r < 1, § = —7 and two saddle points on the
boundary r = 1 situated symmetrically about the diameter passing through the vortex. As

the flux increases the minimum moves towards the center and the saddle points approach the
point r = 1, § = 0 each from its side. They coalesce at this point for ¢. = ¢as(1), where

14z
1z
and for larger values of the flux one saddle point appears inside the disk between the vortex

and the boundary in the interval z < r < 1, § = 0. When ¢,,(1) < ¢ < ¢as(1), the definition
(8.3) must be generalized to the case of critical point on the boundary [61]. It becomes

1
X =Ny = N5+ N — 5Ny (8.10)

where N, is the number of saddle points on the boundary. Thus the index is again equal
one.

An efficient way to visualize these transitions is examine the changes in the curve I' as
the magnetic flux varies. In the case ¢ > ¢ps(1), shown in Fig. 8.2a, the curve I lies inside
the disk and separates the paramagnetic (internal) and diamagnetic (external) regions. For
¢e = éar(1) the saddle point reaches the boundary of the disk and for ¢,,(1) < ¢e < dar(1)
the curve I' starts and ends on the saddle points on the boundary (see Fig. 8.2b). Therefore,
in this regime, one cannot define a paramagnetic region inside the disk and there is no closed
curve that encloses a unit of flux. There appears an arc of circle on the boundary where the
direction of the current flow is opposite to the screening current responsible for the Meissner
effect. At ¢e = ¢, (1) all the disk becomes paramagnetic and the curve I’ disappears.

$m(1)

(8.8)

$m(1) (8.9)
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Figure 8.2: The case of one single vortex (N = 1). Behavior of the curve I for a).
de > dar(1) and b). ¢ (1) < ¢e < Par(1)

8.2.2 Metastable configurations for N = 2

For low enough field ¢, < ¢,,(2), with
2

11—z
2)=2——. 11
bn®) =205 (8.1
the only critical point is a saddle point at the center. For ¢,,(2) < ¢e < ¢ar(2), where
1+ a2
2) =2——. 12
b2 =210 (8.12)

there are two minima situated symmetrically on the diameter perpendicular to the line passing
through the vortices and two pairs of saddle points on the boundary. This configuration is
shown in Fig. 8.3a. Each pair is symmetric with respect to the line passing through the
vortices and moves towards the points r = 1, § = 0 or § = w. For ¢. > ém(2) each
pair disappears and gives birth to one single saddle point located between a vortex and the
boundary at § = 0 or m as shown in Fig. 8.3c.

Two minima inside the disk move towards the center and at the critical value of the flux
be = ¢c(2), where ¢.(2) = (1 — z*)/x? they merge with the central point, which becomes a
minimum for ¢, > ¢.(2). This critical value can be shown to be always greater than ¢,,(2),

but it can be greater or less than ¢7(2) depending on the value of z. For z < /2 — /3 ~ 0.52,

one has ¢.(2) > ¢ur(2), while for z > /2 — /3, we have ¢.(2) < ¢ar(2). The latter case is
shown in Fig. 8.3b and 8.3c.

8.2.3 The case N > 2: topological phase transitions

In that case, the central point is a minimum for all values of ¢.. In addition for low enough
external flux there are N saddle points inside the disk situated symmetrically at 0 = 27 (k +
1/2)/N. As the external flux is increased through ¢,,(N), where

1—2N

Im(N) = N1 (8.13)

49



Figure 8.3: The case of N = 2 vortices for a). ¢,(2) < ¢e < ¢c(2), b). ¢c(2) < ¢e < Ppr(2)
and c). ¢e > ¢pr(2). The curve I' is shown. The position of the vortices is taken to be

z = 0.7 > 1/2 — /3, therefore ¢.(2) < ¢r(2).

N pairs of saddle points on the boundary appear together with N minima in the bulk (see
Fig. 8.4a). The minima move towards the center along the line defined by 6 = 2w (k+1/2)/N,
k=1,...,N, while two saddle points constituting the k-th pair move symmetrically to the
points 6 = 27k/N and 0 = 2w(k + 1)/N as the flux increases in the interval ¢,,(N) < ¢ <
¢ (N). When ¢ = ¢pr(N), with

142V
N

éu(N) =N (8.14)

11—z
pairs of saddle points meet at § = 27k/N and for larger values of the flux there are N saddle
points situated between a vortex and the boundary. In this regime there are N + 1 minima
and 2N saddle points inside the disk as shown in Fig. 8.4b.

At ¢ = ¢.(N), where ¢.(N) is given by the formulae (E.9) and (E.10), each of the N
minima coalesce with each of the N saddle points at r = pi/N, 0 = 2n(k + 1/2)/N, where
pe is given by (E.9). For ¢ > ¢.(IN) there remains only one minimum in the center and N
saddle points. It can be shown that ¢.(N) is always greater than ¢ (N) for N > 2.

Then, for ¢, = ¢.(IN) a topological transition occurs, when a minimum and a saddle point
coalesce. This transition and the corresponding curve I' is depicted in Fig. 8.4b and 8.4c. It
is seen that the curve I' undergoes itself a topological transition. For ¢, < ¢.(N) it does not
touch the center and has a topology of a ring, while for ¢, > ¢.(N) it has a form of petals of
a flower emanating from the center of the disk.

8.3 A dynamical interpretation of the curve I

The curve I', defined above as being everywhere normal to the current flow, has a simple
interpretation in terms of an effective dynamical system, which gives an alternative method
to compute it. Instead of the Hamiltonian flow (8.1), consider the lines of VB, obtained from
those of 7 by a rotation of 90°. This flow is clearly non-Hamiltonian and possess fixed points
which are not present in the Hamiltonian dynamics, e.g. the positions of the vortices appear
in this picture as a point-like sources, though a saddle remain a saddle in this transformation.
Then, the curve I' represents a limit cycle of the flow VB emanating from the saddle point.
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Figure 8.4: The case of N = 3 vortices for a). ¢,(3) < de < dpr(3), b). dar(3) < e < ¢c(3)
and c). ¢e > ¢.(3). The curve T is shown.

-1
-1 1

Figure 8.5: The curve I' as the limit cycle of the flow VB. The parameters are the same as
in Fig. 8.2a.

This is illustrated in Fig. 8.5 where it is clearly seen that the same curve as in Fig. 8.2 a)
appears as a limit of the lines of VB.
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Chapter 9

Hilbert space of
Tomonaga-Luttinger model

In this section we review a model exactly solvable for any interaction strength. The simplest
model of interacting fermions is the one-branch (chiral) Tomonaga-Luttinger model [48]. Let
n label the one-particle orbital with convention that in the ground state |0) of the non-
interacting model, n = 1 denotes the first unoccupied state. Since a very large number of
states is occupied (the number of fermions is large) the number n can be allowed to run
from —oo to +o0o. Another consequence is that the one-particle spectrum is assumed to be
equidistant: E,, = n/A. Both the linear dispersion and the fact that the spectrum is unbound
are crucial for the solubility of the model. Introducing creation and annihilation operators
c}:, ¢p, for a fermion on the orbital n, with usual anti-commutation relations {c,, c:[L,} = Opn’
(other anti-commutators vanish) the Hamiltonian of the problem can be written as

+oo +0oo
A=Hy+U=Ey+ Y E,:clea:+ > Z Vi€l ymnChi o (9.1)

n=-—00 m=1n,n'=—o0

The normal ordering of operators having infinite expectation values is defined as : O :=
— (0|0O]0). As a result the constant Ey absorbs the (infinite) free ground state energy
together with the Hartree term:

= (0|H|0) = Y E,(0|chea|0) + Z (0lch enct e 0) (9.2)
n<0 nn’§0

The operator of “total momentum”

_|_

Z : (9.3)

commutes with the full Hamiltonian. Due to the linear dispersion this operator is proportional
to the free part of the Hamiltonian, i.e. the first term on the RHS of (9.1).

Instead of solving this model by the standard method of bosonization using identities
among second quantized operators (see for example [48]) we prefer to reformulate our inter-
acting problem in order to relate it to the problems usually discussed within the framework of
Anderson localization. We start by labeling the eigenstates of non-interacting problem, which
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Figure 9.1: Correspondence between Slater determinant and partition (\) = (7,6,5,5, 3,2).

The dual partition (A) = (6,6,5,4,4,2,1) represents shifts of the holes.

are the familiar Slater determinants, by shifts of particles with respect to the non-interacting
ground state as shown in the Fig. 9.1: the uppermost particle is shifted up A\ levels, the
second one is shifted up A9 levels etc. The numbers A; are defined to satisfy A\; > A4 for
each i. If a particle is not shifted it is not recorded. The set (A\) of positive integers satisfying
> Ai = N forms the set of partitions of NV and is conveniently displayed by a Young diagram
— array with \; boxes in the i-th row. Following the standard notations in the mathematical
literature the numbers A; will be referred to as parts in what follows. For example, the par-
tition of N = 28, () = (7,6, 5,5, 3,2) sometimes written as (7,6, 52,3,2) that is displayed in
Fig. 9.1 is represented graphically as

(A) =

This pictorial representation of Slater determinants has nice properties under particle-hole
interchange: recording shifts of the holes (which are moved downwards in energy) rather than

particles in Fig. 9.1 yields the partition (\) = (6,6, 5,4, 4,2,1) whose graphical representation
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is just the transpose of the Young diagram for (\):

(A) — L

Partition ()) is said to be conjugate or dual to (A). This duality results from the fact that
each move of a particle upwards is accompanied by a move of a hole downwards.

The eigenstates of the non-interacting Hamiltonian labeled by partitions of N are degen-
erate and their energy is given by

Y (Biipr — Bimi) = A Z A =NA (9.4)

i

The interactions conserve this number. The Hamiltonian (9.1) is therefore block-diagonal and
does not mix the partitions of different N so we can restrict ourselves to the subspace of the
Hilbert space spanned by partitions of N.

The dimensionality of this subspace is given by p(N) — the number of partitions of N.
There is no closed analytical expression for this number but the Euler expression [62] for the
generating function

p(@) = > p(N)g" =]] 1%11 (9.5)
N=1 =1

allows to obtain the asymptotic behavior of p(N) for large N and it is given by the formula
of Hardy-Ramunajan:
eV 2N/3

It demonstrates that the number of “sites” in the subspace increases rapidly with N.
Since for a given subspace N the free part of the Hamiltonian is proportional to the unit
matrix the solution consists in diagonalization of the interacting part U. The interaction term
in (9.1) is conveniently represented in our picture as effective binding between the sites. In
order to present the results in a compact and transparent way we drop the requirement on a
partition labeling the basis state to be represented by a non-increasing sequence. Instead we
extend the notion to any finite sequence of integers (either positive or negative or zero) and
use the following rules to relate this sequence to the standard (non-increasing) partition:

(9.6)

1. In any sequence (A1, Ag, . ..) two consecutive parts may be interchanged provided that the
preceding part is decreased by unity and the succeeding part increased by unity, the state
vector which corresponds to this partition acquires a minus sign, i.e.

|(/\1, ey iy Nt 1y - - )) = —|(>\1, e Airr — L+ )) (97)
2. If any part exceeds by unity the preceding part the partition corresponds to zero vector,

l.e.
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3. If the last part of the sequence is negative the partition corresponds to the zero vector.

These rules, used in the theory of symmetric functions [63] are in fact nothing but a
standard properties of Slater determinants under action of second quantized operators. Rule
1 results from the fact that ¢-th particle is excited to the level n; such that

ni=XN+1—1
with the energy E; = n;A while the (i + 1)-th particle is excited to the level
Nit1 = Aig1 — 4

and interchanging consecutive rows in a (Slater) determinant results in a sign change. Rule 2
results from the fact that A\; 11 = A;+1 implies n; 11 = n; which contradicts the Pauli principle.
Rule 3 reflects the fact that negative A; describe (forbidden) transitions to occupied states
inside the Fermi sea.

Let us denote by 7y the factors —1,0 or +1 acquired when bringing a partition (A) to
its standard form. In these notations the matrix element of the interactions between the
partitions (A) and (u) can be represented as

Uy, = (VT (1w ZV Z C)C g —ml)). (9.9)

Since the basis of Slater determinants is orthonormal the following expression is obtained
) = 20 Vi D Ao Mooty ) O A =00ty — 1) (9.10)
mo i

The eigenstates of U are

D) =Y x{10) (9.11)
(N

(A

where X(y) are the characters of the irreducible representation (A) of an element of the sym-

metric group Sy belonging to the class (I). For this purpose it is shown in Appendix A
that

L Ai—me A M.
277( Ai—me ) —me. )\]—I—m...)XEl) it ):mnmX%) (9'12)

where n,, is the number of times the cycle m appears in the class (I). This leads to

= > Vamn > x() (V) = (Z menm> (1)) (9.13)
m (N m

The state |(I)) is therefore an eigenstate of the Hamiltonian (9.1) with the eigenvalue
Egy=Eo+ NA+Y Vypmng. (9.14)
m

The orthogonality of the characters implies that the states |(I)) form an orthogonal basis,
namely:

(@) = % Sy, (9.15)
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Figure 9.2: The inverse participation ratio (9.19) as function of number of sites
Niite = p(N). The solid line represents the fit P = 1/N&,,, where a =~ 0.8

site?

where g = N! is the total number of elements in Sy and the number of elements in the class

(1) is

gy =N ] . (9.16)
m=1
We normalize the states |(I)) as
gau
DS X1 (9.17)
7™

so that they form an orthonormal basis. These are standard bosonic states usually labeled
by the occupation numbers n,, that are the eigenstates of the interacting Hamiltonian (9.1).
The transformation with the matrix

(V1) = \/M o (9.18)

is the unitary transformation of the basis vectors in our Hilbert space, which diagonalizes
the interacting Hamiltonian (9.1). When the free part of the Hamiltonian is degenerate in
the subspace N the states |(I)) play the role of the extended states (in the Hilbert space).
In order to verify this statement we calculated numerically the inverse participation ratio P,

defined as
P=> MO (9.19)
A

for some arbitrary states (/). Although no closed expression is available for the general
amplitude (9.18) of the state |(I) on the site (A), the beautiful recurrent relation of the
characters of the symmetric group (F.12) (based on the Frobenius formula) was implemented
numerically to calculate these amplitudes. The inverse participation ratio averaged over the
bosonic states (I) is shown in Fig. 9.2 for different values of N. As the number of sites

Niite = p(INV) increases the inverse participation ratio P was found to decay as P = 1/Ng,.,
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where o = 0.8. This allows us to conclude that the bosonic states (/) are indeed extended in
the basis of free Slater determinants ().
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Chapter 10

Modified Tomonaga-Luttinger
model

10.1 Interaction matrix elements

The existence of extended states in the chiral Tomonaga-Luttinger model can be attributed
to the degeneracy of the diagonal elements of the Hamiltonian (9.1), since the interactions
(9.10) have short-range in the space of partitions. In order to define more precisely what we
mean by short-range in our Hilbert space we have to order the partitions in some order. Then
the interaction can be shown to connect only blocks of elements that are not too far one from
the other.

It is natural to order the partitions in the lexicographic order, i.e. if \; = 1,2,3...
numbers the letters in an alphabet the lexicographic order of partitions corresponds to the
order of words in Arabic or Hebrew dictionary. For example, the 11 partitions of N = 6 in

the lexicographic order are:
k=1 (1,1,1,1,1,1)

k=2 (2,1,1,1,1)

k=3 (3,1,1,1)
k=4 (2,2,1,1)
*,1,1) (10.1)

k=5 (3,2,1)
(5,1)

k=6 (2,2,2)
(4,2)

(3,3)

(6)

The partitions are grouped by k—the number of 1’s (that appear always on the right). The
k-th group contains partitions of the form

(A1, Ag, ... A, 1V7F) (10.2)
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with constraint \; > 2, with the only exception for the first group containing (1V). The
typical Young diagram of a partition in the k-th group is of the form

N—k (10.3)

To calculate the number of partitions in the k-th group we note that exactly p(k) partitions
have at least N — k ones. Among them p(k — 1) have at least N — (k — 1) ones and the rest
n(k) = p(k) — p(k — 1) have exactly N — k ones. Therefore the k-th group contains n(k)
partitions.

Usually the matrix element of the interaction potential V,;, is a decreasing function of the
momentum transfer m, with some effective range m,. In what follows it will be convenient to
analyze a model where the only non-zero matrix element corresponds to m = 1 with V; = V.
It will not affect qualitatively our results, since we are primarily interested in the limit of
large N subspace. The matrix element of this interaction is given by the simplified version of
(9.10)

Uy =V Z O A1), (oot 1.0 (10.4)
2y

The factors 1 are omitted since the partitions (... A\; —1...) and (...p; —1...) are either
already in the standard (non-increasing) form or corresponds to zero vector and do not con-
tribute to the sum. Therefore the interaction couples partitions (A) and (u) that differ in
two of the \;’s, namely \; — y; = 1 and A; — u; = —1. The Young diagram of the partition
(\) is obtained from the one of the partition () by moving one square under the constraint
that the new Young diagram is legitimate. Consider the k-th group. If p; > 1 and p; > 2
the coupling is between partitions inside this group. This corresponds to moving a square
between u; > 1 rows of the Young diagram. In order to couple to neighboring groups a square
corresponding to p; = 1 should be moved. Moving a square from/to any row with u; > 1
to/from the region where p; = 1 leads to a coupling to the neighboring group k£ + 1. The
exception is if a square is moved from p; = 2 (that has only two squares and after the move
only one is left) and is attached as the last square in the tail of u; = 1, or if the last square
is moved to p; = 1 turning it into a pu; = 2 row. In this case the length of the tail of ;; =1
is changed by two, i.e. the coupling is to the group k &+ 2. These are the only moves of one
square, therefore only the groups k' such that |k — k’| < 2 are coupled to the k-th group and
the interaction between the various blocks of partitions is of short range. Fig. 10.1 shows the
structure of the interaction matrix for N = 14.

It is therefore natural to expect that the diagonal disorder will destroy the extended
states of the chiral Tomonaga-Luttinger model. In the original model in the absence of
interactions the eigenenergies E,) are independent of the partition and take the constant
value E() = Ep+NA. We introduce a modification and assume that the E,) are independent
random variables. This assumption is made for the sake of simplicity. It cannot be correct
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Figure 10.1: The matrix of the interaction (10.4). The blocks corresponding to different
groups of partitions are shown.

since there are p(N) values of F,) that depend on 2N level spacings. An assumption that is
more physical will be introduced in the following section.

10.2 Effective tight-binding model and its solution

In order to be able to solve the model with random energies we simplify further the interaction
(10.4). From the experience in research of Anderson localization we expect that the behavior
of the eigenvectors will not be affected by the precise form of the short-range off-diagonal
matrix elements, so we make the following simplifications. We assume that the effect of
transitions inside the same group of partitions is to delocalize the states within the group.
The localization within a group is expected only to enhance the overall localization. Next,
we neglect the coupling to the k + 2-th group. The reason is that for a given partition ()
there exists only one coupling term of this kind. It couples

((-),1%7%) and ((...),2,1V7F2) (10.5)

This should be compared it with the couplings of (A) to the next group:

((. Y 1N—k) N ((. L, 1N—k—1) (10.6)

The number of such couplings is given by the number of different A\; > 2 in the partition
(M), which is generally much larger than 1 for large enough k. It is equal to the number of
rows with A; > 2 in the Young diagram of the partition. Consider for example the partition
(6,4%,3,1%) of N = 21 belonging to he the 17-th group corresponding to the Young diagram
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(10.3). It has (apart of ones) three different parts: 6,4,3 and is coupled to 3 partitions in the
18-th group:
L[] | [ ]

| - (10.7)

(7,4%,3,1%) (6,5,4,3,1%) (6,4°,1%)

Another way to visualize the number of coupling is to count the number of concave corners
in the Young diagram that is equal to the number of parts namely lines of different length
larger than unity.

In Appendix B we show that d(k) — the number of different parts in all partitions of k
with A; > 2 is exactly p(k — 2) — the number of (any) partitions of (k — 2). Therefore the
mean number of transitions from the k-th group to the k + 1-th group is given by t(k) =
d(k)/n(k) = p(k = 2)/ (p(k) — p(k = 1)).

The Schrodinger equation for our simplified model can be written as a tight-binding form
where the groups of partitions are the effective sites:

(E = Ep)vN)g =D Uy e—r + O U, % (V) g (10.8)
(&) (v)

where 1)()), denotes the value of the wave function on site(\) in the k-th group. Let us assume
that the wave function is extended within the kth group. We introduce a simpler model that
is expected to exhibit similar localization properties [64]. We replace the interaction Ui, )
by an average interaction that couples each partition in the k-th group to all partitions in the

group k £ 1,
2w U,w)
In this approximation (10.8) reduces to
(E = Epy)vN)y, = Vet D_ (1) p_q + Vi D ()41 (10.10)

() @)

The numerator in (10.9) can be estimated as V' times the mean number of couplings with
partitions in (k + 1)-th group:
t(k) d(k)

=V ) = a®nte 1 1) (10-1)

Denoting the sum of the wave-functions over a group by Cy = 3>(y) ¥(A); we find with
the help of (10.10) that

ErCr = Vi 1Ck—1 + Vi Crpa (10.12)
where
1_ > _ (10.13)
Er o E— E()\)
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and the sum is over all partitions in the group k.

For random independent E all the & are independent random variables and the tight-
binding model (10.12) is an Anderson model at zero energy. In the spirit of transfer matrix
method it is expected that also for & given by (10.13) similar localization properties will be
found. The properties of the solution of this one-dimensional model can be analyzed within
the framework of Anderson localization in one-dimensional systems [49].

One can take the uniform distribution of energies that turns out to be convenient for
calculations. Remembering that each many-body energy is a sum of N level spacings we
assume the following distribution:

P(E):{ 1/\61?& —VNA/2 < E < v/NA/2

10.14
otherwise (10.14)

For a variety of distributions the distribution of & tends to the Cauchy distribution:

1 0(E)

™ 8,? + Ok (E)2

where 63 (E) = §(E)/n(k) and for (10.14) 6(E) = VNA/x.
Multiplying the equation (10.12) by n(k)n(k+1)/(Vd(k)) and observing that in the limit

k — oo one finds n(k)/n(k + 1) — 1 and d(k)/d(k — 1) — 1 so that (10.12) takes the form

P(&) = (10.15)

ECr = Cp—1 + Ciy1 (10.16)

It is a Lloyd model with a k-dependent distribution of on-site energies characterized by
parameter

5e(E) = @% (10.17)

which in the limit £ — oo has the property

Sp(E) ~ | == (10.18)

We generalize the solution of the Lloyd model [49] to the present case of site-dependent
distribution of energies. We observe that the distribution parameter depends weakly on the
site number k£ and use the site-dependent localization length ansatz:

2
1/&, = [C = cosh™! —k ~1Inéy = 1n,/ (10.19)
\C +1|

The last approximation is justified in the weak-coupling limit V/A < 1.

The validity of the site-dependent localization length assumption is checked numerically.
The on-site energies & were generated from the Cauchy distribution (10.15) with parameter
0k given by (10.18). The inverse localization length 1/¢ (Lyapunov exponent) was calculated
using the standard technique of transfer matrices [49] and it was found that the site-dependent
ansatz (10.19) describes well (at least qualitatively) the behavior of the localization length.
Thus for independently distributed energies the typical behavior of the wave functions is
described by coefficients that decay as

N A
~ ekl = —klog | == |- 10.2
Cr~e exp( klog 6kV> (10.20)
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In the strong coupling limit similar considerations lead to

N A
Cp~e —exp< kw—24k _V> , (10.21)

but in this limit these require some further justification. The importance of this result is that
numerical studies of more realistic many-particle energy distributions confirm the validity of
(10.20). This will be the subject of the next section.
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Chapter 11

Effects of energy correlations

In the last section we considered a model in which the diagonal matrix elements E(,) are
independent random variables. We did not specify the distribution law of these energies,
since the solution does not depend on fine details, but rather on general properties of the
distribution. We would like to stress that the assumption of statistical independence of the
energies F(,) is not realistic for a many-body system. To illustrate this statement a simple
argument can be given. Suppose we are dealing with a disordered mesoscopic system and
the one-particle spectrum is random, i.e. consists of levels with independently distributed
spacings A; = E; — E;_1. The generalization of the expression (9.4) for the energy of the
partition (A) for this case is

Ai+1—1
By = (Bioisa —Bi) =) Y A (11.1)
i i j—2—i

In order to describe the energies F(,) in the subspace N we need 2N random quantities A;. On
the other hand the number of states in this subspace is given by p(N), the number of partitions
of N which grows exponentially for N — oco. Therefore there exist much more many-body
energies E,) than independent level spacings. Therefore the many-particle energies E(y),
which are the sums of the one-particle energies, are statistically dependent.

The analytical calculation of the (joint) distribution of the parameters & defined in (10.13)
for the effective tight-binding model (10.12) seems to be hopeless. Nevertheless we expect
some features of this distribution, based on the formula (10.13). For an eigenstate the eigen-
value F is in the interval [—1 + E(T';gn +1 + E§7], where Eg;n and Ef}§® are the minimal
and maximal values of E(y). The value of E can be very close one of the E(,). Therefore
the terms in the sum on the RHS of (10.13) can be positive or negative and they strongly
fluctuate in magnitude. Therefore there is a finite probability that this sum will take a value
in the vicinity of zero. Consequently it is expected that the distribution P(&) is broad with
a diverging second moment or variance:

A& = ((Ek — (&)%) — o0 (11.2)

Another important issue is the effective statistical independence of &, for different k-s. It is
known for Anderson localization that the long-range correlations between the on-site energies
change dramatically the criteria for the onset of the localization (see [65] and references
therein). The measure of statistical dependence of energies in our case is the correlation

64



15

30

Figure 11.1: The absolute value of correlation matrix elements Cj; defined in (11.3) of
effective energies & for N = 30.

matrix defined as
O = (& — (&) (& — (&))) (11.3)
AELAE,

Because of the strong fluctuations between the terms of the sum on the RHS of (10.13),
that are different for the various groups, it is reasonable that the off-diagonal terms of the
correlation function are much smaller than the diagonal ones. Usually for localization only
pair correlations are important [66]. In the view of the diverging variance we assume that
Cy; = 0, an assumption that will be tested numerically.

These facts were checked numerically and in the approximation of independent energies
the effective distribution P(&) can be calculated. For this purpose M = 1000 realizations of
N = 30 level spacings A; were generated from the exponential distribution:

P(A) =e™2 (11.4)

with A = 1. Then we generated numerically the whole list of p(30) = 5604 partitions of
N = 30 and for each realization of level spacings the energies E,) were calculated using
(11.1). Out of these energies the effective energies & were obtained using the definition
(10.13) for E = 0. Several statistical tests were performed and results are shown in Fig. 11.1-
11.2.

The correlation matrix of the energies & was computed. The (...) averages were per-
formed over realizations of the level spacings. The result is shown in Fig. 11.1. It is plausible
that the correlations are of short range in the space of indices k and only the diagonal ele-
ments of Cy; are of appreciable magnitude. This behavior can be attributed to the diverging
variance.

Due to the fact that the distribution of the energies & is expected to have a diverging vari-
ance the distribution P(&) cannot be calculated from a histogram. Instead its characteristic
function

Xp(p) = (€75) (11.5)

was computed and plotted for several values of k in Fig. 11.2 as a function of p. The diverging
second moment due to the fact that P(z) o< 1/2% manifests itself in the discontinuity of the
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Figure 11.2: Characteristic function X (p) of the effective energy distribution for some
values of k.

derivative at p = 0 as can be seen from the Fig 11.3. Therefore we have strong evidence that
the energies £ have a broad distribution.

Observing the behavior of the characteristic function shown on the Fig. 11.2 and Fig. 11.3
we introduced a scaling ansatz for the distribution function:

P& = Po(e) = "M p <n(k)§) . (11.6)

The universal function P(z) is independent of k. The scaling of the distribution implies that
the characteristic function (11.5) satisfies

Xu(p) = X (%), %(q) = /_o:o dz B(z)el® (11.7)

which is easy to check by plotting X (p) as a function of ¢ = pA/n(k) for different values of
k. These curves are displayed in Fig. 11.4 and are indeed found to be close to each other in
spite of the fact that n(k) ranges from n(1) =1 to n(30) = 1039.

We found numerically that the universal characteristic function can be well approximated
by the general form

~ 2
X (q) = exp (—alql - b%) (11.8)

The value of parameters were found to be a = 1.15, b =~ 6.32. This is the characteristic
function of a distribution of a sum of two random variables x; and z9, where z; is drawn
from Cauchy distribution with probability density

1 a

pi(z) = T2+ a2 (11.9)
and the second is distributed normally according to
I a2
p2(z) = 53¢ (11.10)
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Figure 11.3: The same as on the previous figure for a smaller range of p.
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Figure 11.4: The characteristic function Xg(p) as a function of the scaled variable
g = pA/n(k) for values of k used in Figs 11.2-11.3
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The distribution of £ = x1 + z2 is thus given by

~ +oo
Pla)= [ " dypi(o — () (1L.11)

o0

and its characteristic function is (11.8). It has a diverging variance due to the fact that P(z)
behaves as %a% for large |z|.

The scaling factor A/n(k) and the limiting behavior of the distribution function are the
same as those found in the case of mutually independent energies. This allows us to conclude
that the behavior of the coefficients C given by (10.20), that was obtained in the model with
uncorrelated Ejy), is satisfied also by the eigenfunctions of the more realistic model of the
present section.
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Chapter 12

Conclusions

Here we present the discussion of the results obtained in this Ph.D work. Then we discuss the
possible extensions of our research. The analytical results for the free energy and the magne-
tization of a mesoscopic super-conductor were derived at the dual point and in the London
regimes. We have used a known exact solution for the two dimensional Ginzburg-Landau
equations in an infinite plane, valid at the dual point, to study a finite system with bound-
aries. The infinite system solution approximates well the behavior of the order parameter
and the magnetic field in the bulk of the system, while an ansatz was used to approximate
the solutions in the boundary region. This division of the system into two regions corre-
sponds to the separation of paramagnetic and diamagnetic behavior of the super-conducting
currents. In this way the free energy contains the contributions from the bulk as well as from
the boundary region. The diamagnetic boundary region provides the mechanism for selecting
the number of vortices as a function of the applied magnetic field. The matching fields for
entrance of one additional vortex were calculated and the results show right scaling behavior
with the size of the system. This approach enabled us to study thermodynamically stable
states but also meta-stable states (to obtain a surface energy barrier).

This model gives theoretical insights into the physical mechanisms involved in the ex-
perimental results of [1, 2] and our analytical results agree quantitatively with experimental
measurements. In fact, other related thermodynamic quantities such as the surface tension
measuring the thermodynamic stability of vortex states can also be computed along this way
and could generalize to two-dimensional systems previous results obtained in one dimension
[67].

With the help of numerical simulations, we have carried out a perturbative calculation of
the free energy in the vicinity of the dual point. The scaling behavior of the free energy was
observed. In the limit of large number of vortices some analytical results were obtained in
qualitative agreement with the numerical simulations.

More generally, we believe that a theoretical study in the vicinity of the dual point provides
a lot of information about the generic solutions of the Ginzburg-Landau equations. We verified
that the behavior we found in the vicinity of the dual point, such as the scaling of the free
energy, remains valid when x ranges from 0.1 to 10 and this interval of values is indeed relevant
for many conventional super-conductors.

Then we studied the properties of a type II super-conductor in the London regime. The
main motivation was to obtain analytical results for the properties of a super-conductor at
equilibrium and in the meta-stable states. The important goal of our studies was to describe
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analytically the topology of the underlying magnetic field profiles and distribution of the
order parameter. Once obtained in the London regime, the results concerning the topology
hold qualitatively for the whole range of the Ginzburg-Landau parameter. In the London
regime, the Ginzburg-Landau equations reduce to a single linear elliptic equation for the
magnetic induction that can explicitly be solved in simple geometries. We have derived
closed expressions for the free energy and the magnetization of a mesoscopic system which
have been obtained as limiting cases of a general calculation valid for a system of any size [38]
and not from specific assumptions related to the mesoscopic regime [60]. With these formulae,
we have been able to study precisely the matching fields and to compute the paramagnetic
Meissner effect, resulting from the existence of meta-stable states.

We devoted much attention to the general and topological study of the meta-stable states
using a parallel with the theory of two dimensional dynamical systems. We showed that a
vortex pattern can be characterized by as set of topological integers, the number of vortices
being one of them. Any change in this set corresponds to a topological transition of the vortex
pattern. We calculated the critical fields associated with these transitions and we gave a dual
interpretation of these transitions. The simple analytical expressions for the super-conducting
currents enabled us to precise the notion of the special curve T', separating the paramagnetic
bulk region from the diamagnetic boundary. This curve embodies the main geometric features
of a configuration of vortices. Mathematically this curve appears as a limit cycle of the system
of currents generated by the vortex pattern.

Our study can be extended in many directions. The scaling results in the vicinity of kK =
1/ V2 were derived from numerical simulations: a systematic perturbative expansion around
the dual point would put them on a more rigorous basis. Secondly, a linear stability analysis
of the cylindrically symmetrical solution [68] should allow to understand the fragmentation
transition between a giant vortex and unit vortices.

The approach that focuses on topological aspects is generic and can be extended, at least
in a qualitative manner, to systems beyond the dual or London regime and with different
shapes. Here, we considered a circular cylinder to obtain simple analytical expressions. In
recent studies, analytic expressions for the free energy of a cylinder with an elliptic cross-
section were found in the mesoscopic limit [69] and, more generally, an electrostatic analogy
was developed that enables to study mesoscopic super-conductors in the London regime with
the help of conformal transformations [70]. In addition, since the separatrix I' exists even
for vortex configurations breaking cylindrical symmetry, our approach can be used to analyze
hysteretic behavior of meta-stable states, and to study polygonal vortex configurations found
numerically in mesoscopic super-conductors [56, 9]. Using such tools, it would be interesting
to carry on a quantitative study of topological phase transitions in arbitrary domains.

In this work, only static configurations of vortices have been investigated. A natural
extension of the concepts introduced here would be to consider the dynamics of a vortex
pattern, where a vortex would move in the field generated by the other vortices. In this
context, the study of the deformations of the curve I' would certainly shed some light on the
mechanism of vortex nucleation in a super-conducting system.

Now we proceed to the conclusion drawn from the study of quasiparticles in mesoscopic
conductors within the framework of Anderson localization in the Hilbert space. The local-
ization properties of the eigenstates of the modified interacting chiral Tomonaga-Luttinger
model were studied. For total energy NA subspace we defined an effective lattice of Slater
determinants labeled by partitions of N which represent the eigenstates of the system in the
absence of interactions. We have observed that in the case of linear dispersion the eigenstates
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of the interacting model described by the bosons are extended over this lattice. When the
random one-particle levels are introduced instead of the equidistant spectrum, the bosons are
no more the eigenstates and one has to find another approach to the problem of diagonalizing
of the Hamiltonian. In order to achieve this goal we have grouped the different sites (parti-
tions) according to the number of ones, representing the distance of the most excited particle
from the Fermi surface in the original Slater determinant. This is to be contrasted with the
grouping of many-body states into generations according to the number of excited particles
and holes as was firstly done in [20]. Each resulting group of partitions was given a label k.
The interactions were shown to be of short range in k. The interactions were further simplified
by assuming that they interconnect only groups of partitions corresponding to the adjacent
values of the index k (and the interactions between groups k and k + 2 were neglected).
Assuming further that the states are extended within each group k& we obtained an effective
tight-binding Anderson model where each group k£ has an effective random energy and the
hopping takes place between the nearest neighbors only. In the assumption of independently
distributed on-site energies the model is found to be close to the Lloyd model characterized
by a broad distribution of the on-site energies. The main feature of our effective model is
that the distribution of energies is k-dependent. We employed the site-dependent localization
length assumption, which consists in assuming the parameters of distribution change slowly,
so locally the localization length is given by the same formula as for the Lloyd model with
parameters of the local distribution instead of the uniform global one. Up to an unknown
numerical factor this solution describes well the behavior of the localization length as a func-
tion of k£ and it enabled us to show that the eigenstates are localized in the space of groups of
partitions, k. The weak-coupling and the strong-coupling regimes can be identified according
to the value of the parameter V/A. In the weak-coupling regime V < A, the amplitudes

decay as exp (—k:log \/g %), namely nearly exponentially. In the strong coupling regime
V > A, this behavior changes to exp (— g—f% .

One important point which was discussed is the effect of correlations between the many-
body energies of the non-interacting system. In the studies devoted to the localization in
many-body systems the effective on-site energies corresponding to the eigenstates of the non-
interacting system are assumed to be independent random variables, so their spectrum is
described by a Poissonian sequence. This is not the case for the true many-body fermionic
system, since these energies are sums of independent energies of one-particle excitations.
The number of independent random variables is therefore much less than the number of
different many-body states. This situation is similar in some sense to one faced in random
walk problems, where the increments are distributed independently, while there is a strong
correlation between the positions of the random walk at different times. In our work we
considered this problem numerically and found that although the correlation between the
exact energies corresponding to the eigenstates of the free model are not a priori negligible
the random energies of the effective sites k& are found to be very weakly correlated. Moreover
it was found that the parameters of the distribution of the effective energy of the group k
scale with the number of the partitions inside the group in the same way as they do in the
case of independent many-body energies. This led us to the conclusion that our result for the
localization of the eigenstates are valid for more realistic assumptions on the distribution of
the many-body energies.

One of the questions arising from our approach to the interacting systems in the mesoscopic
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regime is the study of the interacting electrons in dimensions higher than one by the methods
of high-dimensional bosonization. In this technique [71, 72, 73, 74, 75] the fermionic system
is described as an infinite set of one-dimensional Luttinger models attached to a point on
the Fermi surface. Therefore the interactions mix the states belonging to different points in
addition to the coupling within the same point (represented by a Luttinger model), which
can be treated within the framework developed in the present paper. This possibly can be a
mechanism for the delocalization of the states and a resulting localization transition must be
compared with the transition encountered in the recent studies [20, 21, 22, 23] of interacting
electrons in finite systems.

The nature of localization in the Hilbert space for single-particle dispersions that are more
realistic than the random ones is another question to be explored in the future. In addition,
the localization properties of the eigenstates exactly solvable one-dimensional models is a
problem that can be attacked by analytical methods to provide additional information about
interacting systems.
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Appendix A

The Ginzburg-Landau equations in

a cylindrically symmetric system

For a cylindrically symmetric system, we can use 9 = f(r)e"™ and A= A(r)ép where n is a
non-negative integer which represents the number of vortices at the center of the system. We

also define the super-fluid velocity ¥; = vs(r)ég, where
n
w(r) = (2 - am)

In this case the Ginzburg-Landau equations are:

R e

dr2 ' rdr

d /1d 9
e B s = 2 s
dr (r dr(m )> vsf

(A.1)

(A.2)

(A.3)

It is convenient to define the quantity p(r) = rv,(r). The magnetic field B = B(r)é, is given

in terms of p(r) by

1dp
B(r)=———
(r) rdr
We obtain finally two coupled ordinary differential equations
= 2= ) P
pll — 2pf2 + pl/r

with the following boundary conditions at r = a~! for n # 0:
f(0)=0 flla™)=0
p(0) =n pla™!) =n— ¢
for a disk and
f(0)=0 fllal)=0
p(0) =n p'(a™!) = —2ad.

(A.4)

(A7)

(A.8)

for a cylinder. These are the equations we have solved numerically using the relaxation
method [76]. From the analysis of the equations (A.6) we deduce the following behaviour in

the vicinity of the center of the disk:

f~r" and p~7?whenr —0
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The free energy (2.19) is then given in terms of the solution of (A.6) by

% = /Ol/a rdr (%2 + K2 (1 - f4)) (A.9)

For the case of infinite system a = 0 there are useful identities originating from the radial
Ginzburg-Landau equation (A.6). Consider the second equation in (A.6). Its left hand side
can be identified with —B'(r) with help of the relation (A.4) for the magnetic field. If we
integrate the equation from r = 0 to r = o0 and use the boundary conditions which imply
that magnetic field vanish at infinity we get

_ B(0) =2 / C A )£ (A.10)

Next we consider the integral

/OrdT32 / dr r*B(r)B'(r) (A.11)

where the equality follows from the integration by parts and observation that the contribution
from the end-points is zero, as a consequence of the boundary conditions. We use now the
second Ginzburg-Landau equation (A.3) to show that

12 12 p1
pp =194 (ﬂB—) _ B (A.12)

4r2 dr f2 2f3

and the first equation (A.2) to express the last term as a derivative plus a term depending on

f(r) only:

B*f 14
W:—Qd—<f)+4 2f1( - 1), (A.13)
Combining this expression with (A.12 we rewrite the integrand in (A.11) as
1 d(,B% 1d
BB' = - —— 4Kk A4
MT( fz) g (7)) 4R 15 ). (A.14)

The terms which contain derivatives do not contribute to the integral (A.11) due to the
boundary conditions. The only contribution comes from the last term and can be evaluated
using the integration by parts:

/0 rdr B%(r / dr r? B'(r) = 2x? /Ooo rdr (1 — f%)?, (A.15)

where the contribution from the end-point vanishes due to the boundary conditions. This
identity enables us to rewrite the free energy (A.9) for a = 0 (infinite radius) as a functional

of f(r) only:
f

=k’ /oo rdr (1 — f2) . (A.16)
27 0

This expression is valid in infinite system for any value of the Ginzburg-Landau parameter,
provided f(r) is obtained by solving the equations (A.6). In fact as long as boundary con-
ditions for the order parameter and magnetic field hold approximately at the boundary of a
finite domain ( like 2; ) the expression can be used to calculate the thermodynamics of a
finite super-conductor.
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Appendix B

Vector potential of an off-centered
configuration with one vortex

In this appendix we measure the distances in units of R, so the disk has unit radius.
Suppose that the vortex is located at a distance z from the center of the disk (0 < z < 1).
The phase x(p,0) of the order parameter satisfies Ax = 0 everywhere on the disk except on
the vortex with boundary condition ﬁ.ﬁx =0
Using the image method, the phase x(p,0) at a point located at a distance p from the
center of the disk (with 0 < p <1) is given by [40]:

0
B pe’ —x
Xx(p,0) =Imln (7p - 1/:1:) (B.1)

where Im denotes the imaginary part part of a complex-valued function. Or equivalently:

tan x( 0)—1_$2 b (B.2)
X = T 42 cosf— (p+p~H)/(z+z71) '
On the boundary of the disk, p = 1, and one finds that
2
ox _l-w L R (B.3)
00 1+1?1—2zxcos0/(1+ z?) dp
therefore " )
> 1+z
av 2 _ 2
5 IVX(L O = a" 17— (B.4)

The vector-potential ff(R) at the boundary of the sample is a function of the polar angle
0 since the vortex is not at the center of the disk. We determine A(R) from the following
conditions:
V-4A=0, A(R) -dl' = ¢,
o
and on the boundary A(R) - = 0. The following choice,
A(R) = ¢.Vx (B.5)

valid near boundary of the system, satisfies these requirements.
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Appendix C

Magnetic induction in a cylinder

We present the solution of the London equation (6.6) for the magnetic induction
N
V2B(7) — 2B(7) = —4r > _ 6(F — %) (C.1)
k=1

with the boundary condition B(R,6) = H.. The polar coordinates are convenient for this
geometry. The equation (C.1) with a vanishing right hand side describes the Meissner regime
in the absence of vortices. The corresponding solution of the homogeneous equation is given
by the #-independent function

_ I()(\/i’f’)
Bu(r) = Hep H (C.2)

where the functions I,(z), K,(z) are modified Bessel functions of first and second kind of
order n which provide the regular and singular solutions respectively of (C.1). The solution
of the inhomogeneous equation (C.1) for N vortices is written as a sum of the solution of the
homogeneous equation and a particular solution:

B(r,0) = Bu(r) + By (r,0) + By(r,0) (C.3)
where By (r,#) is the solution for N vortices in the unbound domain

N
By (r,0) =2 Ko(V2|7 — 7|) (C.4)
k=1

and the term By (7, 0) is introduced to take care of the boundary conditions:

By(R.6) = —By(R,0) = 23 K <\/2 (R? + 2 — 2Rry cos(0 ok))> (C.5)
k=1

On the other hand, the field By can be written as a superposition of solutions of (C.1) regular
in the interior of the boundary:

—+00

By(R,0) = 3 calu(v2r)em? (C-6)

n=—oo
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where, since the field is real, the relation c¢_,, = ¢} holds. Expanding the lhs of (C.5) into
Fourier series using standard identities of Bessel functions [77] we get

Ko (\/2 [R2 + 77 — 2Rry, cos(6 — 0k)]> = +ZOO Kn(V2R) 1, (v/2ry,) e 0=0k). (C.7)

n—=—0oo

Equating the coefficients of the expansion of both sides of equation (C.5) one obtains

K, (V2R)I,(\2ry) o—ind
B I,(V2R)

from which the expression (6.11) follows immediately.

(C.8)

Cn
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Appendix D

Expression of the Gibbs energy for
a cylinder

One takes advantage of the vector identity (V x B)- (Vx 5) V- (BxVxB)+B-(VxVxB)
to rewrite (V x B) - (V x B) = V- (B x V x B) — BV2?B, since V- B = 0. Then one uses the
London equation (6.6) to rewrite the expression (6.3) for the free energy as

—wZ/d%«B 7)o (7 /d2rV (B x V x B) (D.1)

The singular part Fo, is obtained from the contribution of By to the first integral. The
regular contribution to the free energy can be written using Stokes theorem:

R 2
F - foo—ﬂZBMrk +7TZBV W+ i d0 B(R,0)B,(R,0) (D.2)

where B, denotes the partial derivative of B(r,6) with respect to r and the fields Bjs and
By are given by (6.9) and (6.11). In the last term B(R,f) = H, can be taken out of the
integration sign and the integral becomes

dBy(R) a [

27 iR + 27 @ df (By(R,0) + By (R,0))
I,(v2R) Ip(v/2r)
— 22rH, eTER) _4von z of fk) (Io(VZR)K\(VZR) + Ko(V2R)L (V2R) )

(D.3)

To prove the last equality the properties of the Bessel functions Ij(z) = I(z), Ky(z) =
—Ki(z) and the expansion (C.7) were used. Only n = 0 term contributes to the angular
integral. Using another property of Bessel functions Iy(z)K1(z) + Ko(z)I1(z) = 1/z and one
obtains that:

HeR 2w . \/iﬂ'RHg Il(\/iR; _ﬂ_iH M (D4)

d0 B, (R, 0) =
4 Jo r(8,0) 2 Iy(V2R “Iy(v2R)

k=1
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We notice that the contribution from the Meissner field Bjs in (D.1) exactly cancels with the
second term in the last equation. Hence, the regular part of free energy becomes:

QII(\/_R (\/_7']) n(\/ﬁTk)
F — Foo = V21 RH] W3R n—z_oo];1 NS

cosn(0; — O)

(D.5)
The term containing the average magnetic induction over the cross section of the cylinder
is evaluated along the same lines, using the London equation (6.6):

2. _ e Ad2r 211(\/_R) x _ O(ﬁrk)
H/ (P)d*r = 2n N Ho+ /VVB 7)d>r = /2 RHI(ﬁR)+2HkZl<1 0(\/§R)>

(D.6)
Using the expressions (D.5) and (D.6) in the definition (6.13) of the Gibbs energy completes
the derivation of (6.15).
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Appendix E

Study of the critical points

In order to study critical points of the Hamiltonian system defined in section 5.1, one has to
solve the equations (8.6) and (8.7) for a given number N of vortices.

E.1 Existence and location of the critical points

We first look for critical points which are neither on the boundary of the disk nor at the
center, i.e. we concentrate on the generic position 0 < r < 1. When 0 < r < 1, one deduces
that the equation (8.7) is satisfied if N@ = 0, i.e. when § = kn/N for k = 0,1,...,2N — 1.
These values of the angle can be subdivided into two groups according to the sign of cos N6.
We now discuss the solution of the equation (8.6) for the two cases separately.

E.1.1 Bulk critical points such that cos N0 = +1

In this case, we are looking for ’parallel’ critical points that lie in the same direction as the
vortices. And we shall prove that for any N, there exists a critical field ¢as(IN), defined as

follows,
¢um(N) = N1 +2z")/(1 - zV) (E.1)

such that when ¢, > ¢y (N) there is always a critical point between each vortex and the
boundary, and no such point exists if ¢, < par (V).

Using the new variables ¢ = z"V and p = 7"V the equation (8.6) reduces to

be g &1 (E.2)

N (1 -¢p)(E—n)
Looking at this equation, it is clear that systems with N =1, N = 2 or N > 2 should be
discussed separately.

e For N = 1, the plots of the left and right hand sides of this equation are represented
in Fig. E.1. They cross for p < 1 only if the rhs evaluated at r = 1 is less than ¢, i.e
for ¢ > ¢y = (1 +&)/(1 —&) = (1 +x)/(1 — z). In this case the solution of (E.2)
can be shown to exist using the continuity of the functions. The position of the critical
point corresponding to this solution satisfies ¢ < r < 1, i.e the point resides between
the vortex and the boundary. For ¢, < ¢,s there is no solution.
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Figure E.1: Graphical solution of the equation (E.2) for one single vortex (N = 1). The
position of the vortex is taken to be z = 0.5.

e For N > 2, it is worthwhile to consider the reciprocal of (E.2) which rewrites as
N
Pe

The right hand side is a convex parabola with zeros at £ < 1 and 1/§ > 1. For
N = 2 the lhs is a constant function and it is clear that if ¢ > ¢y = 2(1+€)/(1-¢) =
2(1+22)/(1—1z?) there is always a solution for £ < p < 1, therefore there exists a critical
point between the vortex and the boundary, while ¢, < ¢as no solution exists. For N > 2
the lhs is an increasing fractional power of p (see Fig. E.2). The equation (E.3) always
has a solution between & and 1 if ¢ > ¢pr = N(1+€)/(1 =€) = N(1 + V) /(1 — zV)
and no solution if ¢, < Pas.

PR = =g ) (E3)

E.1.2 Bulk critical points such that cos N = —1

We are now looking for ‘anti-parallel’ critical points that lie in a direction bisecting the angle
between two neighboring vortices. Here the discussion is more involved:

e when N = 1 there appears a critical field ¢,,(1) = (1 — z)/(1 + z) such that: when
¢e > dm(1) there exists a critical point in the direction opposite to the vortex whereas
when ¢ < ¢, (1) no such point exists.

e when N = 2, there are two critical fields ¢,,(2) and ¢.(2) such that: when ¢, (2) <
¢e < bc(2) there are exactly two anti-parallel critical points and there are no such points
when ¢ < ¢, (2) or ¢e > dc(2).

e when N > 2, one has again two critical fields ¢,,(N) and ¢.(N) such that: when
e < ¢m(IN) there exist N anti-parallel critical points, when ¢,,,(N) < ¢ < ¢c(N),
there are 2N such points, and when ¢, > ¢.(IN), there are no anti-parallel critical
points.
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Figure E.2: Graphical solution of the equation (E.3) for N > 2 vortices. The position of the
ring of vortices is taken to be x = 0.5.

We now prove these assertions and calculate the corresponding critical fields.

Consider first that N = 1; then the equation (8.6) in terms of the variables p and ¢
becomes

1-¢2

(1+&p)(€+p)
And a solution exists in the interval 0 < p < 1 if the value of the lhs at p = 1 exceeds the
value of the rhs at the same point, as shown in Fig. E.3. This happens for ¢, > ¢ (1) =
(1-2)/(1 +);

Now, when N > 2, the equation (8.6) can be rewritten as

Gep = (E.4)

Noa-%_ 1
o T 1=
e N = 2: this case is illustrated in Fig. E.4. For ¢. < ¢,(2) = 2(1 — &)/(1 +¢) =
2(1—22)/(1+z2?) there is no solution, for ¢, = ¢,,(2) one solution appears at p = 1 and
it persists for the range of the flux ¢,,(2) < ¢e < ¢c(2) = 2(1 — €2)/€ = 2(1 — z*)/z*.
For higher flux, ¢, > ¢.(2), this solution disappears at p = 0.

(1+&p)(€ +p) (E.5)

e The case N > 2 is the most interesting: Fig. E.5 shows the behavior of both sides of the
equation (E.5). Comparing the value of the lhs at p = 1 with that of the rhs and using

the fact that pl_% has a negative curvature, while that of the rhs is always positive, we
can state that for ¢e < ¢y, (N), where

¢m(N) = N1 —€)/(1+&) = N1 —zN)/(1 +2") (E.6)

there is only one solution. Another solution appears at p = 1 for ¢ = ¢, (N) and
these two solution move towards each other when the flux is increased in the interval
dm(N) < ¢e < ¢pc(N), whereas at the critical value of the flux ¢, = ¢.(N) these two
solutions coalesce. For ¢, > ¢.(N), the equation (E.5) has no solutions in the interval
0<p<l.
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Figure E.3: Graphical solution of the equation (E.4) for one single vortex (N = 1). The
position of the vortex is taken to be z = 0.5.
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Figure E.4: Graphical solution of the equation (E.5) for N = 2 vortices. The position of
each vortex is taken to be z = 0.5.

83



Figure E.5: Graphical solution of the equation (E.5) for N > 2 vortices. The position of
each vortex is taken to be z = 0.5.

Calculation of the critical flux ¢.:
! 2
For ¢.(N) = ¢. the function fins(p) = J-p' N and frns(p) = (1 +£p)(E + p)/(1 — €2) are
tangent at some point p = p. as shown in Fig. E.5. Equating the value of these functions and
the value of their derivatives at p = p. we obtain the following equations:

{ belpe+E)(1+€p) = N(1—g)pi ¥ , . (E.7)
be(26pe+E2+1) = (N—-2)(1—&2)p. ~

Dividing the first equation by the second leads to the quadratic equation for p:
(N +2)€p; +2(6” + 1)pe — (N = 2)€ =0 (E.8)

which has the unique positive solution

0+ AT
Pc = (N +2)¢ (E.9)

The critical flux is obtained by substituting the value of p. into the first equation of (E.7):

2
N(1—¢&)p. ¥
bo = (L= &)pe (E.10)
(pc + &) (1 +&pc)
We notice that for N = 2 the formula (E.9) yields the correct value p. = 0. Although
topologically the cases N = 2 and N > 2 are different, the critical flux ¢.(2) = (1 — £2)/¢, as
we shall see later, comes out correctly.

E.1.3 Central and boundary critical points

So far we did not discuss the two cases, r = 0 and r = 1. For N = 1 the center, r = 0, of
the disk does not satisfy the equations (8.6),(8.7) and therefore is not a critical point. For
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N > 1 the value r = 0 is always a solution of the equations (8.6),(8.7). For the points on the
boundary, » = 1, the equation (8.7) is always satisfied and substituting the value r = 1 into
(8.6) we find that there are 2N critical points on the boundary with an angle given by the
following relation:

1 2N N(1—$2N)
COSNH:ZI—N ].+.’E —T

which is meaningful only for values of the flux between ¢,,(N) and ¢ar(N).

(E.11)

E.2 The nature of the critical points

We now discuss the topological nature of the critical points and classify them by linearizing
the stability exponents near each of these points. The problem is then reduced to the study
of the Hessian matrix of the second derivatives

_( @B 0,008
n- (2, %) -

Since at the critical points inside the disk we have N8 = ( the mixed derivative vanish and
the Hessian matrix is diagonal in polar coordinates. The second derivative with respect to 0
is given at the critical points by

(1-pH)(1 -8
(1= £€p)%(& — p)?

03B = —2N?p <0 (E.13)

for cos N = +1 and by

1-p*)(1-¢€)

9B = +2N? ( >0 E.14
’ P+ e +p)7? (B19)
for cos N = —1. The value of the second derivative with respect to r can be obtained by

looking at the way the first derivative 0, B changes sign near each solution of the equation
(8.6). We shall now discuss separately the nature of the critical points in the ’parallel’,
’anti-parallel’, ’central’ and ’boundary’ cases.

E.2.1 Bulk critical points with cos N¢ = +1.

For ¢, > ¢nr, there is only one critical point at p; in the interval ¢ < r < 1. The results for
the second derivatives at this point are summarized in the following table:

0<p<p | pp<p<l1
o.B - +
0B +
03B =
‘ Crit. point ‘ Saddle
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E.2.2 Bulk critical points with cos N¢ = —1.

The following tables provide a classification of critical points in a variety of regimes.

N =1 ¢ < ¢y, No critical points.
e > ¢m One critical point at p;

0<p<p |p<p<l1
orB - +
0’B +
03B +
‘ Crit. point ‘ Minimum
N =2 ¢ < ¢y No critical points.
Om < ¢e < ¢ One critical point at p;
0<p<p |pp<p<l1
o.B - +
0’B +
9; B +
‘ Crit. point ‘ Minimum
¢e > ¢ No critical points.
N > 2 ¢e < ¢y One critical point at p;
0<p<p|p<p<l
orB + -
0°B -
03B +
‘ Crit. point ‘ Saddle
Om < Pe < ¢ Two critical points at p1 < po
0<p<pi | pp<p<pz|p2<p<l
0B + - +
0°B - T
9;B + +
| Crit. point | Saddle | Minimum

¢e > ¢ No critical points.

E.2.3 Central and boundary critical points.

Consider now the point » = 0. Expanding the field B(r, ) given by (8.5) for small r we obtain

B(r,0) =~ —(¢e — 2N Inx) + ¢er? + 2 cos(NH) (1 — 52) r (E.15)

£
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As we mentioned before, for N = 1 the point 7 = 0 is not a critical point (due to the presence
of a term linear in 7 ). For N = 2, two last terms are quadratic in 7 and the character of the
critical point depends on the value of the flux ¢.. For ¢, < ¢. = (1 — £2)/¢ the center, r = 0,
is a saddle, while for ¢, > ¢, it turns to be to a minimum. This is to be compared with the
prediction of formula E.10. It is interesting to notice that this happens when the minimum
located along the line cos 20 = —1 disappears at the center. For N > 2, the last term in the
equation (E.15) is negligible and the center is always a minimum.

When ¢, < ¢e < ¢pr we must consider the critical points on the boundary. Since for
r = 1 the condition 9yB = 0 is satisfied for all §, we obtain BgB = 0 and 9,09B # 0 if
cos? N6 # 1, which is always satisfied for ¢, in the interval between ¢,, and ¢»;. Thus the
determinant of the Hessian matrix (E.12), given by detH = —(8,0yH)?, is negative and the
eigenvalues are of opposite sign. We conclude that the critical points at the boundary are
saddles.
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Appendix F

A property for characters of Sy

In this appendix we show that the property (9.12)

Z (e Ai—maAj+ma) (N
- N Xi—m. )N Ai—me Ay +m..) X(1) = MNmX(p
%J

is satisfied for the characters of the symmetric group Sx. We did not find this property in any
textbook on the representations of groups, but its validity follows from the known properties
of the characters of Sy found, for example, in [63] and [78]. We present the proof of this
property here for the sake of completeness of the discussion.

The Frobenius formula as it is written in the classic textbooks on group theory [78, 63]
states the following identity between two antisymmetric functions of N-dimensional vector
z=1(21,22,-..,2N):

Sw(A)D(z) = 3 x5 ¥ (2) (F.1)
M)

where X%) is the character of the class (I) of the symmetric group Sy in the irreducible
representation (A). With the partition (A) one associates the totally antisymmetric function:

— AM+N—-1_Xy+N—2 A
Tony(2) = Z sgn(P) zpld') zPQ(_;) .. .ZPI{N) (F.2)
P
where the sum runs over all the permutations of 1,2, ..., N, the sign of permutation being +

for an even/odd permutation. This is, up to a normalization constant, a Slater determinant
constructed out of one-particle wave-functions 2™ = 2TV ~% where z = /. The factor D(z)
in (F.1) is the Vandermonde determinant:

1 1 . 1
z]. 22 Y ZN
22 22 2
D(z) = 1 2 N = H(ZZ — Zj) (F3)
S i<i
z{\/fl Zé\/fl . z]]\\,[il

representing the ground state of N fermions. Let S, be a power sum of variables z; defined
as follows:

Sm(z) = Z 2 (F.4)
J
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The function S,,(z) is totally symmetric function of the z;-s. These functions are linearly
independent as can be checked by calculating the Jacobian:

0Sm
= N!D(z). F.5
‘ S| = NID(o (F.5)
The class (I) is characterized by ni,n9,..., Ny, ... cycles of length 1,2,...,m,.... For this

class the totally symmetric function S(;) is defined as a product of power sums

S(l)(z) = S?l 32 e S]nvN = H Sy (F.6)
m=1

Since for different m-s the power sums S — m are linearly independent so are the monomials
Sy for different partitions (7).

The Frobenius formula (F.1) can be inverted with help of the orthogonality relation of
the characters:

T (2) = gzg(z)x%)s(z) (2)D(2) (F.7)
@

where g = N! is the order of the Sy and g is the number of elements of Sy in the class (1)
given by (9.16).

We turn now to develop a recurrence relation between the characters. For this purpose
it is instructive to consider the product of the antisymmetric function ¥(,)(2) and a power
sum S,,(z). Since the power sum is totally symmetric the summands can be rearranged in
the order set by each permutation and one obtains

Sm@ V(@) = D sen(P) (ZZP ) ) e =
- 277( uitm..) ¥ (pitm..) (2) (F.8)

where 7, tm..) = —1,0 or +1 is determined accordingly to the rules of Section 2.

Having established the relation between the Slater determinants ¥,y for various partitions
we turn to develop a recurrence relation between the characters. Consider class (I) with at
least one m-cycle. Let us denote by (I/,) the class obtained by removing one m-cycle from
(). It is then clear that

Sw = SmSa,) = (Z 7' ) S (F.9)
J

The partition (I7,) defines a class in the symmetry group Sy_,. The Frobenius formula (F.1)
for this class reads

S(ll ZX(Z’ \P(M ) (F].O)
(w")

while for (I) it can be rewritten with the help of (F.8) in the form

SiyD(2) = SmSp D ngf)

= ZX 277 pm.) Yl m...) (F.11)

%
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Comparing the coefficients of the ¥,y in (F.11) with those in (F.1) we find the recurrence
relation of the characters

A A
X = 3 menmm Xy (F.12)
i
This relation yields the characters of Sy in terms of the characters of the symmetric group
SN—m.
In order to derive (9.12) take some particular m and let each partition (I) contain m as

(u

its part nm) times. For each (A) consider the following sum over partitions:
Fiy (2 Zga mnfx () S (2) (F.13)

@)

If (I) has no parts equal to m, ny;;, = 0 and (/) does not contribute to this sum. We want
to factor out Sp,(2) from the sum and for this purpose we can write S(y(2) = Sm(2)S@ (2),
so that the sum is over (/). With the help of (9.16) we see that the expansion coefficients
satisfy

= 1 mn 1
guymnm/g = mnp H k"knk T 11 T
!
— mnm 1 ' H knknk g(l’ )/ (F14)

where ¢’ = (N —m)!. The sum in (F.13) takes the form

1
Fy(2) (Zz ) g > g(l'm)XEl)i)S(l'm)(Z) (F.15)
(tn)

Application of the recurrence relation (F.12) to the characters in the sum together with the
inverse Frobenius formula (F.7) yields

1 e Ai—m...
Fin(2)D(2) = Sn(2) Z M Nimme) (Z) 9<lzn)X§l;,3 )S(l;n)(z)D(z) =
7 i,
= Zn(...Ai—m...)Sm(z)qj(...)\i—m...)(z) (F.16)

The relation (F.8) is applied to show that

Finy(2)D(2) = D00 dimme ) di—mee i mes) @ dimme A +m.n) (2) (F.17)
Application of the inverse Frobenius formula (F.7) yields

Ai—maAj+me.
Foy(z ZZ?] X )N Aimme A +m..) IO X E) * )S()() (F.18)

Making use of the linear independence of Sy for different partitions (/) and equating the
coefficients of the S(;)(z) with the corresponding coefficients in (F.13) results in the required
relation (9.12).
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Appendix G

Number of distinct parts of
partitions

In this appendix we show that d(N) — the number of distinct parts in the partitions of N
with parts \; > 2 equals p(N — 2) — the number of unrestricted partitions of N — 2. Together
with the generating function (9.5) for the number of partitions let us introduce the generating
function
o o
Plz,9) = D> Y BN, d)g" 2" (G.1)
N=1d=1
for the number p(N, d) of partitions of N having entries that satisfy A; > 2 and having exactly
d distinct parts. For example for N = 6 and d = 2 this number is p(N, d) = 1, corresponding
to the partition (4,2) as can be seen from the list (10.1). The number of distinct parts d(N)
in all partitions of N with parts > 2 is then given by

N
d(N) = Y dj(N,d) (G2
d=1
It is generated by the following function

o0
da) = Y d(N)g" = =2 p(z,q) (G3)
N=1 ? z=1
The explicit expression for p(z, ¢) can be found easily summing directly over all the appropriate
partitions:
Azg) = Y gW (G.4)
(A),Ai>2

where d()) is the number of distinct parts in (A) and [(A)] = >°; Ai. It is convenient to use
the sets of “occupation numbers” {n,,}, where n,, — the number of times m appears in the
partition (A). Noting that |[(A\)| = >; i = >, mnm and d(A\) = Y, 0(ny), where 0(z) is
the Heavyside step function we rewrite (G.4) as a sum over all the configurations {n,,}, with
m > 2

Blz,g) = 3 X mrmpan0m) - T YD gmm0m) —
{nm},m>2 m=2 nm,=0
- 1l (1+1— m) (G.5)
m=2 q
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Differentiating this expression with respect to z at z = 1 we get

d(q) = zd% 11 (1+ 1z_q:m) ¢ ]I 1 = () (G.6)

m=2 z2=1 m=1" 9

where p(q) is given by (9.5). The function ¢?p(q) is the generating function for p(N —2). The
equality of the generating functions d(q) and ¢?p(q) implies the equality of the coefficients:
d(N) = p(N — 2), i.e. the number of different parts in all partitions of N with entries > 2 is
given by the number of unrestricted partitions of N — 2. Applying this argumentation to all
partitions ending with N — k ones yields d(k) = p(k — 2).
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Appendix H

Distribution of harmonic sum of
independent random variables

We consider the harmonic mean X defined as
1 1 X1
— = Z — (H.1)
N 1 %

of N independent random variables z1, xo, ... 2y drawn from the common distribution with
probability density P(z). The only requirement we impose on P(z) is that
lim P(z) =C > 0 (H.2)

z—0

Consider the random variable y = 1/z. Its distribution function Q(y) can be calculated by
the standard methods. For y — +oo it has the asymptotic behavior

C
Qly) = — (H.3)
Y
and its second moment diverges. The general theory of broad distributions [79, 80, 81] predicts
that in the limit N — oo the probability density of the sum (H.1) Y = 1/X is Lorenzian

1 7C

An(Y) = T OP 1 Y? (H.4)

and consequently the probability density Py (X)) of variable X = 1/Y is again a Lorenzian:

1 0

Py(X) = T2 T X2 (H.5)

characterized by the parameter ¢ related to the original distribution P(z) by the formula:

1

(SZE

(H.6)

In particular for the uniform distribution (10.14) it takes the value 6 = A /.
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