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The Thouless formula:
From disordered to chaotic spectra

Eric Akkermans
Physics Department, Technion Israel Institute of Technology, 32000 Haifa, Israel

A new expression of the dissipative dc conductance is presented in terms of the scattering
phase shift by a time dependent Aharonov—-Bohm flux line. It is then related to the Thouless
conductance defined as the curvature of the energy levels under a change of the boundary
conditions. The relation between these two conductances is found to be universal for all
systems obeying Wigner—Dyson statistics. This provides a new characterization of quantum
chaotic systems.

1. Introduction

In this article, I would first like to discuss the problem of the quantum
transport in condensed matter systems. I will restrict myself to the study of
zero temperature, dc transport coefficients in weakly disordered metallic
systems, i.e. the residual conductivity (or conductance). Among the different
approaches to this problem I will focus especially on those first derived by
Edwards and Thouless [1] presenting the conductance g as a measure of the
sensitivity of the energy levels to a change of boundary conditions. Section 2
contains the main line of the original derivation. Section 3 contains a new
derivation of the dissipative dc conductance in terms of the scattering phase
shift by a time dependent Aharonov—Bohm flux line. Its relation to the Kubo
formulation will be outlined. Starting from this new expression, we will prove
the Thouless formula in great generality for the metallic regime (section 4) [2].
The universality of this result will be defined as well as the generalization of the
Thouless approach to characterize chaotic energy spectra. This will help us to
precise the range of validity of the random matrix theory (RMT) description
and to conclude finally (section 5) on the deviations from this regime near a
localization transition and for ballistic or non-ergodic systems.

2. The Thouless expression for the dc conductance
Consider a d-dimensional cubic sample of volume L made out of a
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disordered metal, characterized by its elastic mean free path ¢ describing the
role of the impurities and by the Fermi wavevector k,. We assume that we have
a good metal, i.e. that the condition k¢ > 1 is realized. Moreover, we will
ignore throughout this analysis the role of Coulomb interactions between the
electrons.

The quantum mechanics of this system is well described by the one electron
Hamiltonian H, = p*/2m + V(r), where V(r) represents the scattering potential
by the impurities.

Suppose now that instead of the periodic boundary conditions usually
considered for the wavefunction, we make the following choice:

Yx+L)=yx)e?, (1)

where ¢ is a real parameter. For the sake of simplicity, we apply the
transformation (1) in one direction only but this could be generalized. A
simple gauge transformation shows that the spectrum of H, with boundary
conditions (1) is identical to those obtained by imposing periodic boundary
conditions but with the new Hamiltonian

H@) =5 (p+ 22) +viw) @)

instead of Hy,= H(¢ =0). The individual energy levels are now clearly
functions of ¢ and their curvature at ¢ =0 is given by

1 (0°E, #? #’ Ip.In)|?
_( 2,,) A [{tlp.Jn)|” (3)
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In eq. (3), the states (|n), E,) characterize the spectrum of H,. Due to the
disorder, these curvatures are random quantities. Let us now define g, as the
typical curvature at ¢ =0 measured in units of the mean Ievel spacing A,

325"

where (...) represents an average over the impurity potential. g, is a
dimensionless quantity known as the Thouless parameter.

Before going further, let us give a physical realization of the parameter ¢.
By closing the system on itself (ring geometry) and piercing it by a Aharonov—
Bohm magnetic flux line @, we obtain a system whose spectrum coincides with
the one at zero flux provided we make the change ¥(x + L) = y(x) e*™'®,
where @, = h/e is the flux quantum. This flux @ is thus a physical realization of
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the perturbation parameter ¢ =2nw®/®,. This is the geometry considered to
study the persistent currents for a stationary flux in the mesoscopic limit [3]. To
go further along the original argument of Edwards and Thouless, we shall
make now two assumptions about the sum of random variables which appears
on the right hand side of eq. (3).

(i) The mean square value of the matrix element of p, in eq. (3) does not
depend strongly on the energy difference E, — E,. We can then replace it by the
expression obtained from the Kubo formula. This gives

(pIn)*) = mAke . (%)

(ii) It remains in eq. (3) the sum over the states of the inverse of the energy
differences. This sum is likely to be dominated by the largest term corre-
sponding to a denominator of order A. This result is exact if the levels are
uncorrelated.

These two assumptions allow to rewrite g, as

2

= 1+k.0).
8t 2mAL2( )

In the metallic regime here considered, k¢ > 1, it reduces to
gT=——=?0'Ld_2, (6)

where D = (1/d)vf is the diffusion constant and ¢ the usual Drude conduc-
tivity. The Thouless number g, then appears as the dimensionless conductance
expressed by Ohm’s law, eq. (6). But the two assumptions used are quite
restricting, since for instance energy levels of metallic systems are correlated.

3. Scattering formulation of the dissipative transport

The standard derivation of the dc conductivity o is based on a perturbation
calculation for a discrete spectrum (Kubo approach). Then, a phenomeno-
logical coupling to a reservoir is introduced to smear out the energy spectrum
and is taken to zero at the end of the calculation before the thermodynamic
limit is considered [4,5]. Here, we start from a continuous spectrum and
propose a description in terms of the scattering phase shift [6]. We consider the
case of a time-dependent flux of the form ®(¢/T), where T is some characteris-
tic time scale, and we calculate the current I(¢) flowing in the ring, in
perturbation with the parameter 1/7 [7]. The other time scale entering this
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perturbation expansion and small compared to T is provided by the Wigner
time delay t(E) which measures the time required by a wavepacket to sweep
off the scattering potential. We then assume T >t,(F) so that an incident
wavepacket interacts essentially with a stationary flux line. This describes
completely our adiabatic limit.

To zeroth order, I, (¢) describes simply the current flowing in the open
system. It can be expressed [6] in terms of the total scattering phase shift as

1 f
(@) ==, | 4E an(E, 9),

where n(E, ¢) = Im(In(Det S(E, ¢))) is the total scattering phase shift and
S(E, ¢) is the on-shell scattering matrix.

The first order correction in 1/T describes the energy exchange between the
system and the external flux source and gives the first off-diagonal correction to
the § matrix. The corresponding current /;(¢) is given by

1(9(t) —%%(ad)n(@,@)) +@(1)2. (7)

It allows to identify a conductance G, given by

6= 58 (ZnEee) ®)

The Kubo expression is then obtained from eq. (8) by taking the time or the
flux average. This procedure can be compared to the usual linear response
derivation as shown in ref. [7].

4. The Thouless formula [2]

In order to make the connexion between the statistical properties of the
energy spectrum and dissipation and to derive the Thouless relation, we will
consider now the dimensionless conductance g, = (G,) where {...) and ...
represent respectively averages over the disorder and the flux (or the time) so
that

=5 NE0) ). ©)
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where we have used the Friedel sum rule wdN = &, which relates the variation
of the number of states to the total phase shift. From now on, we will express
all the quantities in terms of 8N. The eq. (9) is remarkable since it relies the
dissipation to a characteristic of the spectrum. We see that g, measures a
global, ®-averaged, property of the spectrum, while g given by eq. (4)
measures a local, @ — 0, property. We are now in a position to relate these two
quantities.

To that purpose, we assume the following expression for the correlation
function of 3N:

(ON(E, $) SN(E, ¢')) = D(5(¢ — ¢')) + D(3(d + ¢')) . (10)

This is equivalent as assuming that the harmonics of 8N(¢) are not correlated.
This can be shown explicitly for non-interacting electrons in the metallic limit
k¢ > 1 by means of a microscopic calculation [8] and more generally observed
numerically [9]. Taking eq. (10) into account, we have

(o) )=3l(52), - (G2, ay

Since D is a periodic function of &, we obtain g, = —1(a’D/ a¢2)¢:0. From
eq. (10) we have (3N°(¢)) = D(0) + D(¢) and then

19
4 34,2

8= (3N*(E;, &) g0 - (12)

Similarly, from egs. (4) and (10), we obtain for g,

, 1 3

gT=§a¢4

(3N*(Er, )M g0 » (13)
so that for small ¢, we can write the expansion

(3N*(¢)) = (3N*(0)) —2g.¢° + 1g10" . (14)

This quantity measures the rigidity of the spectrum [8§].

To go further, we describe the statistical properties of the energy spectrum
of the metals by means of the random matrix theory (RMT) [10].

We assume implicitly, but it is worthwhile to notice, that in the thermo-
dynamic limit V—c, where the RMT assumptions are best justified, the
spectrum has a continuous part so that the energy levels can be related to the
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scattering phase shift. This prevents for instance considering the case of a
localized spectrum.

Our last step is to make the connexion between our physical problem and
the description of the time-reversal symmetry breaking in the RMT. First the
question arises whether the RMT provides a good description of a metal or
not. By using a supersymmetric description of the Hamiltonian of a disordered
metal and reducing it to a non-linear o model field theory, Efetov [11] was able
to derive the various correlation functions of the energy levels. He found them
identical to those derived from the RMT in the two limits, orthogonal and
unitary. But, in principle, they can also be calculated in the crossover regime of
interest here. This in addition with recent numerical calculations [12], shows
the reliability of the RMT to describe a metal.

The transition between those two ensembles, orthogonal and unitary, has
been considered by Pandey and Mehta [13] by means of an interpolating
ensemble. They have shown that the transition between GOE and GUE is
driven by a single parameter which can be identified here as g;¢°. This means
that generally, all the correlation functions depend only on this scaling
parameter. This result, which might appear natural in the context of the RMT,
has a fundamental consequence in our physical problem. This tells us that in
the expansion of (dN*(¢)) in eq. (14), the fourth order term is proportional to
the square of the second order term. As a result, we deduce

84=0gr . (15)

The constant a is universal, i.e. does not depend on the model considered as
long as it can be described by the RMT. To calculate it, we can use for instance
the expression of Altshuler and Shklovskii [8] for the fluctuation of the energy
levels. It is calculated from a microscopic theory in perturbation with the
parameter (k.¢)”', using a diagrammatic technique where only one class of
diagrams is considered. It can be generalized to include the role of ¢ and we
have [12]

(3N*(E, ¢)) =—2-:?[ln(1 + (g)z) +ln<1 +(_A_+fT2C¢2_)5)]’ (16)

for A< E<E_, where E,=hD/L” is the Thouless energy identified in eq. (6).
By inserting eq. (16) into egs. (12) and (13), one obtains g, = (1/7°)E,/A and
g&r= (\/5/ m)(E,/A). Therefore a = 1/7wV6. It could have been calculated in an
equivalent way by using directly the RMT.
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5. Generalisation to quantum chaotic spectra

The analysis we developed to establish the Thouless formula in the context
of metallic disordered mesoscopic systems can be extended to study the energy
spectra of quantum systems which are classically chaotic. The idea is to
consider the response of these systems to a change of boundary conditions of
the type given by eq. (1). Then for billiards, the parameter ¢ has the meaning
of an Aharonov-Bohm magnetic flux line piercing it. For more complicated
systems, like for instance the quantum kicked rotator, ¢ has a different
meaning. But for all these cases it is important to note that although the
introduction of the parameter ¢ does not affect the classical motion (it is clear
for a Aharonov—Bohm flux line), it modifies the energy spectrum and breaks
the time reversal symmetry. The system is therefore driven from the orthogon-
al to the unitary ensemble. Usually, the RMT describes these spectra by the
distribution function P(s) of the spacing between neighbouring levels or the
associated correlation functions for a given symmetry ensemble GOE or GUE.
Here, by means of our generalised Thouless formula, we propose to study how
the energy levels depend on the parameter ¢. It is then possible to measure the
typical curvature of these levels for ¢ =0 which corresponds to g and the
average over ¢ of the square of the slopes of the energy levels which is a
measure of g,. Within the range of validity of the RMT, the ratio g,/g; is
universal and again given by the constant 1/%V6. This provides us with a clear
criterion for the domain of applicability of the RMT.

For the case of disordered systems, there are certainly deviations from this
universal behavior both in the ballistic regime (clean systems) and near an
Anderson metal—insulator transition. Also for chaotic systems, there should be
similar deviations. For instance for the quantum kicked rotator when chaotic
diffusion is quantum mechanically suppressed and replaced by Anderson-like
localisation in phase space.

6. Conclusion

I have presented here a new expression for the dissipative dc conductance
related to the total scattering phase shift associated to a time dependent
Aharonov-Bohm flux line. By assuming that the energy spectrum of a
disordered metal can be described within the framework of RMT, I showed
that the dissipative conductance is proportional to the typical zero flux
curvature of the energy levels. This establishes the well known Thouless result
with less restrictive assumptions. The constant of proportionality is universal,
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i.e. does not depend on the microscopic model considered as long as we stay
within the RMT approximation. This leads to a natural extension of these
results to quantum systems which are classically chaotic, and allows us to
identify also for these cases a new universal regime. All these calculations
depend on the assumption that in the thermodynamic limit, the spectra for zero
and non-zero fluxes are similar. This supposes that both of them contain a
continuous part and that g > 1.
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