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4.2 The spectrum of Ĥ0. . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 The Casimir effect setup. . . . . . . . . . . . . . . . . . . . . . . 69

5.1 A 1D beam between a source and a detector. . . . . . . . . . . . 73
5.2 Photons in a box. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Structure factor F (q) for R = 1. . . . . . . . . . . . . . . . . . . 82
5.4 Level scheme for the photodetection experiment. . . . . . . . . . 83
5.5 Spectral detection bands. . . . . . . . . . . . . . . . . . . . . . . 84
5.6 The Hanburry-Brown & Twiss setups. . . . . . . . . . . . . . . . 90
5.7 Normalized g2 plots. . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.8 Quantum radiation experiment. . . . . . . . . . . . . . . . . . . . 94
5.9 Normalized G(2) as an interference. . . . . . . . . . . . . . . . . . 96

6.1 Planar cavity scheme. . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Maximal Intensity vs. ϕ. . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Photon lifetime in cavity. . . . . . . . . . . . . . . . . . . . . . . 99
6.4 Cavity DOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5 Quantum revivals. . . . . . . . . . . . . . . . . . . . . . . . . . . 106



vi List of Figures



Nomenclature vii

Nomenclature

A Vector potential

a0 Bohr radius

A,Aba Einstein A coefficient for spontaneous emission

Â Field operator
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Û Electromagnetic energy operator
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1

1 Classical Atom-field Interaction1

1.1 Interaction between Classical Atoms and Classical Light
This first chapter shall remind us of the known observations.

1.1.1 Introduction

Let us talk about the following quantities:

• Refractive index: n (ω);

• Absorption coefficient: α (ω);

• Scattering cross-section: σ (ω);

with ω the frequency of light. What people have noticed is that when one tries
to observe these quantities, they behave in a resonance way: they have specific
resonances but with finite widths.

These phenomena have led Lorentz (end of 19th century) to the following.
Let us start with the following: a) Maxwell equations; b) Matter: set of charges;
c) Harmonic oscillations. Although we now know that this is not the correct
description, we shall inspect the poet’s intentions nonetheless.

1.1.2 Isolated Lorentz Atom

Lorentz has started with harmonic oscillators (hence, the name “Lorentzian”).
Let us start with an external electric field on an isolated atom:

E = ε̂E cos (ωt− φ) , (1.1)

where ε̂ is the polarization. Introduce charge q and mass m to have the equation
of motion

m
d2r

dt2 = −mω2
0r + qEε̂ cos (ωt− φ) , (1.2)

where ω0 is the characteristic (phenomenological) frequency. Introduce the
dipole D = qr to have

d2D

dt2 = −mω2
0D + q2E

m
ε̂ cos (ωt− φ) . (1.3)

We can therefore write the dipole under the slowly varying envelope approx-
imation D̃ (t) as

D (t) = Re
[
D̃ (t) ε̂ e− iωt] . (1.4)

Setting Ẽ = E e iφ one gets

− ω2D̃ − 2iωdD̃
dt +

�
��d2D̃

dt2 = −ω2D̃ + q2

m
Ẽ. (1.5)

assuming D̃ (t) evolves with a time scale long compared to 2π
ω . Hence,

dD̃
dt = i

(
ω2 − ω2

0
2ω

)
D̃ + i q

2Ẽ

2mω . (1.6)

1 Lesson #1 @ 20/03/2017



2 1 Classical Atom-field Interaction

Close to the resonance, ω ' ω0. Hence,

ω2 − ω2
0

2ω = (ω − ω0) ω + ω0

2ω ' ω − ω0. (1.7)

We therefore have the stationary solution (dD̃
dt = 0),

D̃ = q2Ẽ

2mω (ω0 − ω) . (1.8)

1.1.3 Energetic Aspect of the Light-atom Interaction

The average power is given by

P = −E · dD
dt = . . . = −ω2 Im

(
D̃Ẽ∗

)
. (1.9)

Define
D̃ = ε0α̃Ẽ, (1.10)

where α̃ is the dynamical polarizability

α̃ (ω) = α+ iα′. (1.11)

Hence,

P = −ω2 α
′ ∣∣Ẽ∣∣2 . (1.12)

Note that what drives the power is the imaginary part α′. However, in this
model, α̃ is strictly real, and therefore,

P = 0, (1.13)

or, there is no exchange of energy.

Corollary 1.1. This model cannot describe adsorptions or more complex phe-
nomena such as lasers.

1.1.4 Phenomenological Approach to Relaxations

We need coupling to the environment (or, relaxation). There are several sources:
collision with other atoms, etc. At the end of the day one obtains

D̃ = q2

2mω ·
Ẽ

ω0 − ω − iγd
. (1.14)

Using this expression, one can find an expression to α̃ :

α̃ = q2

2mωε0
· ω0 − ω + iγd

(ω0 − ω)2 + γ2
d

. (1.15)

Notice that α′ 6= 0, but it is strictly positive. Hence, we can have absorption
but not amplification. In other words,

D̃ = ε0α̃Ẽ. (1.16)
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1.1.5 Connection to Dielectric Media (Atomic Gas)

We want to generalize this discussion to an ensemble of atoms. Let us define
polarization density P = dipole moment

unit volume and let N be the density. We thus write

P = ND = Nε0α (ω)E
≡ ε0χ (ω)E

, (1.17)

with χ (ω) the susceptibility given by

χ (ω) = Nα (ω) = Nq2

2mωε0
· ω0 − ω + iγd

(ω0 − ω)2 + γ2
d

. (1.18)

Now we can talk about a refractive index ñ. Let an electric field be

E (z) = E0 e ikz = E0 e iñk0z

= E0 e i Re(ñ)k0z e− Im(ñ)k0z
, (1.19)

with k0 the wave-number of the incident wave. We now define the refractive
index and the absorption coefficient be{

n (ω) = Re [ñ (ω)] refractive index
a (ω) = 2k0 Im [ñ (ω)] absorption coefficient

. (1.20)

The power intensity goes as

dI
dz = −aI =⇒ I (z) = I0 e−az . (1.21)

Noe let us reinspect the dipole moment

D = ε0E + P
= ε0E + ε0χE

= ε0 (1 + χ)E
≡ εE.

(1.22)

The refractive index reads

ñ =

√
ε (ω)
ε0

=
√

1 + χ (ω) ' 1 + 1
2χ (ω) . (1.23)

Hence,

n (ω) = 1 + Nq2

2mωε0

ω0 − ω
(ω0 − ω)2 + γ2

d

. (1.24)

(See Figure 1.1).

1.1.6 Generalization of the Susceptibility

Let us start with a single atom susceptibility,

χ (ω) = Nq2

2mε0ω

ω0 − ω + iγd
(ω0 − ω)2 + γ2

d

, (1.25)



4 1 Classical Atom-field Interaction

Fig. 1.1: The refractive index and the absorption coefficient.

and generalize to the collection of Lorentz atoms

χ (ω) =
∑
j

Nq2

2mε0ωj
· fo,j ·

ωj − ω + iγd,j
(ωj − ω)2 + γ2

d,j

. (1.26)

and fo is the oscillator strength given by quantum mechanical considerations.
This is the Thomas-Reiche-Kuhn/Compressibility sum rule.

This expression involves a large set of phenomenological parameters (γd, fo,
etc.).

1.1.7 Dipole Radiation

Let us start with an electromagnetic field emitted by an accelerating dipoleE (r, t) ' 1
4πε0c2 [(ε̂ · r̂) r̂ − ε̂] |D̈(tr)|

r

H (r, t) ' 1
4πc (ε̂× r̂) |D̈(tr)|

r

(1.27)

where tr is the retarded time, tr = t− r
c . The transport of energy is described

by the Poynting vector S,

〈S〉 = E ×H∗ + c.c., (1.28)

which leads to

〈S〉 = r̂

16π2ε0c3

∣∣D̈∣∣2
r2

(
1− |ε̂ · r̂|2

)
. (1.29)

Let us inspect several cases

1. Linear polarization (ε̂ = ẑ):

1− |ε̂ · r̂|2 = sin2 θ. (1.30)

This is the doughnut polarization.

2. Circular polarization
(
ε̂ = ∓ x̂± i ŷ√

2

)
:

1− |ε̂ · r̂|2 = 1
2
(
1 + cos2 θ

)
. (1.31)

This is the peanut polarization (see Figure 1.2).
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Fig. 1.2: Poynting vector polarizations.

The radiated power is therefore,

Prad =
∣∣D̈∣∣2

3πε0c3
. (1.32)

And the power absorbed by the field2,

Pabs = ω

2 Im (α (ω))
∣∣Ẽ∣∣2 = ω

ε0c
Im (α (ω)) I (r) , (1.33)

where we have defined the intensity of the field,

I (r) = 1
2ε0c

∣∣Ẽ∣∣2 . (1.34)

1.2 Mechanical Properties of Classical Light in the Lorentz
Model

We want to know if there is a possibility that an external light will act on the
atom by getting it to move. Let us calculate some aspects of the mechanical
properties.

1. A dipolar force: potential energy of the field (Re α̃ (ω)).

2. A radiation pressure: related to cycles of absorption and scattering of
radiation (Im α̃ (ω)).

1.2.1 The Dipolar Force

The potential energy is given by

Vd = −D ·E. (1.35)
2 Lesson #2 @ 21/03/2017
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Now, let us decompose D into two, forward and backward, parts

D = D(+) +D(−), D(±) ∝ e± iωt . (1.36)

Therefore,

Vd = −
(
D(+) +D(−)

)
·
(
E(+) +E(−)

)
. (1.37)

The next step is the rotating wave approximation (RWA): neglect the 2ω
frequent D(+)E(+) and D(−)E(−) parts. Hence,

Vd = −
(
D(+) ·E(−) +D(−) ·E(+)

)
= −Re (α̃ (ω))

∣∣∣E(+)
∣∣∣2 . (1.38)

Therefore,

Vd = − 1
ε0c

Re (α̃ (ω)) I (r) . (1.39)

Remark 1.1. We have obtained the classical vacuum impedance

1
ε0c

= µ0c =
√
µ0

ε0
≡ Z0 = 377 [Ω] . (1.40)

On the other hand, there is another natural-unit impedance,

h

e2 = 28 [kΩ] , (1.41)

which is the quantum impedance. Notice that the classical effects are much
smaller than the quantum one by the fine-structure constant,

Z0

h/e2 = αfs '
1

137 . (1.42)

Now, write the potential as

Vd = −Z0 Re (α̃ (ω)) I (r)

= − q2

2mε0ωc

ω0 − ω
(ω0 − ω)2 + γ2

d

I (r) .
(1.43)

The force is given by
F d = −∇Vd ∝ −∇I (r) . (1.44)

The sign of F d depends on ∆ ≡ ω − ω0 (detuning):

• ∆ > 0 (blue detuning) : Vd > 0;

• ∆ < 0 (red detuning) : Vd < 0.
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1.2.2 Radiative Pressure3

The radiative pressureis given by (in units of power)

Prad = ω4 |α̃ (ω)|2

6πε2
0c

4 I (r) ≡ σRI (r) . (1.45)

Here, σR is the Rayleigh cross-section (scattering). The law of σR ∝ ω4 is
also obtained by the full quantum derivation (see Chap. 2 of Akkermans and
Montambaux [2011]).

Remark 1.2. This is the Optical theorem (see Chap. 2, App. 2 of Akkermans
and Montambaux [2011]). It means that the powers and fluxes are basically the
same:

Prad = Pabs. (1.46)

Rearranging everything one has

Im (α̃ (ω)) = 1
4πε0

2ω3

3c3 |α̃ (ω)|2 . (1.47)

Note that the radiation pressure is proportional to the imaginary part of α̃.
Therefore,

Prad = Z0ω

(
ω

ω0

)2
Im (α̃ (ω)) I (r) . (1.48)

and the
(
ω
ω0

)2
part is only close to resonance.

Let us4 introduce the photon scattering rate,

Rsc = Prad
~ω

. (1.49)

This lets us define how the force is related to the radiative pressure:

F rad = ~kRsc

= Z0

c

ω3

ω2
0

Im (α̃ (ω)) I (r, ω) .
(1.50)

Rearranging one gets

F rad = ~k
γ3
d

∆2 + γ2
d

· I (ω0)
Isat

. (1.51)

Here we have defined the saturation intensity Isat = ~ωγd
2σ0

with the scattering
cross-section σ0 = q2

mε0c2γd
.

3 “Radiative pressure” is a misleading term; the proper one is “radiative power”. It has
been used historically to describe radiative pressure forces, thus the emphasis on “pressure”.
We shall keep this inaccurate terminology nonetheless.

4 Acknowledgments to Ariane Soret for summarizing this part.
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1.2.3 Laser Cooling – Optical Molasses

Take a Lorentz atom with velocity v. What would be the effect of an external
radiation?

We shall apply 2 monochromatic lasers on the atom from opposite directions,

F rad = ~kγ3
d

(
1

∆2
1 + γ2

d

− 1
∆2

2 + γ2
d

)
I

Isat
. (1.52)

Lasers #1 and #2 have the same frequency and intensity, but there is a different
detuning due to the Doppler shift,

∆1 = ∆− k · v, ∆2 = ∆ + k · v. (1.53)

Let us assume small velocity, v � |∆|
k . Expand with Taylor series to the

first order,

F rad '
~k2γ3

d

2 · ∆
(∆2 + γ2

d)2 ·
I

Isat
v. (1.54)

Hence, F rad ∝ v.
Remark 1.3. The Doppler shift is responsible for the relaxation. Thus, the
microscopic origin of damping is the Doppler shift (first pointed out by Einstein
[1917]).

1.3 Blackbody Radiation
1.3.1 The Phenomenon

Consider any cavity within matter at equilibrium temperature T full of radiation
and radiates. The radiation is universal: it’s independent of the material, shape,
size of the cavity, etc. The light (radiation) depends on T . Note that one cannot
focus the light within the cavity.

This universality is expressed by 3 laws:
1. Wien’s displacement law:

u (ν, T ) = T 3f
( ν
T

)
, (1.55)

where u is the energy density. This is due to purely thermodynamic con-
siderations.

2. As a consequence of the above,

λmaxT = A. (1.56)

3. Stefan’s law: the total energy radiated at fixed T is given by

u (T ) = σT 4. (1.57)

Here A and σ are universal constants.
For a long time there was a puzzle as there was no theoretical explanation for
the blackbody curve (see Fig. 1.3). Planck has found a fit

u (ν, T ) = αν3

eβν/T −1
, (1.58)

where α and β are fitting constants.
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Fig. 1.3: Blackbody radiation curves.

1.3.2 Electromagnetic Radiation – Basics

Let us be more qualitative. Take a cavity L × L × L with an electromagnetic
field (E,H). The energy density is given (in the wrong units) by

W = 1
8π
(
E2 +H2) , (1.59)

and the Poynting vector
S = c

4πE ×H. (1.60)

The diffraction equation (Helmholtz) for E is given by

∇2E + ∂2E

∂t2
= 0, (1.61)

with the appropriate boundary conditions on the wall. We shall look for plane-
wave solutions,

(E,H) = (E0,H0)× e i(k·x−ωt) . (1.62)
The dispersion is given by

ω2 = c2k2, (1.63)
with k quantized,

|k| = 2π
L

(nx, ny, nz) , ni ∈ Z. (1.64)

Here E, H and k are orthogonal.
In this case,

E ×H = 1
2
(
E2 +H2) n̂, (1.65)

with k = kn̂. Therefore,
S = cWn̂. (1.66)

The total energy is given by

E =
∫

dV W, (1.67)

and the total momentum

P = 1
c2

∫
dV S = E

c
n̂. (1.68)
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1.3.3 Definition of Blackbody Radiation5

The basic idea of the blackbody radiation is that one has a cavity in thermo-
dynamic equilibrium (fixed temperature T ). Inside this cavity, which is almost
closed (for pedagogical reasons) there is a radiation. This radiation 1. cannot
be focused; 2. is unpolarized; 3. is at thermal equilibrium. The distribution of
the energy density of this radiation is given by the Planck distribution.

Fig. 1.4: Blackbody radiation box.

We shall now consider the radiation as a thermodynamic fluid. Although it
is a strange description, we shall justify it later. We shall derive the equation
of state and later – Planck’s law.

1.3.4 Basics of Radiation

Let us consider plane wave solutions{
W = 1

8π
(
E2 +H2)

S = c
4πE ×H,

(1.69)

where E ⊥H and S = Sn̂. We shall also set

ω2 = c2k2; k = 2π
L

(nx, ny, nz) , ni ∈ Z. (1.70)

Last time we also saw that

E ×H = 1
2
(
E2 +H2) n̂. (1.71)

The total energy is given by

E =
∫

dV W, (1.72)

with the momentum
P = 1

c2

∫
dV S = E

c
n̂. (1.73)

1.3.5 Poor Man’s Derivation

Let us consider a unit of radiation with momentum P hitting a wall. The change
of the momentum is given by

∆P = 2E
c
. (1.74)

5 Lesson #3 @ 27/03/2017
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The radiation power per unit surface is given by

I ≡ E

S · t
=⇒ E = I · t · S, (1.75)

with t a unit of time. Combining both equations one has

∆P = F︸︷︷︸
force

·t = p︸︷︷︸
pressure

·S · t = p
E

I
= 2E

c
. (1.76)

Where for the last two equalities we used both previous equations. Hence,

p = 2I
c
. (1.77)

Now, consider our unit of radiation hits the wall with angle θ. One thus has

p = 2I
c

cos2 θ =⇒ p = 2I
c

cos2 θ, (1.78)

and the average is taken over a closed cavity. Thus,

p = 1
3
I

c
= 1

3W = 1
3
E

V
, (1.79)

where the factor 1
3 is actually the dimension 1

d .

1.3.6 The General Derivation

The general derivation is given in Eric’s Quantim3 course. We use the action
formalism for the field

Fµν → action S. (1.80)
Noether’s theorem ensures us that the energy momentum tensor Tµν is traceless

Tµµ = Tr
( E

V
p
p
p

)
= 0, (1.81)

so that Eq. (1.79) is retrieved. For a full derivation see Chap. 34 of Landau and
Lifshitz, (Vol. 2) [1987].

1.3.7 Temperature

We know the equation for the ideal gas

pV = 2
3U (T ) . (1.82)

How do we then introduce the temperature T into Eq. (1.79). The solution is
to use the equipartition theorem.

The equipartition theorem tells us that

E = 1
2kBT × (# degrees of freedom) . (1.83)

Hence,
p = 1

3
E

V
u (T ) , (1.84)

where u (T ) is the energy density. We also note that we cannot have u (T,X)
due to the Carnot cycle.
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“Proof” of p = 1
3 u (T). Let us consider a vector potential of wave in vacuum,

∆A = 1
c2
∂2A

∂t2
. (1.85)

Add the Coulomb gauge,
divA = 0, (1.86)

to have
H = rotA; E = −∂A

∂t
. (1.87)

Now, A (x, t) can be Fourier expanded (with periodic boundary conditions) so
that

A =
∑
k

a (k, t) eik·x+a∗ (k, t) e− ik·x, (1.88)

where we set the modes a (k, t) to be orthonormal; also, k · a = 0. Plug this
expansion into the wave equation to have{

ä (k, t) + ω2a (k, t) = 0
ω = c |k| .

(1.89)

Therefore, one has the energy

E =
∫

d3x
1

8π
(
E2 +H2) = V

2π
∑
k

|ȧ (k, t)|2 + ω2 |a (k, t)|2 . (1.90)

In other words, the energy is written as a sum of harmonic oscillators.
Hence, the thermodynamic energy is

〈E〉 =
∑
k

2× 1
2kBT. (1.91)

In other words, the temperature is defined via the radiation modes. Also, the
modes are quantized

2πν = ω = c |k| = c
π

L

√
n2
x + n2

y + n2
z. (1.92)

therefore,
〈E〉 =

∫ ∞
0

dν g (ν) kB, (1.93)

where g (ν) is the density of modes (DOM). Now, in the continuum limit, L→
∞, one has∑

k

=
∞∑

kx=0

∞∑
ky=0

∞∑
kz=0

=
(
L

2π

)3 ∫ ∞
−∞

dkx dky dkz

= L3

8π3

∫
d3k

= L3

8π3

∫
4πk2 dk

= L3

2π2

∫ ∞
0

(ω
c

)2 dω
c

= V

2π2

∫ ∞
0

(2π)3
(ν
c

)2 dν
c
.

(1.94)
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Hence,
g (ν) = 2×4πV

c3
ν2, (1.95)

where the 2× factor comes from the polarization.
Finally, one has

E (T ) =
∫ ∞

0
dν g (ν) kB ≡

∫
dνE (ν, T ) . (1.96)

And we have defined the energy of the spectral energy by

u (ν, T ) ≡ E (ν, T )
V

= 8πν2

c3
kB. (1.97)

This is the Rayleigh-Jeans formula.

Fig. 1.5: The spectral energy.

1.3.8 Planck’s Distribution

The usual derivation of Planck’s spectrum via the quantization of the elec-
tromagnetic wave is plainly wrong. Planck himself was opposed to anything
quantum at all. His formula was purely a phenomenological one. Although
the quantum derivation is mathematically correct, it is physically wrong as it
requires the quantization of the electromagnetic field. The blackbody radiation
does not require it.

As we shall see shortly,

pV = 1
3E (T ) , (1.98)

is the equation of state of the thermal blackbody radiation. We shall derive
Planck’s law from the thermodynamics alone.

Let us start with
E (T, V ) = u (T ) . (1.99)
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Now we shall continue with the Stefan-Boltzmann formula{
dE = −P dV + T dS E (V, S)
dF = −S dT − P dV F (T, V ) = E − TS,

(1.100)

where F is the free energy given by the Legendre transform of E. Using the
relations (

∂F

∂V

)
T

= −P =
(
∂E

∂V

)
T

− T
(
∂S

∂V

)
T

(1.101)

and Maxwell (
∂S

∂V

)
T

=
(
∂P

∂T

)
V

(1.102)

one has (
∂E

∂V

)
T

= −P + T

(
∂P

∂T

)
V

. (1.103)

Now, since
E = V u (T ) , P = 1

3u (T ) , (1.104)

we have
u (T ) = −1

3u (T ) + T

3
du (T )

dT . (1.105)

Hence,
du (T )

dT = 4u (T )
T

, (1.106)

so that
u (T ) = σT 4. (1.107)

This is the Stefan-Boltzmann equation (1.57). Note that σ is a universal con-
stant; it does not depend on T, V, etc. This also implies that

P (T ) = σ

3T
4. (1.108)

Adiabatic Transformation. In this case, dS = 0. Thus,

dE = −P dV. (1.109)

Now, since
E = 3PV, (1.110)

we have
dE = 3 (P dV + V dP ) = −P dV. (1.111)

Thus,
4dV
V

+ 3dP
P

= 0. (1.112)

Hence,
P 3V 4 = const, (1.113)

or (
T 4)3 V 4 = const =⇒ T 3V = const. (1.114)
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1.3.9 Entropy

From the Maxwell equation, one has(
∂S

∂V

)
T

=
(
∂P

∂T

)
V

, (1.115)

or (
∂S

∂V

)
T

= 4
3σT

3. (1.116)

Thus,

S (V, T ) = 4
3σV T

3 + f (T ) , (1.117)

where f T→0−−−→ 0. Hence,

s (T ) = S (V, T )
V

= 4
3σT

3 . (1.118)

1.3.10 Chemical Potential of Blackbody Radiation

Define the enthalpy by
H = E + PV. (1.119)

One has then
H = V σT 4 + 1

3uV = V σT 4 + 1
3V σT

4

= 4
3V σT

4.

(1.120)

Now, define the Gibbs potential by

G = H − TS = 4
3V σT

4 − T 4
3σV T

3 = 0, (1.121)

but since from the Gibbs-Duhem equation,

G = Nµ = 0, (1.122)

one derives
µ = 0. (1.123)

Corollary 1.2. The chemical potential of a radiation, particle or not, must be
0. This is independent of its nature.

1.3.11 Scaling Forms

In the literature one encounters the Wien formula

u (ν, T ) = ν3f

(
# ν

kBT

)
. (1.124)

It means that ν and T are not independent. Note that this scaling form does
not infer Planck distribution.

The kB in the last equation6 is due to unit consideration (from temperature
to energy). The last needed factor # has the units of action. Planck’s constant
~ will come as a natural candidate.

6 Lesson #4 @ 28/03/2017
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Proof (Wien formula). Let us look on radiation in a box of size L3. From the
definitions, its energy is given by

u (T ) =
∫ ∞

0
dν u (ν, T ) . (1.125)

The radiation frequency is given by

ω = 2πν = c |k| = cπ

L

√
n2
x + n2

y + n2
z. (1.126)

Hence, we can write a scaling law

νV
1
3 = c

2
√
. . . (1.127)

Notice that this scaling law is independent of the shape of the box; it may be
even a potato

νV
1
3 = const. (1.128)

This generalization to a general shape is given by the Weyl expansion (given in
his doctorate Weyl [1908]).

On the other hand, last time we have seen another quantity which is constant
in an adiabatic transformation,

T 3V = const ⇐⇒ TV
1
3 = const. (1.129)

Thus, we can immediately write,

ν

T
= const. (1.130)

QED.

1.3.12 Stefan & Boltzmann

This constant we have found does not depend on any thermodynamic quantity
(thus, “constant”). We can thus phrase the Stefan-Boltzmann law as

u (T ) = σT 4. (1.131)

Rephrasing it a bit, one has

u (T )
T 4 = σ = u (T ′)

T ′4
. (1.132)

Therefore, the definition of σ does not depend on the local definition of temper-
ature.

Integrating one has

1
T 4

∫
dν u (ν, T ) = 1

T ′4

∫
dν′ u (ν′, T ′) , (1.133)

or
1
T 4u (ν, T ) ∆ν = 1

T ′4
u (ν′, T ′) ∆ν′. (1.134)
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Hence, one obtains

u (ν, T ) ∆ν =
(
T

T ′

)4
u (ν′, T ′) ∆ν′. (1.135)

Performing the adiabatic transformation we have found earlier, ν
T = const, one

has
ν

T
= ν′

T ′
=⇒ ∆ν = T

T ′
∆ν′. (1.136)

Substituting back one has

u (ν, T ) =
(
T

T ′

)3
u

(
T ′

T
ν′, T ′

)
, (1.137)

for all T . In particular, for T ′ = 1. Thus,

u (ν, T ) = T 3 u
( ν
T
, 1
)

︸ ︷︷ ︸
f( νT )

, (1.138)

hence,
u (ν, T ) = ν3f

( ν
T

)
. (1.139)

1.4 Einstein Model – (A,B) Coefficients
All that we did before is to introduce temperature. We have assumed that the
radiation is at thermal equilibrium and developed the Planck distribution.

The model we will present now, given by Einstein [1917], will give us the
Planck distribution without quantum mechanics. Additionally, it will give us
the same results as the Lorentz model. Finally, it will give us amplification of
light – lasers.

1.4.1 Planck Distribution – Light Amplification

We will shortly prove the following.

• Assuming that matter (atoms) is at thermal equilibrium, the energy den-
sity u (ν, T ) has a Planck distribution. This comes from the Fluctuation-
Dissipation theorem.

Assumptions.

1. Gas of atoms: states are z1, z2, . . . , zn with energies ε1, ε2, . . . , εn with
statistical weights p1, p2, . . . , pn.

2. The relative occurrence of a state is given by the Boltzmann factor

wn = pn e−εn/kBT . (1.140)

3. Consider the simplest case of 2 states za and zb where εa < εb. There are
3 possible processes.
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(a) Absorption. The probability per unit time (rate) is defined by

dw↑ ≡ u (ν, T )Bab dt, (1.141a)

where the subs Bab mean a to b.
(b) Stimulated Emission.

dw↓ ≡ u (ν, T )Bba dt. (1.141b)

(c) Spontaneous Emission.

dws = Aba dt. (1.141c)

The sub s is for “stationary”. Note that

Aba ≡ A = γd. (1.142)

1.4.2 Solving the Model

Let us take N atoms of two states na = Na
N and nb = Nb

N such that Na+Nb = N
(the number of atoms is fixed). Let us write the two equations of evolution for
the ground a and excited b states,{

dna
dt = p↓nb − p↑na

dnb
dt = −p↓nb + p↑na,

(1.143)

where {
p↓ = dw↓

dt + dws
dt = Bbau+A

p↑ = dw↑
dt = uBab.

(1.144)

For a stationary state,
dna
dt = dnb

dt = 0. (1.145)

Hence,
p↑na = p↓nb . (1.146)

This is the Detailed balance condition.
Remark 1.4. Detailed balance is a condition for a stationary state and not for
thermal equilibrium, as usually erroneously thought.

Let’s continue. At thermal equilibrium{
wa = na = pa e−εa/kBT

wb = nb = pb e−εb/kBT .
(1.147)

Combine both to have

pa e−εa/kBT Babu = pb e−εb/kBT (A+Bbau) . (1.148)

Now, consider the T → ∞ limit. Here u → ∞ too. Thus, Eq. (1.148)
becomes

paBab = pbBba. (1.149)
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Combine both to have

pbBba e−εa/kBT u = pb e−εb/kBT (A+Bbau) . (1.150)

Hence,

u (ν, T ) = A/Bba
e(εb−εa)/kBT −1

. (1.151)

In other words, u has the Planck’s distribution.
Now, combine with Wien’s formula

u (ν, T ) = αν3f
( ν
T

)
, (1.152)

to immediately obtain
εb − εa = hν . (1.153)

Corollary 1.3. The factor h with the units of action presents natural quanti-
zation to the problem, where we have only considered thermodynamic effects.

Continuing further, one has

A

Bba
= αν3. (1.154)

In the Rayleigh-Jeans limit

u (ν, T ) = 8πν2

c3
kBT, (1.155)

for hν � kBT one has
u (ν, T ) ∼ A

Bba

1
hν
kBT

. (1.156)

Thus,
A

Bba

kBT

hν
= 8πν2

c3
kBT, (1.157)

and one converges to
A

Bba
= 8πhν3

c3
. (1.158)

Remark 1.5. If you kill the relaxation—the spontaneous emission factor A—one
obtains back the Wien formula u ∼ ν3 e−ν/T .

1.4.3 Einstein Equations for Other Types of Radiation

This Einstein model is useful not only for describing the statistics of light, but
also some light-matter interactions. We shall soon see how we get lasers from
it.

We saw that there is a radiation distribution in the system. But since there
are atoms, and the radiation moves the atoms, the velocity of the atoms has also
got some distribution. One can ask what is this distribution, and see that it is
the same Planck distribution. However, one can also ask the opposite question:
given a Planck distribution of the atom velocity, what must be the radiation
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energy distribution. The answer is the same. These two questions, given by a
remark by Einstein in his 1917 paper have given rise to the idea of laser cooling.

Let us start with the basics. Define the energy density by

W = 1
2ε0E

2. (1.159)

Now, define the flux of photons (rate) φ by

P

hν
= P

~ω
= Rsc = φ. (1.160)

Also {
P = ScW = φhν

W = P
Sc = h

λ
φ
S .

(1.161)

Instead of u (ν, T ) we consider

ρ (ν) ≡Wϕ (ν) , (1.162)

where ϕ (ν) is the spectral function (Fig. 1.6), and it is normalized such that∫ ∞
0

ϕ (ν) dν = 1. (1.163)

Note it is not necessarily thermal.

0 ϵb-ϵa

h

ν

φ

Fig. 1.6: Spectral function.

Now, combining all of our definitions, one has

− 1
na

dna
dt = p↑ = BabWϕ (ν) = Babϕ (ν) h

λ

φ

S
. (1.164)

Consideration of the units gives us

1. Absorption cross-section,

σab (ν) = Babϕ (ν) h
λ
. (1.165a)



1.4 Einstein Model – (A,B) Coefficients 21

2. Emission cross-section

σba (ν) = Bbaϕ (ν) h
λ
. (1.165b)

We7 can therefore write the rate equation

dna
dt = (A+Bbaρ)nb −Babρna.

= Anb + ρ (Bbanb −Babna)︸ ︷︷ ︸
≡BbaD

, (1.166)

where D is the weighted statistical population,

D ≡ nb −
Bab
Bba

na = nb −
pb
pa
na. (1.167)

Here we use the identities
Bab
Bba

= pb
pa
, (1.168)

such that n = na + nb = const.
Now, we can write a set of coupled equations,nb

(
1 + Bab

Bba

)
= D + nBabBba

na

(
1 + Bab

Bba

)
= n−D.

(1.169)

Insert these relations into Einstein equations for dna
dt ,

dnb
dt to obtain

dD
dt = − [A+ (Bab +Bba)ϕ (ν)W ]D −ABab

Bba
n. (1.170)

Note that what secures the saturation of D is the A factor. Hence, one can
write the definition for the saturation,

dD
dt = − 1

Tir
(D −Ds) . (1.171)

This defines Tir and Ds. Hence, one has

D (t) = Ds + (D (0)−Ds) e−
t
Tir , (1.172)

with
D (0) = −Bab

Bba
n. (1.173)

(see Figure 1.7). At large t

D (t)→ Ds (W, ν) = −n · Bab
Bba
· A

A+ (Bab +Bba)ϕ (ν)W . (1.174)

7 Lesson #5 @ 03/05/2017
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Fig. 1.7: Weighted statistical population.

1.4.4 Saturation at large applied light sources

Let us now plot Ds versus W . We see that for large values of W > Wsat, |Ds|
saturates. Define Wsat by

Ds (Wsat) = 1
2D (0) = −1

2n
pb
pa
. (1.175)

Therefore,

Wsat = A

(Bab +Bba)ϕ (ν) =⇒ Babϕ (ν)Wsat︸ ︷︷ ︸
absorption

+Bbaϕ (ν)Wsat︸ ︷︷ ︸
emission

= A︸︷︷︸
spon.

emission

.

(1.176)
Finally, we have explicit expression asDs (W ) = Ds (0) 1

1+ W
Wsat

1
Tir

= A
(

1 + W
Wsat

)
.

(1.177)

These equations we have, are general and classical.

Fig. 1.8: Saturated weighted statistical population.
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2 Interaction of Classical Radiation with Quantum Matter8

Or, the semi-classical theory of atom-radiation interaction.

2.1 Interaction Hamiltonian – Gauge Invariance of Quantum
Mechanics

Or, how to obtain the Maxwell equations from Quantum Mechanics.

2.1.1 The Hamiltonian

We shall start with the Hamiltonian and develop the theory accordingly. Let
us start from the Schrödinger equation

i~ ∂
∂t
ψ (r, t) =

(
p2

2m + V (r, t)
)
ψ (r, t) , (2.1)

with p = ~
i ∇. We have a total invariance to the phase of the wave-function

ψ (r, t)→ ψ′ (r, t) ≡ e iω ψ (r, t) . (2.2)

This is the global phase transformation. In other words, for any operator Â

〈ψ′|Â|ψ′〉 = 〈ψ|Â|ψ〉 . (2.3)

A local gauge invariance reads

ψ (r, t) G. T.−−−→ ψ′ (r, t) ≡ e i q~ω(r,t) ψ (r, t) . (2.4)

Put back into the Schrödinger equation to have

i~ ∂
∂t
ψ (r, t) = i~

(
−i q

~
∂ω

∂t
e− i qω~ ψ′ + e− i qω~

∂ψ′

∂t

)
= e− i qω~

(
i~ ∂
∂t

+ q
∂ω

∂t

)
ψ′. (2.5)

On the right-hand side one has

~
i ∇ψ = ~

i

(
e− i qω~ ∇ψ′ − i q

~
(∇ω)ψ′ e− i qω~

)
= e− i qω~ (p− q∇ω)ψ′. (2.6)

Therefore,

i~ ∂
∂t
ψ′ (r, t) =

(
1

2m (p− q∇ω)2 + V (r, t)− q ∂ω
∂t

)
ψ′ (r, t) . (2.7)

Hence, the Schrödinger equation is not locally invariant to U (1) transformation.

8 Lesson #5 @ 03/04/2017
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2.1.2 Covariant Derivative

In order to obtain back the symmetry, we must introduce an additional auxiliary
field to the system. Let us define the covariant derivative by

Dt, D = (Dx, Dy, Dz) , (2.8)

such that {
Dtψ

G. T.−−−→ D′tψ
′ = e i qω~ Dtψ

Dψ
G. T.−−−→D′ψ′ = e i qω~ Dψ.

(2.9)

If we could find such a transformation, we are done.
Let us multiply the Schrödinger equation by e i qω~

e i qω~ ∂tψ =
(
∂t −

iq
~

(∂tω)
)
ψ′. (2.10)

Introduce a function φ (r, t) such that

iq
~
φψ′ = φ e i qω~ ψ

iq
~
. (2.11)

Hence, (
∂t + i q

~
(φ− ∂tω)

)
ψ′ = e i qω~

(
∂t + i q

~
φ
)
ψ. (2.12)

Hence, we have defined the covariant derivative

Dt ≡
(
∂t + i q

~
φ (r, t)

)
. (2.13)

It is a covariant derivative provided that

φ (r, t) G. T.−−−→ φ′ (r, t) = φ (r, t)− ∂tω. (2.14)

Similarly, we will calculate the spatial parts(
∇− i q

~
∇ω

)
ψ′ = e i qω~ ∇ψ. (2.15)

Introduce a vector potential A (r, t) to obtain

D = ∇− i q
~
A (r, t) , (2.16)

and A (r, t) transforms as

A (r, t) G. T.−−−→ A′ (r, t) = A (r, t) + ∇ω. (2.17)

Combine both to have

i~Dtψ = 1
2m

(
~
iD
)2

ψ
G. T.−−−→ i~D′tψ′ = 1

2m

(
~
iD
′
)2

ψ′. (2.18)

The price we had to pay to restore U (1) symmetry is the two gauge fields, φ
and A.
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2.1.3 Invariant Quantities

Now, is it possible to combine both transformations to be independent (invari-
ant) of ω. Since {

φ′ = φ− ∂tω
A′i = Ai + ∂iω

(2.19)

one has the coupled equations
∂tφ
′ = ∂tφ− ∂2

t ω (a)
∂iφ
′ = ∂iφ− ∂i∂tω (b)

∂tA
′
i = ∂tAi + ∂t∂iω (c)

∂jA
′
i = ∂iAi + ∂j∂iω (d)

(2.20)

Combine (b) and (c) to have the invariant

∂iφ
′ + ∂tA

′
i = ∂iφ+ ∂tAi, (2.21)

which has 3 independent quantities. Similarly, from (d) one has

∂jA
′
i − ∂jAi = ∂j∂iω = ∂i∂jω = ∂iA

′
j − ∂iAj , (2.22)

which also has 3 independent quantities.
Therefore, there exist

E ≡ −∇φ− ∂tA, (2.23)

and
B ≡∇×A. (2.24)

Remark 2.1. Similarly, we could write the other two non-homogeneous Maxwell
equation, but we need to have sources. It will just be more cumbersome, but
not harder.
Remark 2.2. We could also add spins. This would give us the gyro-magnetic
factor +2 for Pauli equations for a spin 1

2 particle.

2.1.4 Invariant Physical Quantities

There are several physical quantities which remain invariant under the gauge
transformation.

Density
ρ (r, t) = |ψ (r, t)|2 = ρ′ (r, t) . (2.25)

Position
〈ψ′ |R |ψ′〉 = 〈ψ |R |ψ〉 . (2.26)

Momentum (p) – not a physical quantity:

〈ψ′ |p |ψ′〉 =
∫

d3r e− i qω~ ψ∗
(
~
i ∇

(
e i qω~ ψ

))
= 〈ψ |p |ψ〉+ q 〈ψ |∇ω |ψ〉 . (2.27)
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Velocity

v = 1
m (p− qA) G. T.−−−→ v′ = 1

m

(
p′ − qA′

)
= 1

m

(
p+ q∇ω − qA′

)
= 1

m (p− qA) . (2.28)

Remark 2.3. The quantization of the electric charge + magnetic monopole comes
from the gauge invariance. We shall not prove it here; the avid reader is referred
to Sakurai and Napolitano, (p. 130) [2013].

2.2 Dipolar Interaction
2.2.1 Coulomb Gauge

We shall start with the Coulomb gauge

divA = 0. (2.29)

The Hamiltonian reads

Ĥp̂·A⊥ ≡
1

2m (p̂− qA⊥)2 + V (r) , (2.30)

where A⊥ is the transverse external radiation, and V (r) is the electrostatic
potential. In this gauge, the electric and magnetic fields read{

E = −∂A⊥∂t
B = rotA⊥.

(2.31)

Define the atomic Hamiltonian as

Ĥat = 1
2m p̂

2 + V (r) . (2.32)

Hence,

Ĥ = Ĥat −
q

m
p ·A⊥ + q2

2mA
2
⊥. (2.33)

We used the fact that A⊥ and p are commuting[
p̂j , Â⊥j

]
= ~

i ∂jA⊥j =⇒ p ·A⊥ −A⊥ · p = ~
i divA⊥ = 0. (2.34)

2.2.2 Dipolar Approximation9

We shall identify the field A⊥ with a laser field with wavelength λ. Now, if
λ � 〈r̂〉Ĥat

, one can replace A⊥ (r, t) with A⊥ (t) ' A⊥ (r = 0, t), where 0
is the position of the atom. In other words, we neglect the dependence on the
position. This approximation works well with microwave radiation, for example.

Next, we define the equivalence between p ·A and d ·E Hamiltonians. We
shall look for a unitary transformation T̂ (t) that gets rid of the time-dependent
only A⊥ (t). Explicitly,

T̂ (t) p̂ T̂ † (t) = p̂+ qA⊥ (t) . (2.35)
9 Lesson #6 @ 04/04/2017
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It is easy to find that
T̂ (t) = e− i q~ r̂·A⊥(t) . (2.36)

Now we calculate the transformed Hamiltonian. The state transforms as

|ψ̃ (t)〉 = T̂ (t) |ψ (t)〉 . (2.37)

Also,
i~∂t |ψ〉 = H (t) |ψ (t)〉 =⇒ i~∂t |ψ̃〉 = H̃ (t) |ψ̃ (t)〉 . (2.38)

The Hamiltonian transforms as

H̃ (t) = T̂ (t)Hp·A (t) T̂ † (t) + i~∂T̂ (t)
∂t

T̂ † (t) . (2.39)

Note the second term: it always comes with time-dependent operators such as
T̂ (t). Hence,

H̃ (t) =
(

1
2m p̂

2 + V (r)
)

︸ ︷︷ ︸
Ĥat

+i~
(
− i
~
qr · dA⊥ (t)

dt

)
(2.40)

We therefore have

H̃ (t) = Ĥat + qr · dA⊥ (t)
dt , (2.41)

or
H̃d·E (t) = Ĥat + d ·E (t) . (2.42)

For additional information, read Chapter 4 of Cohen-Tannoudji, Dupont-Roc,
and Grynberg [1989].

2.3 Effect of a Classical EM Field on a Quantum Atom
We shall talk about (a) Rabi oscillations, (b) Feynman & Vennon description,
(c) Bloch sphere, (d) Lindblad equation, (e) Ramsey interference.

2.3.1 Approximations and Assumptions

• Assume a monochromatic field ω with λ� 〈r̂〉,

E (t) = E0 cos (ωt− k · r) . (2.43)

• A two-level atom: well justified. The levels are degenerate (never justi-
fied). Here the detuning is given by

∆ = ω − ω0. (2.44)

The Hamiltonian is
Hat = ~ω0 |e〉 〈e| . (2.45)

Or,
Hat |g〉 = 0; Hat |e〉 = ~ω0 |e〉 . (2.46)
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Fig. 2.1: Two level atom description.

• The atom-field Hamiltonian is given by

HAF = −d̂ ·E. (2.47)

Theorem 2.1. The atomic eigenstates of Hat always have a well-defined parity.

• We can thus conclude

ψeven
odd

(r)→ d̂ψ odd
even

(r) . (2.48)

Hence,
〈i|d|i〉 = 0 ⇐⇒

∫
d3r f (r) = 0. (2.49)

• Since
1 = |e〉 〈e|+ |g〉 〈g| , (2.50)

one has
d̂ = 1 d̂1 = . . . = 〈g|d̂|e〉

(
σ̂ + σ̂†

)
, (2.51)

where
σ̂ ≡ |g〉 〈e| , σ̂† ≡ |e〉 〈g| . (2.52)

Remark 2.4. Since 〈
g
∣∣∣ d̂ ∣∣∣ e〉 =

〈
e
∣∣∣ d̂ ∣∣∣ g〉∗ , (2.53)

one can make a choice of phase such that〈
g
∣∣∣ d̂ ∣∣∣ e〉 =

〈
e
∣∣∣ d̂ ∣∣∣ g〉 ∈ R+, (2.54)

are real > 0.

2.3.2 The Hamiltonian

Combining everything we have just defined, one writes the Hamiltonian

ĤAF = −
〈
g
∣∣∣ d̂ · ε̂ ∣∣∣ e〉 E0

2
(
e iωt + e− iωt) (σ̂ + σ̂†

)
, (2.55)

where
ΩR ≡

1
~

〈
g
∣∣∣ d̂ · ε̂ ∣∣∣ e〉 E0

2 , (2.56)

is the Rabi frequency.
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Now, let us solve it. Let

|ψ (t)〉 = cg (t) |g〉+ ce |e〉 . (2.57)

Put the Hamiltonian to have

i~ d
dt |ψ (t)〉 =

(
Ĥat + ĤAF

)
|ψ (t)〉 . (2.58)

• For ĤAF = 0 one has
ce (t) = e− iω0t . (2.59)

• For ĤAF 6= 0 one has the coupled equations{
ċg = i ΩR

2 ce e iωt (1 + e−2iωt)
ċe = −iω0ce + i ΩR

2 cg e− iωt (1 + e+2iωt) (2.60)

The last term in the first equation corresponds to going to the excited state
while emitting a photon; the last term in the second equation corresponds to
absorbing a photon and going to the ground state. We would like to get rid of
them.

Fig. 2.2: Rotating wave 2ω terms. (a) The e−2iωt term; (b) the e+2iωt term.

2.3.3 Rotating Wave Approximation

We would like to solve the just-presented paradox by omitting these two prob-
lematic terms. This is not an innocuous approximation. What we finally obtain

ĤRWA
AF = ~ΩR

2
(
e iωt σ̂ + e− iωt σ̂†

)
. (2.61)

Now, quantum mechanics is the art of unitary transformations. We shall
make the following:

α (t) = cg (t) , β (t) = ce (t) e iωt, (2.62)

such that |α|2 + |β|2 = 1. The Schrödinger equation becomes{
∂tα = i ΩR

2 β

∂tβ = i ΩR
2 α+ i∆β.

(2.63)

Let us suppose we do not make the rotating wave approximation (RWA).
The initial ĤAF Hamiltonian reads

∂tβ − i∆β = i ΩR
2 α (t)

(
1 + e+2iωt) . (2.64)
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The other equation looks even worse. Let

β (t) = C (t) e i∆t, (2.65)

so that
∂tC (t) = i ΩR

2 α (t)
(

1 + e i(2ω−∆)t
)
. (2.66)

For t ' 0 one has

C (t) ' i ΩR
2 α (0)

∫ t

0
dt′
(

e− i∆t′ + e i(2ω−∆)t′
)

= i ΩR
2 α (0)

(
e− i∆t−1
−i∆ + e i(2ω−∆)t−1

i (2ω −∆)

)
. (2.67)

The second term comes from not neglecting RWA. However, the ratio of the
amplitudes ∝ ∆

2ω ∼ 10−4 − 10−6. Hence, we can safely neglect them and use
RWA.

Returning to the RWA. Let us solve the equation for β,

d2β

dt2 − i∆dβ
dt + Ω2

R

4 β = 0. (2.68)

Now, let {
X± = i ∆

2 ± i Ω
2

Ω =
√

Ω2
R + ∆2,

(2.69)

and obtain
β (t) = ei ∆t

2

(
A e i Ωt

2 +B e− i Ωt
2

)
. (2.70)

Introducing the initial conditions,{
α (0) = 1
β (0) = 0 = A+B,

(2.71)

one has
β (t) = i ΩR

Ω e i ∆t
2 sin

(
Ωt
2

)
. (2.72)

The probability to get from the ground to excited state reads

Pg→e (t) = |β (t)|2 = Ω2
R

Ω2
R + ∆2 ·

1− cos Ωt
2 . (2.73)

See Fig. 2.3.

2.3.4 Comparison to Einstein Model

Here ∆ = 0.

• For t = 0→ π
ΩR atom |g〉 → |e〉 absorbing ~ω.

• For t = π
ΩR →

2π
ΩR atom |e〉 → |g〉 emitting ~ω.
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Fig. 2.3: Rabi oscillations. In solid blue line Pg→e (t) = |β (t)|2; in dashed red
line Pe→g (t) = |α (t)|2. (a) Zero detuning, ∆ = 0, Ω = ΩR. (b) Non-
zero detuning, ∆ > 0. Note that the oscillation frequency in (b) is
higher than in (a).

One difference is that there is no spontaneous emission in RWA. For ΩR → 0
the atom stays in the excited state forever.

There is another, more subtle, difference. In the Einstein model,

− 1
na

dna
dt = const. (2.74)

However, in RWA

− 1
na

dna
dt = − 1

|α (t)|2
d|α (t)|2

dt

= − d
dt ln

(
1−

(
ΩR
Ω

)2
sin2 Ωt

2

)
Ω=ΩR= −ΩR tan

(
ΩRt

2

)
. (2.75)

This is strongly dependent on time. Hence, unlike Einstein model, this model
is quantum. The Einstein model, is actually, the Fermi golden rule description
of this problem (large t limit), where we sum over all the quantum degrees of
freedom. Hence the time independence.

2.4 Dressed State Picture10

We shall now rephrase all what we have said, but emphasize the coherences.
These are the non-diagonal parts of the density matrix. They are purely of
quantum nature. Note that we shall use the atomic language (NMR, and such).

10 Lesson #7 @ 18/04/2017
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2.4.1 The Dressed State Picture

Let us write the Schrödinger equation of two, excited and ground, states,

∂t

(
c̃e
cg

)
= −i

(
−∆ ΩR

2
ΩR
2 0

)(
c̃e
cg

)
≡ − i

~
H̃

(
c̃e
cg

)
. (2.76)

Here c̃e = e iωt ce is the rotated state. Diagonalize H̃ to obtain

E± = −~∆
2 ± ~Ω

2 , (2.77)

with Ω ≡
√

∆2 + Ω2
R. The associated eigenstates read{

|+〉 = sin θ |g〉+ cos θ |e〉
|−〉 = cos θ |g〉 − sin θ |e〉 ,

(2.78)

where

tan 2θ = −ΩR
∆ . (2.79)

This angle θ is called the Stückelberg angle.
For ΩR there is a level repulsion that removes degeneracy. This is the AC

Stark shift. See Figure 2.4.

Fig. 2.4: The dressed state picture.

2.4.2 Rabi Oscillations in the Dressed State Picture

Let us consider two states with ∆ = 0,

|±〉 = |g〉 ± |e〉 . (2.80)

Suppose that we start with an atom in the ground state |g〉. The time evolution
is given by

|ψ (t)〉 = |+〉 e− iE+t/~ + |−〉 e− iE−t/~

∆=0= |+〉 e− iΩRt/2~ + |−〉 e+iΩRt/2~

= |+〉+ |−〉 e+iΩRt/~ .

(2.81)
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Note that in the derivation of the third row we have neglected the overall phase
of the wavefunction.

At time ΩRt = π one has

|ψ
(
t = π

ΩR

)
〉 = |+〉+ e iπ |−〉 = |+〉 − |−〉 = |e〉 . (2.82)

and at time ΩRt = 2π one has

|ψ
(
t = 2π

ΩR

)
〉 = |+〉+ e2iπ |−〉 = |g〉 . (2.83)

2.4.3 The Bloch Sphere

This description emphasized the role of coherences. Start with the basis |e〉 , |g〉.
Define the lowering operator by {

σ̂ |e〉 = |g〉
σ̂ |g〉 = 0;

(2.84)

Explicitly,
σ̂ = ( 0 1

0 0 ) . (2.85)
We can now define the Pauli matrices

σ̂ + σ̂† = ( 0 1
1 0 ) = σx

−i
(
σ̂ − σ̂†

)
=
( 0 − i

i 0
)

= σy

|e〉 〈e| − |g〉 〈g| =
( 1 0

0 −1
)

= σz.

(2.86)

Also,
σz = σ̂†σ̂ − σ̂σ̂† =

[
σ̂†, σ̂

]
. (2.87)

The Pauli matrices obey the algebra{
[σα, σβ ] = 2iεαβγσγ
{σα, σβ} = 2δαβ .

(2.88)

The density matrix ρ̂ is defined by

ρ̂ = |ψ (t)〉 〈ψ (t)| =
(
c̃e
cg

)(
c̃e cg

)
=
(
|ce|2 c̃∗ecg
c̃ec
∗
g |cg|2

)
. (2.89)

The diagonal quantities |ce|2 and |cg|2 are the populations; they are classical and
sum to 1. The non-diagonal quantities c̃ec∗g and c̃∗ecg are called the coherences;
they are purely quantum.

We can relate the four matrix elements of the density matrix to the expec-
tation values of the operators we have defined previously

〈σ̂〉 = Tr (|g〉 〈e| ρ̂) = ρ̃eg (2.90a)〈
σ̂†
〉

= Tr (|e〉 〈g| ρ̂) = ρ̃ge (2.90b)〈
σ̂†σ̂

〉
= Tr (|e〉 〈e| ρ̂) = ρee (2.90c)〈

σ̂σ̂†
〉

= Tr (|g〉 〈g| ρ̂) = ρgg (2.90d)

where we used the notations

ρ̃αβ = c̃αc̃
∗
β , c̃g = cg, c̃e = e iωt ce. (2.91)
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2.4.4 Time Evolution of the Density Matrix

Let us look on the time evolution of ρ̃αβ :

∂tρ̃ee = ∂t (c̃ec̃∗e) = c̃∗e∂tc̃e + c.c.

= i∆c̃ec̃∗e − i ΩR
2 cg c̃

∗
e + c.c.

= i ΩR
2 (ρ̃eg − ρ̃ge) ,

(2.92)

where in the second line we used the Schrödinger equation. Similarly,

∂tρ̃gg = −∂tρ̃ee (2.93a)

∂tρ̃ge = −i∆ρ̃ge − i ΩR
2 (ρ̃ee − ρ̃gg) = ∂tρ̃eg. (2.93b)

The time evolution of ρ̂ is also given by the Schrödinger–von Neumann equation,

∂tρ̃ = − i
~
[
H̃, ρ̃

]
. (2.94)

2.4.5 Physical Interpretation of the Density Matrix Solutions

Let us inspect ρ̂. There are 4 × 2 = 8 real parameters, but we have several
constraints:

• The populations are reals (−2 parameters);

• ρee + ρgg = 1 (−1 parameter);

• ρ̃eg = ρ̃∗ge (−2 parameters).

Therefore, we have altogether 8− 5 = 3 independent quantities. This motivates
using a 3-vector in R3 to represent the atomic state.

We shall use the following 3 basis vectors

〈σx〉 = 〈σ̂〉+
〈
σ̂†
〉

= ρ̃eg + ρ̃ge (2.95a)
〈σy〉 = −i

(
〈σ̂〉 −

〈
σ̂†
〉)

= i (ρ̃eg − ρ̃ge) (2.95b)
〈σz〉 = |e〉 〈e| − |g〉 〈g| = ρee − ρgg. (2.95c)

Rearranging one has the following time evolution,


∂t 〈σx〉 = ∆ 〈σy〉
∂t 〈σy〉 = ∆ 〈σx〉 − ΩR 〈σz〉
∂t 〈σz〉 = ΩR 〈σy〉 .

(2.96)

These equations, also called the Optical Bloch Equations are completely equiva-
lent to the Schrödinger equation and to the dressed state picture we have shown
earlier.
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Fig. 2.5: The Bloch sphere.

2.4.6 Bloch Vector

Let us define the vector

〈σ〉 ≡ 〈σx〉 êx + 〈σy〉 êy + 〈σz〉 êz. (2.97)

Its evolution is given, as we saw, by

∂t 〈σ〉 = −∆êz × 〈σ〉+ ΩRêx × 〈σ〉 . (2.98)

Define a precession vector by

P = ΩRêx −∆êz, (2.99)

to have the concise
∂t 〈σ〉 = P × 〈σ〉 . (2.100)

This is analogous to the Larmor precession of a magnetic moment in a mag-
netic field

τ = ∂tL = Ω×L. (2.101)
This is the Feynman, Vernon, and Hellwarth [1957] representation.
Remark 2.5. This entire description is for a spin- 1

2 particle. Hence, we have two
states, ground and excited.
Remark 2.6. The length of the Bloch vector is constant (for a pure state),

|〈σ〉|2 = 〈σx〉2 + 〈σy〉2 + 〈σz〉2

= (ρ̃eg + ρ̃ge)2 − (ρ̃eg − ρ̃ge)2 + (ρee − ρgg)2

= 4ρ̃egρ̃ge + ρee − ρgg − 2ρeeρgg
= (ρee + ρgg)2 = 1. (2.102)

The last equality is because ρ̃egρ̃ge = ρeeρgg in a pure state (det ρ̂ = 0).

Corollary 2.1. Dynamics of the Bloch vector are depicted on a sphere of a
fixed radius 1.
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Fig. 2.6: Rabi oscillations in the language of the Bloch sphere. Here we used
∆ = 0 and P = ΩRêx

2.4.7 Transverse Components (x,y) of the Bloch Vector

Let us recall the dipole moment

d̂ = 〈g|d̂|e〉
(
σ̂ + σ̂†

)
. (2.103)

Hence, 〈
d̂
〉

= 〈g|d̂|e〉 〈σx〉 . (2.104)

2.4.8 Discussion11

We thus have 3 equivalent descriptions:

1. Schrödinger equation.

2. Density matrix ρ̃ =
(
ρee ρ̃eg
ρ̃∗eg ρgg

)
. Here the density matrix transforms as

∂tρ̃ = − i
~
[
H̃A + H̃AF, ρ̃

]
with ρ̃ee = ρee and ρ̃eg = ρeg e iωt.

3. Bloch equations. The vector 〈σ〉 = (〈σx〉 , 〈σy〉 , 〈σz〉) with the definitions
as in Eqs. (2.95). The evolution is given by ∂t 〈σ〉 = P × 〈σ〉, and a pure
state is given by |〈σ〉|2 = 1.

2.4.9 Atomic Time Bookkeeping – Ramsey Interference

Remark 2.7. Ramsey has received a Nobel prize for it.
We saw that the Rabi oscillations gives is the energy level difference ω0.

However, it is difficult to measure it accurately (at least in Rabi’s time). Now,
how can we do it? The idea is to use an interferometry similarly to the Young
experiment, but in time rather than in space.

Consider the following picture (Fig. 2.7). Let τ be the time an atom spends
inside the cavity, with the distance between cavities given by L = vT .

11 Lesson #8 @ 24/04/2017
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Fig. 2.7: Ramsey Experiment. The atoms flow from right to left. There is no
evolution outside of the cavity.

Assumptions:

• Assume to be close to resonance, ∆� ΩR (or, Ω =
√

Ω2
R + ∆2 ' ΩR

• The time inside the cavity τ is at resonance: ΩRτ = π
2 (a π

2 -pulse).

Hence, in the dressed-state picture, starting with

|ψ0 (0)〉 = |g〉 = |+〉+ |−〉 , (2.105)

we have a phase accumulation inside the first cavity of

|ψ1 (τ)〉 = |+〉+ e iΩRτ |−〉 = (1 + i) |g〉+ (1− i) |e〉 . (2.106)

Between the cavities, there is no field (Ω = 0). Thus, the atoms obtain an
additional phase of

|ψ2 (τ)〉 = |+〉+ e i π2 +i∆·T |−〉 . (2.107)

Finally, after the second cavity one has

|ψf (τ)〉 = |+〉+ e i π2 +i∆·T+i π2 |−〉
= |+〉 − e i∆·T |−〉 . (2.108)

Now, we have several possibilities.

• If ∆ · T = 2πn for n ∈ Z then

|ψf (τ)〉 = |+〉 − |−〉 = |e〉 ; (2.109)

• If ∆ · T = π + 2πn for n ∈ Z then

|ψf (τ)〉 = |+〉+ |−〉 = |g〉 . (2.110)

Generally,

Pe (T ) = cos2
(

∆T
2

)
= 1 + cos ∆T

2 , (2.111)

with ∆T = π =⇒ ∆ = π
T .

2.5 Justifying the Classical Chapter
In this section we shall compare the Lorenz atom and the Einstein model with
the current semiclassical model.
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Fig. 2.8: Ramsey Oscillations.

2.5.1 Optical Bloch Equations

Let us recall the evolution equations for the density matrix
∂tρ̃ee = +i ΩR

2 (ρ̃eg − ρ̃ge)
∂tρ̃gg = −i ΩR

2 (ρ̃eg − ρ̃ge)
∂tρ̃ge = −i∆ρ̃ge − i ΩR

2 (ρee − ρgg)
∂tρ̃eg = +i∆ρ̃ge + i ΩR

2 (ρee − ρgg) .

(2.112)

Now, in order to compare to the Einstein (or Lorenz), we have to add relaxation.
It can only be done in a phenomenological way. For ∆ = ΩR = 0 one has{

∂tρee = −Γρee
∂tρgg = +Γρee.

(2.113)

Now, we have an additional relaxation of the coherent terms, which does not
exist classically: {

∂tρ̃ge = −γ⊥ρ̃ge
∂tρ̃eg = −γ⊥ρ̃ge.

(2.114)

We shall denote

• Γ : longitudinal decay rate; Γ−1 = T1 (NMR language);

• γ⊥ : transverse decay rate; γ−1
⊥ = T2 (NMR language).

We shall usually assume that the rate of decoherence much larger than the
longitudinal decay rate: γ⊥ � Γ or T2 � T1. Finally, we write the complete
optical Bloch equations

∂tρ̃ee = +i ΩR
2 (ρ̃eg − ρ̃ge)−Γρee

∂tρ̃gg = −i ΩR
2 (ρ̃eg − ρ̃ge) +Γρee

∂tρ̃ge = − (γ⊥ + i∆) ρ̃ge − i ΩR
2 (ρee − ρgg)

∂tρ̃eg = − (γ⊥ − i∆) ρ̃ge + i ΩR
2 (ρee − ρgg) .

(2.115)
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If one writes the optical Bloch equations in the language of the Bloch vectors,
one has 

∂t 〈σx〉 = ∆ 〈σy〉−γ⊥ 〈σx〉
∂t 〈σy〉 = −∆ 〈σx〉 − ΩR 〈σy〉−γ⊥ 〈σy〉
∂t 〈σz〉 = ΩR 〈σy〉−Γ (〈σz〉+ 1).

(2.116)

It means that γ⊥ kills the coherences, whereas Γ brings the Bloch vector to −1,
i.e., to the ground state.

2.5.2 Lindblad Operator Form

If we try to write the equations in the operator form, they cannot look like in
the usual Liouville equation. One needs some other ingredient. Explicitly,

∂tρ̃ = − i
~
[
H̃A + H̃AF, ρ̃

]
+ΓD [σ] ρ̃+ γcD [σz] ρ̃, (2.117)

with
γc = γ⊥ −

Γ
2 . (2.118)

The term D [σ] called Lindblad superoperator, and given by

D [c] ρ = cρc† − 1
2
(
c†cρ+ ρc†c

)
. (2.119)

This is the canonical form for independent Markov processes, and the subject
of current research interest.

2.5.3 Example – Natural Damping

Consider an atom interacting only with an electromagnetic field ω0. The atom
levels have some width given by the relaxation rate (we shall discuss everything
in the next chapter). Here γc = 0. Hence, the Lindblad equation reads

∂tρ̃ = − i
~
[
H̃A + H̃AF, ρ̃

]
+ ΓD [σ] ρ̃. (2.120)

Now, define

H̃eff = H̃A + H̃AF − i ~Γ
2 σ†σ

≡
(
~ω0−i ~Γ

2

)
σ†σ︸︷︷︸
|e〉〈e|

+H̃AF, (2.121)

Notice that H̃eff is not Hermitian. Note that the energy level separation has an
imaginary part, which can be interpreted as an energy level width.

Therefore, we can write

∂tρ̃ = − i
~

(
H̃effρ̃− ρ̃H̃†eff

)
+ Γσρ̃σ†︸ ︷︷ ︸

Γρee|g〉〈g|

. (2.122)

This form will be extremely useful near the end of the course, where we would
learn superradiance.
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2.5.4 Quantum Harmonic Oscillators

Next, we would like to compare this semiclassical approach to the Lorentz atom
and Einstein model.

The Lorentz model is a model of harmonic oscillators. Let us remind our-
selves some theory of quantum harmonic oscillators. The Hamiltonian is given
by

H = p2

2m + 1
2mω

2
0x

2 = ~ω0

(
a†a+ 1

2

)
, (2.123)

where
a = 1√

2

(
x

x0
+ i x0p

~

)
, x0 ≡

√
~

mω0
, (2.124)

and
x = x0√

2
(
a+ a†

)
, p = ~

i
√

2x0

(
a+ a†

)
. (2.125)

One has the canonical permutation relations

[x, p] = i~ ⇐⇒
[
a, a†

]
= 1. (2.126)

The eigenstates of the Hamiltonian are given by

En = ~ω0

(
n+ 1

2

)
, (2.127)

with {
a |n〉 =

√
n |n− 1〉

a† |n〉 =
√
n+ 1 |n+ 1〉 .

(2.128)

The eigenstates of a are called coherent quantum states

a |α〉 = α |α〉 , (2.129)

with

|α〉 =
∞∑
n=0

αn√
n!

e− 1
2 |α|

2
|n〉 (2.130)

2.5.5 Damped Quantum Harmonic Oscillators12

The Lindblad form is given by

∂tρ = − i
~

[H, ρ] + γD [a] ρ, (2.131)

with H the Hamiltonian of the harmonic oscillator, and the dissipation

D [a] ρ = aρa† − 1
2
(
a†aρ+ ρa†a

)
. (2.132)

For any operator Â we can write its dynamics

∂t

〈
Â
〉

= Tr
(
Â∂tρ

)
12 Lesson #9 @ 25/04/2017
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= − i
2m~

〈[
Â, ρ2

]〉
− imω2

0
~

〈[
Â, x2

]〉
+ γ

2

〈
a†
[
Â, a

]
+
[
a†, Â

]
a
〉
.

(2.133)

Now, recall that
[x, f (p)] = i~∂pf (p)

[x, a] = − x0√
2

= −
[
x, a†

]
.

(2.134)

Thus, for Â = x̂,〈
a†
[
Â, a

]
+
[
a†, Â

]
a
〉

= − x0√
2
〈
a+ a†

〉
= −〈x〉 . (2.135)

Therefore,

∂t 〈x〉 = 〈p〉
m
− γ

2 〈x〉 . (2.136)

Similarly, due to the fact that

[p, f (x)] = −i~∂xf (x)

[p, a] =
[
p, a†

]
= ~√

2ix0
.

(2.137)

Hence, for Â = p̂ one has

∂t 〈p〉 = −mω2
0 〈x〉 −

γ

2 〈p〉 . (2.138)

Combine both to obtain

∂2
t 〈x〉+ γ∂t 〈x〉+

(
ω2

0 + 1
4γ

2) 〈x〉 = 0. (2.139)

This is exactly the same as the classical damped harmonic oscillator, up to the
1
4γ

2 factor.

2.5.6 Equivalence with the Lorentz Atom

In this case, we need to add the atom-field interaction

HAF = −d ·E = ex̂E0 e− iωt +c.c. (2.140)

Such that
[p,HAF] = −i~eE0 e− iωt +c.c. (2.141)

We now need to adjust the equation of evolution of the momentum to

∂t 〈p〉 = −mω2
0 〈x〉 −

γ

2 〈p〉 −
(
eE0 e− iωt +c.c.

)
, (2.142)

thus,
∂2
t 〈x〉+ γ∂t 〈x〉+

(
ω2

0 + 1
4γ

2) 〈x〉 = −eE0 e− iωt +c.c. (2.143)

Again, this is the classical equation.
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2.5.7 Connection with the 2-level Atom

We shall work in the weak driving limit (E0 → 0 and ΩR → 0). In this assump-
tion, only the first 2 states |0〉 and |1〉 will be populated. We shall make the
following distinction

|1〉 ↔ |e〉
|0〉 ↔ |g〉
a↔ σ = |g〉 〈e| .

(2.144)

With this dictionary in place, one can deduce the evolution equations

∂tρ = −iω0
[
σ†σ, ρ

]
− i

~
[HAF, ρ] + γD [σ] ρ. (2.145)

This is exactly the same as the optical Bloch equation we saw previously.
Remark 2.8. We ought to introduce the notion of oscillator strength fo by
changing e

m →
e
mfo. The dipole moment reads

d̂z = 〈g|d̂z|e〉
(
σ̂ + σ̂†

)
. (2.146)

The usual dipole reads

ex̂ = ex0√
2
(
a+ a†

)
=

√
e2~

2mω0

(
a+ a†

)
, (2.147)

but now we upgrade it to

ex̂

√
e2~ · fo

2mω0

(
a+ a†

)
=⇒

∣∣∣〈g|d̂z|e〉∣∣∣2 = e2~fo

2mω0
. (2.148)

2.5.8 Relation between the Optical Bloch Equations and the Einstein
Model

Recall that we had the dynamics of two quantities: the populations and the
coherences, {

∂tρee = i ΩR
2 (ρ̃eg − ρ̃ge)− Γρee

∂tρ̃eg = − (γ⊥ − i∆) ρ̃eg + i ΩR
2 (ρee − ρgg) .

(2.149)

We have also assumed that γ⊥ � Γ (the classical limit), meaning we kill the
coherences much faster than the populations. Explicitly,

∂tρ̃eg = ∂tρ̃ge = 0. (2.150)

Therefore,

(γ⊥ − i∆) ρ̃eg = +i ΩR
2 (ρee − ρgg) , (2.151a)

(γ⊥ + i∆) ρ̃ge = −i ΩR
2 (ρee − ρgg) . (2.151b)
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Massaging a bit Eqs. (2.151a) and (2.151b) one obtains

γ⊥

(
1 + ∆2

γ2
⊥

)
(ρ̃eg − ρ̃ge) = iΩR (ρee − ρgg) . (2.152)

Insert into the classical limit condition (2.150) to have

∂tρee = −Γρee −
Ω2
R

2γ⊥
(

1 + ∆2

γ2
⊥

) (ρee − ρgg) . (2.153)

This is the Einstein equation with ρee ↔ N2
N and Γ ↔ A. This proves that

Einstein equation is classical, since we have killed all the coherences.
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3 Quantization of the Electromagnetic Field13

3.1 Introduction to Quantization
There are several ways to quantize the electromagnetic field. One of the ways,
presented in the Quantim3 course, is to list all the symmetries of the Lorentz
group, and derive the canonical equations. This will not be the approach in this
chapter to avoid boredom for those who have already seen it, and relativistic
effects.

3.1.1 A Reminder

The vector potential A (r, t) obeys the wave equation(
∆− 1

c2 ∂
2
t

)
A = 0. (3.1)

A few observations:

• Plane wave solutions: e i(k·r−ωt).

• The dispersion is linear: ω = c |k|.

• Polarization is given by ε̂. It can be linear or circular, thus complex.

• Gauge condition: Coulomb gauge

divA = 0 ⇐⇒ ε̂ · k = 0 . (3.2)

These are transverse waves. Note that ε̂ depends on k.

Thus, we will talk about transverse wave solutions.
Let us inspect a discrete distribution of modes in a volume V ,

A (r, t) = Akε̂k
e i(k·r−ωt)
√
V

+A∗kε̂
∗
k

e− i(k·r−ωt)
√
V

, (3.3)

with
ε̂kε̂
∗
k = 1. (3.4)

In the limit V →∞ one replaces a sum with an integral,

1
V

∑
k

f (k)→
∫ d3k

(2π)3 f (k) . (3.5)

Define the electric and magnetic fields by

E = −∂tA
B = ∇×A.

(3.6)

Hence,

E = iωAkε̂k
e i(k·r−ωt)
√
V

− iωA∗kε̂∗k
e− i(k·r−ωt)
√
V

B = iAkk × ε̂k
e i(k·r−ωt)
√
V

− iA∗kk × ε̂∗k
e− i(k·r−ωt)
√
V

.

(3.7)

13 Lesson #9 @ 25/04/2017
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Now, define the energy density of the electromagnetic field by

u (r, t) = ε0

2
(
E2 (r, t) + c2B2 (r, t)

)
. (3.8)

Using the identity

(ε̂k × k) · (ε̂∗k × k) = k2 = ω2

c2
, (3.9)

one obtains

u (r) = 1
T

∫ T

0
dt u (r, t) = 2ε0ω

2 |Ak|
2

V
. (3.10)

Hence,
U = 2ε0ω

2 |Ak|2 . (3.11)

3.1.2 Intermezzo on the Derivation of a Quantization Relation

We would like to know, if indeed as expected,

U = V ū
?= ~ωN, (3.12)

with N an integer number is a quantum phenomenon. We shall show that it is
not quantum.

Recall from Chapter 1.3 that from thermodynamic considerations we have
had

E = V u (T ) = V

∫
dν u (ν, T ) . (3.13)

We have also deduced the entropy relation

S = V

∫
dν s (ν, T ) . (3.14)

The entropy density had the following relation

s (T ) = 4
3
u (T )
T

=⇒ s (ν, T ) = 4
3
u (ν, T )
T

. (3.15)

We have also seen the first law of thermodynamics

dE = T dS − p dV =⇒ dS = 1
T

dE + p

T
dV. (3.16)

Hence,
1
T

=
(
∂S

∂E

)
V

=
(
∂S

∂T

)
V

(
∂T

∂E

)
V

= ds (ν, T )
dT

dT
du (ν, T ) = ds (ν, T )

du (ν, T ) .
(3.17)

Such that
1
T
∝ ds

du. (3.18)

We have also derived Wien’s law

u (ν, T ) = αν3 e−βν/T , (3.19)
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with

α = 8πh
c3

, β = h

kB
, (3.20)

under the (so called strongly quantum) limit

hν � kBT. (3.21)

Therefore,
1
T

= −kB

hν
ln
(
u (ν, T )
αν3

)
= ds

du, (3.22)

hence,

s (u, ν) = −kB

hν
· u ·

(
ln u

αν3 − 1
)
, (3.23)

so that
S (E, ν, V ) = V · s (u, ν) . (3.24)

Now, make a transformation at a fixed (E, ν) changing V to have

S (E, ν, V )− S (E, ν, V0) = kBE

hν
ln
(
V

V0

)
. (3.25)

We have arrived to the ideal gas law

S (E, V ) = NkB ln
(

V

Nλ3 (T )

)
+ const. (3.26)

so that

S (E, V )− S (E, V0) = NkB ln
(
V

V0

)
. (3.27)

Einstein’s reasoning [Einstein, 1905] was, verbatim, that if the equations
look exactly as in the ideal gas law, then the radiation behaves as particles too.
Therefore, one can identify N with the number of radiation particles (today:
“photons”). Hence,

kBE

hν
= NkB =⇒ E = hνN. (3.28)

Therefore, the fact that radiation has a molecular aspect can be derived from
purely classical thermodynamic considerations. In terms of energy, it can be
written as

U = ~ωnk. (3.29)

From equations (3.11) and (3.29) we have

|Ak|2 = ~
2ε0ω

nk . (3.30)

We will come back to this equation once in a while.
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3.1.3 Excitation of Matter (Absorption and Emission of Radiation)14

In order to calculate the rates classically, we shall use the Fermi golden rule.
For the Hamiltonian given by

H ′ = Ha = q

m
p ·A⊥ (r̂ = 0) , (3.31)

with
A⊥ (t) = A⊥ e iωt . (3.32)

Hence, the Fermi golden rule states

Γa→b = 2π
~

∣∣∣〈b ∣∣∣ q
m
p̂ ·A⊥ (0)

∣∣∣ a〉∣∣∣2 δ (Eb − Ea − ~ω) , (3.33)

where δ (Eb − Ea − ~ω) accounts for the conservation of energy.
Now, rearranging the items a bit one has

Γa→b = 2π
~
q2

m2 |A⊥ (0)|2 |〈b | ε̂k · p̂ | a〉|2 δ (Eb − Ea − ~ω)

= 2π
~

~q2

2ε0ωm2nk · |〈b | ε̂k · p̂ | a〉|
2
δ (Eb − Ea − ~ω) , (3.34)

where in the last equality we used Eq. (3.30). Note the slight abuse of notations:
p̂ refers to operator, whereas ε̂k to a unit vector.

3.2 Quantum Radiation
In the following section we shall derive and present the usual notation of quan-
tum radiation. We shall introduce the notion of a photon as well as several of
its unique properties.

3.2.1 Fock (Hilbert) Space

Define the Fock space for the radiation,

Hilbert︸ ︷︷ ︸
(e−, matter)

⊗ Fock︸︷︷︸
(radiation)

. (3.35)

The initial state is given by

|ψa〉 = |a, . . . , nk, . . .〉 = |a〉 ⊗ |. . . , nk, . . .〉 . (3.36)

We now want to calculate the probability to find after a time t the state

|ψb〉 = |b, . . . , nk − 1, . . .〉 , (3.37)

i.e., after an absorption of a single radiation quantum.
Define an operator Ŵ by

Γa→b = 2π
~

∣∣∣〈b, . . . , nk − 1, . . .
∣∣∣ Ŵ ∣∣∣ a, . . . , nk, . . .〉∣∣∣2 . (3.38)

14 Lesson #10 @ 08/05/2017
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Necessarily, Ŵ is the product of the two operators

− q
√

~
2ε0ωm2 (ε̂k · p̂)⊗ âk,ε̂k

. (3.39)

It is easy to check that the operator âk,ε̂k
is dependent on nk by

|〈. . . , nk − 1, . . . | âk,ε̂k
| . . . , nk, . . .〉|2 = nk > 0, (3.40)

or
〈. . . , nk − 1, . . . | âk,ε̂k

| . . . , nk, . . .〉 =
√
nk > 0. (3.41)

Thus, we have the following identity

âk,ε̂k
|n〉k,ε̂k

=
{√

n |n− 1〉k n > 0
0 n = 0.

(3.42)

Finally, we have all the ingredients for our Fock space.

1. States |n〉 constitute a basis of the Fock space associated to the mode
(k, ε̂).

2. The algebra of the operators
(
âk,ε, â

†
k,ε

)
is the one of a Harmonic oscilla-

tor, [
âk,ε, â

†
k,ε

]
= 1. (3.43)

3. Between distinct spaces (modes),[
âk,ε, â

†
k′,ε′

]
= δk,k′δε,ε′ (3.44a)

[â, â] =
[
â†, â†

]
= 0. (3.44b)

3.2.2 Field Operators

We can now write the field operators of the electromagnetic field

H ′ = − q

m

∑
k,ε̂

√
~

2ε0ω

[ absorption︷ ︸︸ ︷
(ε̂k · p̂) âk,ε e− iωt

+ (ε̂∗k · p̂) â†k,ε e+iωt︸ ︷︷ ︸
emission

]
≡ − q

m
p̂ ·A⊥ (0) .

(3.45)

Hence,

Â (r, t) =
∑
k,ε̂

√
~

2ε0ω

(
âk,εε̂k e i(k·r−ωt) +â†k,εε̂

∗
k e− i(k·r−ωt)

)
. (3.46)

Remark 3.1. This operator Â lives only in the Fock space. There is no matter
for the Hilbert space.
Remark 3.2. The r in Â (r, t) is not an operator; it is not a dynamical quantity,
but simply a position. It does not live in a Fock space.
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3.2.3 More Field Operators

Define two other field operators for the electric and magnetic fields as usual,

Ê = −∂tÂ; B̂ = ∇× Â. (3.47)

In the same manner, define the energy operator,

Û = ε0

2

∫
V

d3r
(
Ê

2
+ c2B̂

2)
. (3.48)

Note that one must check that these definition make sense when you plug in the
states |ψa〉 and |ψb〉, but we shall leave that question for later.

After a bit of tedious algebra one obtains

Û =
∑
k,ε̂

~ω
2

(
âkâ
†
k + â†kâk

)
. (3.49)

3.2.4 Number of Photons Operator

Define a Hermitian operator

N̂k,ε̂ ≡ â†k,ε̂âk,ε̂, (3.50)

such that
N̂k,ε̂ |n〉k,ε̂ = n |n〉k,ε̂ . (3.51)

Therefore,
âk,ε̂â

†
k,ε̂ = N̂k,ε̂ + 1. (3.52)

Thus,

Û =
∑
k,ε̂

~ω
2

(
N̂k,ε̂ + 1

21
)
. (3.53)

Remark 3.3. Recall again that the entire argument was classical due to Ein-
stein. Usually, one gives the quantized operators and states that it is quantum
mechanics, but this is simply wrong, as we saw.

Remark 3.4. The factor 1
2 in Û is artificial. It has nothing to do with vacuum

expectation value or some quantized magic as is often states. As we have seen,
we can get rid of it without much effort. That is called normal ordering. How-
ever, it is relevant to the relativistic nature of the electromagnetic wave, but we
shall not deal with it here.

Remark 3.5. This case is similar to the case of fluids, where one can do only
with thermodynamics and does not need statistical mechanics. The power of
statistical mechanics is only needed when one needs to probe the discrete nature
of the fluid (condensates, etc.). Here we shall later use this description in order
to probe the discrete nature of the electromagnetic radiation. So far, it is not
needed.
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3.2.5 Momentum of Radiation

Recall that classically the Poynting vector is given by

S = ε0c
2E ×B, (3.54)

so that the linear momentum of radiation reads

prad = ε0

∫
V

d3rE (r, t)×B (r, t) . (3.55)

Let us do some dimension analysis

[prad] = [ε0] [V ] [E] [B]

= [ε0]
[
E2

c

]
[V ]

=
[
J

V

] [
1
c

]
[V ] =

[
J

c

]
.

(3.56)

After a bit of algebra one has

p̂rad =
∑
k,ε̂

~k N̂k,ε̂. (3.57)

Note that it has nothing to do with the de Broglie wavelength. We have thus
derived the ~k =momentum correspondence without any ad hoc definitions.

3.2.6 Photons

Let us make some observations and definitions.

Photons: Excitations of the quantum electromagnetic field;

Energy: ~ω;

Momentum: ~k;

Special Relativity: Energy and momentum are components of a 4-vector, whose
length is a Lorentz invariant(

mc2
)2 = E2 − p2c2

= (~ω)2 − (~k)2
c2

ck=ω= 0. (3.58)

Velocity: v = (p/E)−1 = c.

Proper time interval: At dτ one has

(dτ)2 −
(

dr
c

)2
= (dτ)2 photon= 0, (3.59)

since dτ is a Lorentz invariant. Note that the proper time of the photon
does not change; the photon does not evolve.

Remark 3.6. The photon is a purely quantum particle; it does not have a clas-
sical limit. One cannot write a Schrödinger equation for the photon, since it
doesn’t have mass. The photon does not have position or time operators; it
cannot be thus measured.
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3.2.7 Physical Properties of Quantum Radiation

We have defined a Fock space – how many excitations are there in a mode |n〉k.
Since [

N̂k,ε, âk′,ε′
]

= −δk,k′δε,ε′ âk, (3.60)

then Ê and B̂ cannot be diagonalized in {|n〉} basis. Moreover, since

k〈n|âk|n〉k = k〈n|â
†
k|n〉k (3.61)

then
k〈n|Ê (r, t) |n〉k = 0 (3.62)

for all |n〉 and k.
However, one might say that the real quantity needed is the fluctuations

around the mean
〈
E2〉. Let us calculate it. Since

〈0|âk,εâ†k′,ε′ |0〉 ∼ δk,k′δε,ε′ , (3.63)

one has
〈0|Ê2 (r, t) |0〉 =

∑
k,ε̂

~ω →∞. (3.64)

In other words, the fluctuations diverge. We have still learned nothing.

3.3 Spin of the Photon15

The main purpose of our endeavor in this chapter was to define matter (atom)
+ radiation within a quantum framework:

Hilbert︸ ︷︷ ︸
(e−, matter)

⊗ Fock︸︷︷︸
(radiation)

. (3.65)

This way we can write Hamiltonians etc. We saw that it is possible to write
excitations of quantum radiation; these excitations we call photon. To complete
the discussion we need to introduce spin to the network.

3.3.1 Angular Momenta of Radiation

Recall the expression for the classical total angular momentum of the radiation,

J rad = ε0

∫
d3r r × (E (r, t)×B (r, t)) . (3.66)

We shall also employ the Coulomb gauge

B = ∇×A, ∇ ·E = 0. (3.67)

In order to continue, we shall write the components of J rad. Start with
E ×B to have

(E ×B)k = εklmElBm

= εklmεmij︸ ︷︷ ︸
δkiδlj−δkjδli

El∇iBj . (3.68)

15 Lesson #11 @ 09/05/2017
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Hence, using the condition ∇ ·E = 0,

(E ×B)k = El∇kAl −∇l (ElAk) . (3.69)

This implies

(r × (E ×B))i = El (r ×∇)iAl −(((((
(((∇l (ElεijkrjAk) + εilkElAk. (3.70)

The second term ∇l (ElεijkrjAk) is a divergence and vanishes after integration
at infinity. But, if there are boundaries, we may have topological effects. These
come from this term only.

We thus can write J rad as

J rad = L+ S, (3.71)

with

L = ε0

∫
d3r

3∑
j=1

Ej r ×∇Aj (3.72a)

S = ε0

∫
d3rE ×A (3.72b)

One of this quantities, L, is not specific for the electromagnetic field because

• First, it is dependent on r.

• Second, it can be generalized to a scalar field ϕ : L ∝
∫

d3r (−∂tϕ) (r ×∇ϕ).

This L is called the orbital angular momentum of the radiation. The second
quantity S is called the spin, and it is intrinsic to the electromagnetic field.

3.3.2 Calculation of Spin

Let us write the quantum counterpart to the spin we have just found,

Ŝ = −i~
∑
k

( 2∑
T1=1

ε̂k,T1 âk,T1

)
×

( 2∑
T2=1

ε̂k,T2 âk,T2

)
, (3.73)

with T1,2 the linear polarizations and

ε̂k,1 × ε̂k,2 = k

|k|
. (3.74)

Therefore,
Ŝ = −i~

∑
k

k

|k|

(
â†k,1âk,2 − â

†
k,2âk,1

)
. (3.75)

Now, the polarization basis we have used was the linear polarization basis.
However, it is not very useful to our case. We would make the transformation
to a circular polarization basis. Define

ε̂± = ∓ 1√
2

(ε̂k,1 ± i ε̂k,2) , (3.76)
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Fig. 3.1: Linear polarization directions.

so that {
ε̂∗λ · ε̂λ = δλλ′

ε̂∗λ × ε̂λ = iλ k
|k|δλλ′

for λ = ±1. (3.77)

We shall also redefine our creation and annihilation operatorsâ± = ∓ 1√
2 (â1 ∓ i â2)

â†± = ± 1√
2

(
â†1 ± i â†2

)
,

(3.78)

with the commutation relations[
âk,λ, â

†
k′,λ

]
= δk,k′δλ,λ′ . (3.79)

Therefore, we have what we wanted,

Ŝ = ~
∑
k,λ

λk̂ â†k,λâk,λ︸ ︷︷ ︸
N̂k,λ

, (3.80)

meaning the linear dependence on N̂k,λ.

3.3.3 Observations

Since
|1〉k,± = â†k,± |0〉k,± , (3.81)

the polarization is the eigenvalue of the spin operator on the eigenvector

k

|k|
· Ŝ |1〉k,± = ~λ |1〉k,± . (3.82)

Note that we cannot define a photon without its dependence on the k vector.
There are two states of polarization because the photon is a massless spin-1

particle. It means in doesn’t have helicity 0. If it had mass, it would mean we
could find a rest reference frame; thus, it would have had 3 states.

Inside matter, all this derivation wouldn’t work so cleanly. We wouldn’t find
simple expressions for L and S.
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4 Quantum Electrodynamics – Quantum Vacuum Effects16

4.1 Introduction – Technical Intermezzo
The main purpose of this chapter is to combine Hilbert (atom) and Fock (pho-
tons) spaces

Hilbert︸ ︷︷ ︸
(atom)

⊗ Fock︸︷︷︸
(photons)

. (4.1)

Or, in the Hamiltonian language,

Ĥ = ĤA + Ĥrad + Ĥint. (4.2)

We shall use the quantum electrodynamics (QED) language in this chapter.

4.1.1 Reminder – How to Calculate Relaxations in QED

In the framework of Fermi golden rule

P (t) ' 1− Γt. (4.3)

The relaxations were given phenomenologically. We shall below derive relax-
ations in a more systematic way.

In simple words, we need to find the evolution operator Û (t, t′). Its Fourier
transform is given by

Ĝill (E) = 1
1E − Ĥ

. (4.4)

However, at the eigenenergies (eigenvalues of Ĥ) it is ill-defined. Therefore, we
would move to the complex plane in order to avoid this issue,

E → z = E + iη, η ∈ R. (4.5)

Hence, we define the resolvant operator

Ĝ (z) = 1
1z − Ĥ

, z ∈ C. (4.6)

Fig. 4.1: The resolvant operator in the complex plane.

4.1.2 Resolvant Operator Approach

Let us look on the Hamiltonian

Ĥ = Ĥ0 + V̂ , (4.7)

where
Ĥ0 = ĤA + Ĥrad, V̂ = Ĥint. (4.8)

16 Lesson #11 @ 09/05/2017
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Write the associated resolvants,

Ĝ (z) = 1
z − Ĥ

, Ĝ0 (z) = 1
z − Ĥ0

. (4.9)

Using these definitions one can deduce

Ĝ (z) = Ĝ0 (z) + Ĝ0V̂ Ĝ. (4.10)

Thus, substituting this equation into itself, one has

Ĝ (z) = Ĝ0 (z) + Ĝ0V̂ Ĝ0 + Ĝ0V̂ Ĝ0V̂ Ĝ0 + . . . (4.11)

Note that this is not a perturbative series. Usually, one says that V̂ is small,
and truncates all the elements ∝ V̂ 2. However, it is a poor approximation, and
we avoid it.

The matrix elements of Ĝ (z) in the set of eigenstates of Ĥ0 : {|φk〉}

Ĝkl (z) ≡ 〈φk|Ĝ (z) |φl〉

= 1
z − Ek

δkl + 1
z − Ek

Vkl
1

z − El
+
∑
i

1
z − Ek

Vki
1

z − Ei
Vil

1
z − El

+ . . .

(4.12)

Let us inspect the case with k = l = b,

Ĝb (z) = 1
z − Eb

+

∝1/(z−Eb)2︷ ︸︸ ︷
1

z − Eb
Vbb

1
z − Eb

+
∑
i

1
z − Eb

Vbi
1

z − Ei
Vib

1
z − Eb

+ . . .

(4.13)
Or, pictorially,

Ĝb (z) = �
b

b

= + ◦
b

b
+ ◦

i

b

◦
b

+

◦
i

b

◦
j

◦
b

+ . . . (4.14)

Where we have associated the connection |b ≡ |φb〉 with ◦ ≡ Vbb.
We can thus write the value Rb (z) (without the outward b connections)

Rb (z) = � = ◦+
◦
i
◦

+
◦
i
◦
j

◦
+ . . . (4.15)

Or, explicitly,
Rb (z) = Vbb +

∑
i

Vbi
1

z − Ei
Vib + . . . (4.16)

Higher powers of 1
z−Eb are proportional to

(
1

z−Eb

)3
R2
b (z). Thus, we shall

neglect them for now.
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All this was to say that

Gb (z) =
∞∑
n=1

(Rb (z))n−1

(z − Eb)n
= 1
z − Eb

∞∑
n=0

(
Rb (z)
z − Eb

)n
= 1
z − Eb

· 1
1− Rb(z)

z−Eb

,

without worrying too much about radius of convergence. Thus,

Gb (z) = 1
z − Eb −Rb (z) . (4.17)

This Rb (z) is sometimes called the self-energy.
Remark 4.1. This calculation is general for many-body physics problems, and
standard in books. We follow Chap. 3 of Cohen-Tannoudji, Dupont-Roc, and
Grynberg [2008].

4.1.3 Standard Approximations17

Let us introduce two standard approximations.

1. For V � H0:
Very often (controllably), the series Rb (z) converges. It is often appropri-
ate to keep a finite number of terms in Rb (z). Define

R̃b (z) ' Vbb +
∑
i 6=b

Vbi
1

z − Ei
Vib, (4.18)

such that
G̃b (z) = 1

z − Eb − R̃b (z)
. (4.19)

Diagrammatically, it reads

4 ≡ ◦+
◦
i
◦
. (4.20)

But, the infinite series does not truncates; there is still an infinite number
of terms,

+ �
b

b

+
�
i

b

�
b

+ · · · ' + 4
b

b

+
4
i

b

4
b

+ · · · (4.21)

2. Markov approximation.
Consider (4.17). Rewrite it to be

Gb (z) = 1
E ± iη − Eb −Rb (E ± iη) , (4.22)

17 Lesson #12 @ 15/05/2017
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with z = E± iη. Now, consider the limit η → 0. In this case, Rb (E ± iη)
has a much “smoother” behavior close to E ' Eb than G0 (E ' Eb).
We therefore replace E with Eb and consider Rb (Eb ± iη). This is the
Markov approximation. The physical meaning is that the system looses
its memory (in time).

4.2 Proper Theoretical Description of Relaxation
In this section we will describe properly the theory of relaxation. We shall also
describe other things, such as energy shift, Lamb shift, etc.

4.2.1 Back to the Atom+Photon Problem

Let us recall the initial problem we sought to solve. The Hamiltonian reads

Ĥ0 = ~ω0 |b〉 〈b|︸ ︷︷ ︸
atomic Ĥat

+
∑
k,T

~ωk,T
(
âk,T â

†
k,T + 1

2

)
︸ ︷︷ ︸

quantum e.m.

. (4.23)

The spectrum of Ĥ0 is a continuum with discrete state at Eg = 0 and Ee = Eb.

Fig. 4.2: The spectrum of Ĥ0.

We want to calculate the relaxation rates. Introduce the interaction Hamil-
tonian

Ĥint ≡ V̂ = −p̂ · Â⊥ = −d̂ · Ê. (4.24)

Let the initial state be |b; 0〉 and ask ourselves, what is the probability to stay
in it. It is given by

Pb (τ) =
∣∣∣〈b; 0|Û (τ) |b; 0〉

∣∣∣2 (4.25)

with Û (τ) the evolution operator. We know that

Ub (τ) ≡ 〈b; 0|Û (τ) |b; 0〉 = 1
2π i

∫
C

dz e− izτ/~
〈
b; 0
∣∣∣∣ 1
z − Ĥ

∣∣∣∣ b; 0
〉
. (4.26)

Implementing the First Approximation
Let us start with the first approximation V � H0 to have

R̃b (z) = 〈b; 0|V̂ |b; 0〉︸ ︷︷ ︸
≡0

+
∑
a

∑
k,T

〈b; 0|V̂ |a;k, T 〉 〈a;k, T |V̂ |b; 0〉
z − Ea − ~ωk,T

. (4.27)

Or, pictorially,
R̃b (z) = 0 +

k,T

f
a
|f (4.28)
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Hence, we can write

Gb (z) =
b
f +

k,T

b
ff

a
|f

b
f+

k′,T ′ k,T

b
ff

a′
|f

b′
ff

a
|f

b
f+ . . .

(4.29)
This is the “Ladder Diagrams” approximation, or the random phase approxi-
mation (RPA).

Note that we have neglected several diagrams,

k′,T ′

b
f

a′
f

b′
|

k,T

{f
a b
f

(4.30a)

and
k′,T ′ k,T

b
f

a′′f{ a′f{ af b
f

(4.30b)

The last one belongs to the class of cross diagrams.
Finally, we can write

R̃b (E ± iη) =
∑
a

∑
k,T

∣∣∣〈a;k, T |V̂ |b; 0〉
∣∣∣2

E ± iη − Ea − ~ωk,T
. (4.31)

Note that

1
x± iη = x

x2 + η2 ∓
iη

x2 + η2
η→0−−−→ P

(
1
x

)
∓ iπδ (x) , (4.32)

where P (·) is the Cauchy principal value. Hence,

R̃b (E ± iη) ≡ ~∆̃b (E)∓ i~ Γ̃b (E)
2 , (4.33)

with 
∆̃b (E) ≡ 1

~P
(∑

a

∑
k,T
|〈a;k,T |V̂ |b;0〉|2
E−Ea−~ωk,T

)
Γ̃b (E) ≡ 2π

~
∑
a

∑
k,T

∣∣∣〈a;k, T |V̂ |b; 0〉
∣∣∣2 δ (E − Ea − ~ω) .

(4.34)

Therefore,

G̃b (E ± iη) = 1
E ± iη − Eb − ~∆̃b (E)± i ~2 Γ̃b (E)

. (4.35)

These are the spectral functions.
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Remark 4.2. The two spectral functions ∆ and Γ are not independent.

• Causality (physics language).

• Kramers-Krönig relations (electrical engineering language).

• Hilbert transforms (mathematics language)

∆̃b (E) = 1
2πP

∫
dE′

(
Γ̃b (E′)
E − E′

)
. (4.36)

Remark 4.3. Γ̃b (E) ≥ 0. Therefore, if Γ̃b (E) 6= 0 then Γ̃b (Ea) = 0 (due to the
δ function).

4.2.2 Implementing the Second Approximation

Take E → Eb to have
∆̃b (Eb) ≡ 1

~P
(∑

a

∑
k,T
|〈a;k,T |V̂ |b;0〉|2
Eb−Ea−~ωk,T

)
Γ̃b (Eb) ≡ 2π

~
∑
a

∑
k,T

∣∣∣〈a;k, T |V̂ |b; 0〉
∣∣∣2 δ (Eb − Ea − ~ω) .

(4.37)

Hence, one has

G̃b (E ± iη) = 1
E ± iη − Eb − ~∆̃b ± i ~2 Γ̃b

. (4.38)

Note that ∆̃b and Γ̃b are now constants. Now, since

〈b; 0|Û (τ) |b; 0〉 = 1
2π i

∫
C

dz e− izτ/~ 〈b; 0 |Gb (z) | b; 0〉 , (4.39)

with z = E± iη. Notice it is independent with z due to approximation 2. Hence,
the probability amplitude reads

〈b; 0|Û (τ) |b; 0〉 = e− i(Eb+~∆b)τ/~ e− 1
2 Γτ . (4.40)

Therefore, one gets the probability

Pb (τ) =
∣∣∣〈b; 0|Û (τ) |b; 0〉

∣∣∣2 = e−Γτ . (4.41)

This is the Wigner-Weisskopf expression.
Remark 4.4. The shift e− i∆bτ/~ is systematic. If one has Γb then ∆b must exist
too. This is the Lamb shift.

4.2.3 The Wigner-Weisskopf Derivation18

Let us derive the same result, but in a different, simpler, way. Let us start with
the initial state |b; 0〉. This state evolves due to interaction with the quantum
electromagnetic field,

|ψ (t)〉 = γ0 (t) |b; 0〉+
∑
`

γ` (t) |a; 1`〉 , (4.42)

18 Lesson #13 @ 16/05/2017



4.2 Proper Theoretical Description of Relaxation 61

with ` ≡ {k, T}. This is a Schrödinger-like picture of evolution. Thus, we have
the following coupled equations of evolution{

i~dγ0
dt = ~ω0γ0 +

∑
` γ` (t)

i~dγ`
dt = ~ω`γ` + γ0V

∗
` ,

(4.43)

with
V` = 〈b; 0|V̂ |a; 1`〉 = −iE` (ε̂` · êz) dab, (4.44)

where we have used the usual notations for the last equality (coming from d̂·Ê).
Next, we introduce the boundary conditions,{

γ0 (0) = 1
γ1 (0) = 0.

(4.45)

After integration one has

γ` (t) = V ∗`
i~

∫ t

0
dt′ γ0 (t′) eiω`(t−t′) . (4.46)

Plugging it into (4.43) one has

d
dtγ0 (t) = −iω0γ0 −

∑
`

|V`|2

~2

∫ t

0
dt′ γ0 (t′) eiω`(t−t′) . (4.47)

Define the following unitary transformation{
γ0 (t) = α (t) e− iω0t

N (t) = 1
~2

∑
` |V`|

2 e i(ω0−ω`)t
(4.48)

one obtains the formal solution

d
dtα (t) = −

∫ t

0
dτ N (τ)α (t− τ) , (4.49)

with τ = t− t′.
Notice that in order to know α, one must know it in all prior times. There-

fore, N (τ) is called a memory function. Let us calculate it explicitly,

N (τ) = d2
ab

~2

(∑
`

(ε̂` · êz)2
E2
` e− iω`τ

)
︸ ︷︷ ︸

≡G(τ)

e iω0τ . (4.50)

Note that G (τ) depends only on the quantum electromagnetic field. Thus, we
have decoupled the electromagnetic field from the atom. Next, take correlation
function of the ẑ component of the electromagnetic field with respect to the
vacuum, and obtain

G (τ) =
〈

0
∣∣∣ Êz (t) Ê†z (t− τ)

∣∣∣ 0〉 . (4.51)

Corollary 4.1. We see that the memory function – describing the evolution of
the atom – is dependent on the quantum correlations of the vacuum field only
(and not the atom). This is what drives the atom in an excited state to emit a
photon and decay to the ground state.
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Limits.
• For τ = 0 one has a full interference.

• For τ 6= 0 and τ large enough, G (τ) ,N (τ)→ 0. Typically, the correlation
time is τc ∝ 10−15 [sec].

Let us continue the derivation of Eq. (4.49). Due to the large correlation time
we can decouple N (τ) from α (t) (approximation #2), and take the limit to
infinity (approximation #1) to have

d
dtα (t) ' −α (t)

∫ ∞
0

dτ N (τ) . (4.52)

Now, write formally ∫ ∞
0

dτ N (τ) ≡ 1
2Γb + i∆b. (4.53)

Hence,
γ0 (t) = e− 1

2 Γbt e− i(ω0+∆b)t, (4.54)
as before.
Remark 4.5. One could write a Lindblad equation for this problem. Since we
use the Markov approximation, it will have exactly the same results up to ω0 →
ω0 + ∆b.
Remark 4.6. We could also calculate the T1 and T2 times in this derivation.
Recall the factor 2 between T1 and T2; it comes from the factor 1

2 in Γb.

4.3 Calculation of the Lamb Shift
What we want to do next is the following. Let us calculate the Lamb shift ∆b;
it will not be as trivial as seems. We would like to start from the diagram of
Rb (z) and get the number of ∆b ' 1040 [MHz].

4.3.1 A Bit of History

First, note that if the shift is the same for all the levels, then we cannot measure
it. However, since we calculate the matrix elements of ∆b and Γb, we have
selection rules. Thus, we can measure it.

Now, consider a hydrogen atom. One makes the calculation (Bohr model)
that the states of 2s and 2p are degenerate{

2p
2s

1s

(4.55)

Dirac had later shown that these states were not degenerate. The shift to the
next 2p 3

2
level is 10 950 [MHz] due to fine structure:

2p 3
2

l
10 950 [MHz]

{ 2s 1
22p 1
2

1s 1
2

(4.56)
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It was later discovered this shift of 2p 3
2
is due to quantum vacuum fluctuations.

The states 2s 1
2
and 2p 1

2
are degenerate (from Schrödinger equation + fine

structure). People had believed that there was a shift between the 2s 1
2
and 2p 1

2
states. However, the experiments at that time were not conclusive. In 1947,
Lamb and his student Retherford [Lamb and Retherford, 1947] have measured
the shift with microwave radiation to be ∼ 1058 [MHz] as shown below:

l 1058 [MHz]
2s 1

22p 1
2

1s 1
2

(4.57)

In 1947, there was a conference to which Lamb was invited to show his
experiment results. On the way to the conference Hans Bethe has calculated on
the back of an envelope the value of ∆b ' 1040 [MHz], thus coining the term.
We will show this calculation below.

Today we measure experimentally ∆exp
b ' 1057.893 [MHz], and calculate

theoretically (with divergent series) ∆theo
b ' 1057.864 [MHz]. This is an excel-

lent result demonstrating the power of QED. Note that this shift is very small
compared to the fine structure.

4.3.2 Direct Calculation19

In this part we calculate the quantity ∆b starting from Eq. (4.37). Note that all
quantities involving such equations diverge – and very rapidly. We will introduce
the notion of renormalization to tackle this problem.

We want to calculate the diagram

f
a
|k,Taf

b

Eb

E
(4.58)

Let us start from Eq. (4.37). Take the volume V →∞ such that 1
V

∑
k →

∫
d3k

and choose the potential V̂ = q
mp ·A. Hence, (4.37) transforms to

~∆b = P
(∑

a

1
V

∫
d3k

∑
T

∣∣∣〈a;k, T
∣∣∣ q
m
p ·A

∣∣∣ b; 0
〉∣∣∣2 1

Eb − Ea − ~ωk,T

)
.

(4.59)
We saw that the vector potential is∣∣∣Âk,T ∣∣∣2 = ~

2ε0ω
n̂. (4.60)

Also, write explicitly ∫
d3k =

∫ ∞
0

dω
∫

dΩ̂ ρ (ω) , (4.61)

where ω = c |k| the angular frequency, and

ρ (ω) = ω2

c3
V

(2π)3 . (4.62)

19 Lesson #14 @ 22/05/2017
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Put everything together to obtain

~∆b = P
(∑

a

∑
T

q2

m2
1

(2πc)3× (4.63)∫ ∞
0

dω
∫

dΩ̂ ω2

Eb − Ea − ~ω
· ~

2ε0ω
|〈a;k, T |p · ε̂k,T | b; 0〉|2

)
.

Collecting all constant terms together, and noting that the fine-structure
constant is

αfs ≡
q2/4πε0

~c
' 1

137 , (4.64)

one has
q2

m2
1

2c3ε0~
1

(2π)3 = αfs

4π2 (mc)2 . (4.65)

Also,
2∑

T=1

∫
dΩ̂ |〈a;k, T |p · ε̂k,T | b; 0〉|2 = 8π

3 |〈a |p | b〉|
2
. (4.66)

Combine all to have

~∆b = 2αfs
3π

∑
a

|〈a |p | b〉|2

(mc)2 P
(∫ ∞

0
dE E

Eb − Ea − E

)
, (4.67)

with E = ~ω.
Remark 4.7. The dipole approximation d ·E = q

mp ·A is not valid in this case,
since it works only when the wavelength is larger than the atom size, but the
integration is from 0 to ∞. It can be justified, but requires more gymnastics.

4.3.3 Dealing with Infinities

The principal value in the previous equation is justified when the integral is
finite. When it is infinite, we must introduce cutoffs. Introducing a cutoff Ec,
one has ∫ Ec

0

E

Eb − Ea − E
dE ∼ −Ec. (4.68)

But the physics must not be dependent on the cutoff! Thus, this method is bad.
Let us use another approach by Bethe [1947]. If the calculation is wrong –

we have forgotten something. Let us inspect the electron mass. Classically, a
charge interacting with an electromagnetic field introduces a change in mass,
but this value is negligible. Nevertheless, let us assume, that in Lamb case, the
change in mass

me ≡ m+ δm, (4.69)

is important. The kinetic energy changes as

p2

2m = p2

2me
+
(
p2

2m −
p2

2me

)
, (4.70)

with
1
me

= 1
m+ δm

'
(

1− δm

m

)
. (4.71)
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Therefore, one has a change in energy corresponding to an additional potential

p2

2m = p2

2me
+ p2

2m
δm

m
. (4.72)

4.3.4 Intermezzo – Change of Mass of a Free Electron Coupled to a QED
Vacuum

In a similar argument, a change of mass of a free electron corresponds to a
change in the potential. Denote by ~∆ the change of kinetic energy of the free
electron coupled to a QED vacuum. The relevant diagram is

f
p=p′−~k
|k,Taf

p

Ep

E
(4.73)

Explicitly,

~∆ = 2q2

m2
~

2ε0V ω

1
~2P

 ∑
p′,k,T

∫ ∞
0

〈
p; 0

∣∣ ε̂k,T · p̂ e ik·r
∣∣p′; 1k,T

〉
Ep − Ep−~k − ~ω

dE

 . (4.74)

Now, since

〈
p
∣∣ p̂ e ik·r ∣∣p′〉 =

∫
V

d3r
e− ip·r/~
√
V

~
i ∇

(
e i(p′·r+~k·r)/~

√
V

)
= p δp,p′+~k. (4.75)

Thus,

~∆ = 2αfs
3π

p2

(mc)2

∫ ∞
0

dE E

Ep − Ep−~k − E
, (4.76)

with E = ~ω. Note that it is almost identical to the atomic case, but with
|〈a |p | b〉|2 → p2 and the loss of the principal part P (·).

We can omit the integrand, since

−E + Ep − Ep−~k = 1
2m

(
p2 − (p− ~k)2

)
− E

= −E + ~k · p
m

− ~2k2

2m

= −E
(

1− k · p
mc︸ ︷︷ ︸
�1

+ E

2mc2︸ ︷︷ ︸
�1

)
' −E, (4.77)

and the � 1 part is because our electrons are not relativistic. Hence,

~∆ = −2αfs
3π

p2

(mc)2

∫ Ec

0
dE ' −2αfs

3π
p2

(mc)2Ec, (4.78)

and we have the same cutoff problem. Yet, it hints us how to renormalize ~∆b.
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4.3.5 Back to the Case of an Electron Bound to an Atom

We see that it either case, we must renormalize the mass. Define

~∆mass = −2αfs
3π

∫ Ec

0
dE 〈b|p̂

2|b〉
(mc)2 . (4.79)

Now, replace
~∆b → ~∆b − ~∆mass ≡ ~∆eff. (4.80)

And obtain

~∆eff = 2αfs
3π

1
(mc)2P

[∫ Ec

0
dE
(∑

a

|〈b|p̂|a〉|2 E

Eb − Ea − E
+
∑
a

|〈b|p̂|a〉|2
)]

.

(4.81)
Hence,

~∆eff = 2αfs
3π

1
(mc)2P

(∑
a

∫ Ec

0
dE |〈b|p̂|a〉|2 Eb − Ea

Eb − Ea − E

)
. (4.82)

The divergence is now logarithmic with Ec.

Corollary 4.2. In order to deal with diverging quantities, learn how to subtract
to infinities.

Adapt to the hydrogen atom,

~∆eff = 2αfs
3π

1
(mc)2P

(∑
I

∫ Ec

0
dE |〈I|p̂|b〉|2 Eb − EI

Eb − EI − E

)
, (4.83)

with {I} denoting the hydrogen states. The principal value reads

P

(∑
I

∫ Ec

0

dE
Eb − EI − E

)
= lim
ε→0

(
− ln |Eb − EI − E|

∣∣∣Eb−EI−ε
0

− ln |Eb − EI − E|
∣∣∣Ec
Eb−EI+ε

)
= − ln

∣∣∣∣ (Eb − EI)− EcEb − EI

∣∣∣∣
' − ln

∣∣∣∣ Ec
Eb − EI

∣∣∣∣ . (4.84)

The last approximation holds, since Eb − EI ' [eV] and Ec ∼ mc2 ' 1
2 [MeV].

In other words, we work in the limit Ec � |Eb − EI |, which is the flat part of
the ln. Thus,

~∆eff = 2αfs
3π

1
(mc)2

∑
I

|〈I|p̂|b〉|2 (Eb − EI) ln Ec
〈|Eb − EI |〉

. (4.85)

In the flat-part approximation, one has

~∆eff = 2αfs
3π

1
(mc)2 ln Ec

〈|Eb − EI |〉
∑
I

|〈I|p̂|b〉|2 (Eb − EI) . (4.86)
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4.3.6 More Calculations

We want to calculate the quantity[
p̂, Ĥat

]
=
[
p̂,

p2

2m + V̂ (r)
]

= ~
i ∇V̂ . (4.87)

Since
(EI − Eb) 〈b|p̂|I〉 = ~

i 〈b|∇V̂ |I〉 , (4.88)

one has ∑
I

(EI − Eb) |〈b|p̂|I〉|2 = ~
i
∑
I

〈b|∇V |I〉 〈I|p̂|b〉

= ~
i 〈b| (∇V ) · p̂|b〉

= −~
i 〈b|p̂ · (∇V ) |b〉

= −~
i

1
2 〈b| [pj , ∂jV ] |b〉

= ~2

2 〈b|∆V |b〉 . (4.89)

Hence,

~∆eff = αfs
3π

1
(mc)2 ln Ec

〈|Eb − EI |〉

(
~
mc

)2
〈b|∆V |b〉 . (4.90)

Now, take the Coulomb potential

V (r) = −eφ (r) . (4.91)

The potential φ obeys the Poisson equation

∆φ (r) = − 1
ε0
ρ (r) , (4.92)

with
ρ (r) = eδ (r) . (4.93)

Thus,
〈b|∆V |b〉 = e

ε0

∫
d3r |ψb (r)|2 ρ (r)

= e2

ε0
|ψb (r = 0)|2 .

(4.94)

Corollary 4.3. One has 0 Lamb-shift for the p-states, since ψp (r = 0) = 0.

The s-states at 0 read

ψns (0) = 1√
4π

2
(na0)3/2 , a0 = ~2

m

4πε0

e2 . (4.95)

Thus,

~∆eff = 8
3π

α3
fs
n3 R∞ ln Ec

〈|Eb − EI |〉
, (4.96)
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with R∞ ' 13.6[eV]
hc the Rydberg constant and a0 ' 0.529

[
Å
]
the Bohr radius.

The factor α3
fs is interpreted as the coupling between the atom and the quantum

vacuum. If there is no coupling (αfs → 0), there is no Lamb shift (∆eff → 0).
For n = 2,

α3
fs

3π R∞ = 135.549 [MHz] , (4.97)

and [Bethe, Brown, and Stehn, 1950],

〈|Eb − EI |〉 ' 20R∞. (4.98)

Plug in Ec = mc2 = 1
2 [MeV] to have

∆eff = 1042 [MHz] . (4.99)

The approximation we have used works well and does not change much in the
choice of cutoff.

This process – of changing finite amount of quantities in order to remove
infinities – is called “renormalization”. Note that it works for gauge field theories,
and may not work in other cases.

4.3.7 A Different Point of View20

This is contributed to Feynman in 1961 (in proceedings; no paper). Let us
inspect the vacuum energy of the electromagnetic field,

E0 =
∑
k,T

~ωk,T
2 . (4.100)

Now, ask ourselves what can be perturbed. Since ~ cannot be changes, then
the refractive index of the vacuum n changes in the presence of a perturbation
atom,

ωλ = c

n
. (4.101)

Thus,

∆E =
∑
k,T

~
2

(ωk,T
n
− ωk,T

)
. (4.102)

For n ' 1
n (ω) ' 1 + 2πNα (ω) , (4.103)

with N the number of atoms, and α (ω) the polarizability. Hence,

∆E =
∑
k,T

(−2π) ~2α (ωk,T )ωk,T = . . . = ~∆eff. (4.104)

The (. . .) will be calculated by us in homework #2.
The change of energy of the vacuum by perturbation – resulting in a force –

is the Casimir effect. We shall describe it in details in the next section.
20 Lesson #15 @ 23/05/2017
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4.4 The Casimir Effect
4.4.1 History

The Casimir effect was found by the Dutch physicist H. Casimir (see [Casimir
and Polder, 1948]). The idea of Casimir was to calculate the van der Waals
interactions in the vacuum. In fact, the van der Waals interactions are long-
range, and therefore a manifestation of the Casimir effect. The first time it was
measured by Lamoreaux [1997].

Today, it is popular as an explanation to the dark energy, whose main con-
tributions are the vacuum energy. This depiction is wrong, as the Casimir force
is calculated in presence of something else, and never a measure of the vacuum
energy itself.

4.4.2 Basics

Consider two infinite perfect metallic plates separated by distance L between
them. Start with a classical electromagnetic field,

Fig. 4.3: The Casimir effect setup.

(
∇2 − 1

c2
∂2

∂t2

)
E (r, t) , (4.105)

with the boundary conditions (BCs) of perfect plates{
n̂×E = 0, (Dirichlet BCs)
n̂ ·B = 0. (Neumann BCs)

(4.106)

Assume scalar fields (no polarizations) to replace the electric and magnetic fields
with the scalar field ϕ (r, t). Let ωk = c |k| to have

ϕ (x,ρ, t) = eik⊥·ρ e iωt ϕ (x) , (4.107)

where ρ is in the ŷ, ẑ directions. The boundary conditions thus read{
ϕD (x = 0) = ϕD (x = L) = 0, (Dirichlet BCs)
∂nϕ

N (x = 0) = ∂nϕ
N (x = L) = 0. (Neumann BCs)

(4.108)

Solving the equations, the eigenfrequency spectrum readsωDk⊥,n = c

√(
πn
L

)2 + k2
⊥, n = 1, 2, 3, . . .

ωNk⊥,n = c

√(
πn
L

)2 + k2
⊥, n = 0, 1, 2, 3, . . .

(4.109)
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4.4.3 Calculating the Energy

Let us calculate the energy between the plates. It reads,

E0 (L) = ~
2
∑
k

ωk

=
∑
k

(
E2
k + c2B2

k

)
= ~

2
∑
k

(
ωDk + ωNk

)
= ~c

2

[ ∞∑
n=1

S

∫ d2k⊥

(2π)2

√(πn
L

)2
+ k2
⊥ +

∞∑
n=0

S

∫ d2k⊥

(2π)2

√(πn
L

)2
+ k2
⊥

]
.

(4.110)

With S the area of the plates. Now, let us calculate its difference from the
vacuum energy,

E0 (L) = E0 (L)− ~c
2 S

∫ d2k⊥

(2π)2 k⊥

= S~c
∞∑
n=1

∫ d2k⊥

(2π)2

√(πn
L

)2
+ k2
⊥︸ ︷︷ ︸

≡In

. (4.111)

Let us calculate In. We employ the Feynman trick:

1
(λ2 + a2)s

= 1
Γ (s)

∫ ∞
0

dt ts−1 e−(λ2+a2)t . (4.112)

Now, substitute λ2 =
(
πn
L

)2
, a2 = k2

⊥ and s = − 1
2 to obtain

In = 1
Γ
(
− 1

2
) ∫ ∞

0
dt t− 3

2 e−λ
2t

∫ d2k⊥

(2π)2 e−k
2
⊥t

= 1
Γ
(
− 1

2
)

4π

∫ ∞
0

dt t− 5
2 e−λ

2t . (4.113)

Substitute x = tλ2 to have

In = λ3

Γ
(
− 1

2
) 1

4π

∫ ∞
0

dxx− 5
2 e−x . (4.114)

Now, since the Euler gamma function is defined by

Γ (s) =
∫ ∞

0
dt ts−1 e−t, (4.115)

one obtains

In =
(πn
L

)3 1
4π

Γ
(
− 3

2
)

Γ
(
− 1

2
) . (4.116)
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Since Γ
(
− 1

2
)

= −2
√
π, one has

In = −
(√

πn

2L

)3

Γ
(
−3

2

)
. (4.117)

Thus,
E0 (L)
S L

= −~c
L

π
3
2

8L3 Γ
(
−3

2

) ∞∑
n=1

n3. (4.118)

4.4.4 Zeta Function Regularization

The sum
∑∞
n=1 n

3 is ill-defined. We therefore must employ some dirty tricks.
Introduce the Riemann ζ-function defined by

ζ (s) =
∞∑
n=1

n−s, Re s > 1. (4.119)

This function is analytic. Therefore, we can name an analytic continuation to
the whole complex plane s. Several properties arise such as

Γ
(s

2

)
ζ (s) = πs−

1
2 Γ
(

1− s
2

)
ζ (1− s) . (4.120)

Thus, we have a recipe to convert negative s to positive.
For s = −3 one has

Γ
(
−3

2

)
ζ (−3) = π−

7
2 Γ (2) ζ (4) , (4.121)

with

Γ (2) = 1, ζ (4) =
∞∑
n=1

1
n4 = π4

90 . (4.122)

Therefore, the Casimir energy reads

E0 (L)
S L

= − ~cπ2

720L4 . (4.123)

Remark 4.8. This gives us the first and simplest theory of ζ-function regular-
ization. Today, it is a widely used tool in quantum field theory.

One can calculate the Casimir force

F = ∂E0 (L)
∂L

= − ~cπ2S

240L4 . (4.124)

Note this force it attractive. What was actually measured by Lamoreaux was
the pressure

P = F

S
= − ~cπ2

240L4 . (4.125)

Note that it reduces as ∝ L−4, which is very small. Also note he had to deal
with corrugations on the surface, and thus used a bit different geometry | ↔ (.
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Remark 4.9. Considering U (L, T ) the universal energy function we have calcu-
lated, we note that U (L, T ) = U

(
(T/L)4). In the high temperature limit one

recovers the Stefan Boltzmann law U (T ) = σT 4; in the low temperature limit
one has the Casimir energy.
Remark 4.10. Note that αfs absent here. In fact, one can show that by demand-
ing perfect metallic plates one obtains αfs →∞ (see [Jaffe, 2005]).
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5 Statistical Properties of Photons21

This chapter is all about clicks – how to design, experiment and measure clicks
in a detector. We shall find the conditions when a click is a photon and when
it is not. These arguments also true for other systems such as electrons.

5.1 Shot Noise and Poisson Distribution
We will describe beams of indiscernible particles (bosons, fermions, photons,
light, etc.). Note that this section is classical.

Definition 5.1 (Beams). Systems prepared in a stationary state but out of
thermal equilibrium.

Out of equilibrium there exists a finite average current. We shall describe
several types of beams:

• Light beams (photons);

• Currents in conductors (electrons, shot noise).

5.1.1 Basic Intuition – Detection Probabilities

Consider the case of current fluctuations for a classical beam of independent
particles, for example, rain on a roof. Here a beam is the probability I (t) dt to
detect a particle between t and dt.

Fig. 5.1: A 1D beam between a source and a detector.

We ask what is I (t) for light beams. It is the flux of the Poynting vector

S = 1
µ0
E ×B. (5.1)

• If I (t) does not fluctuate, it is described by a shot noise.

• If I (t) fluctuates, it is described by shot noise + Hanbury-Brown & Twiss
correlations.

Define P (n, t) the probability to detect n particles during the interval [0, t].
Expand to obtain

P (n, t+ dt) = (1− I (t) dt)P (n, t) + I (t) dt P (n− 1, t) +O
(
dt2
)
. (5.2)

21 Lesson #16 @ 29/05/2017
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Here O
(
dt2
)
is the probability to detect 2 particles or more. We use the initial

conditions
P (n = −1, t) = 0, ∀t. (5.3)

One can thus write a differential equation

∂P (n, t)
∂t

= −I (t)P (n, t) + I (t)P (n− 1, t) . (5.4)

5.1.2 Generating Function

To solve this equation, we use the generating function method. Consider the
moment generating function,

M (ξ, t) ≡
〈
eξn
〉
t

=
∞∑
n=0

eξn P (n, t) . (5.5)

It is just the Laplace transform of P (n, t), which we used to disentangle n from
t. To find the p-th moment, consider the derivatives

∂pM

∂ξp
=
∞∑
n=0

np eξn P (n, t) =
〈
np eξn

〉
t
, (5.6)

thus, the moments read
∂pM

∂ξp

∣∣∣∣
ξ=0

= 〈np〉t . (5.7)

Now, use Eq. (5.4) to obtain the derivatives of M :

∂

∂t
M (ξ, t) =

(
eξ −1

)
I (t)M (ξ, t) . (5.8)

The solution reads

M (ξ, t) = exp
[(

eξ −1
) ∫ t

0
I (t′) dt′

]
+M (ξ, 0) , (5.9)

with the chosen boundary condition

M (ξ, 0) = P (0, t0 = 0) = 1. (5.10)

To calculate the average number of particles, plug in Eq. (5.7) to obtain

〈n (t)〉 = ∂M

∂ξ

∣∣∣∣
ξ=0

=
∫ t

0
I (t′) dt′. (5.11)

For the variance, one has

〈
n2 (t)

〉
= ∂2M

∂ξ2

∣∣∣∣
ξ=0

=
(∫ t

0
I (t′) dt′

)2

+
∫ t

0
I (t′) dt′. (5.12)
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Thus, 〈
n2 (t)

〉
− 〈n (t)〉2︸ ︷︷ ︸

≡〈∆n(t)2〉

= 〈n (t)〉 , (5.13)

so that 〈
∆n (t)2

〉 1
2

〈n (t)〉 = 1
〈n (t)〉

1
2
. (5.14)

Hence,

M (ξ, t) = exp
[〈
n (t)

(
eξ −1

)〉]
= e−〈n(t)〉

∞∑
p=0

epξ 〈n (t)〉p

p! . (5.15)

And we have the detection probability

P (m, t) = e−〈n(t)〉 〈n (t)〉m

m! . (5.16)

This is the Poisson distribution.

5.1.3 Remarks

Remark 5.1. What we have just described is actually the shot noise. We will
show a full derivation later.
Remark 5.2. For quantum entangled particles, this calculation does not work.

5.2 Noise in Light Beams – The Semiclassical Approach
In this section, we add fluctuations to I (t). Take, for example, an ideal laser
– it does not fluctuate. Now, take the other limit – black body. The light, as
we have seen in Section 1.3, admits thermal fluctuations. This section is also
classical.

Hanbury Brown and Twiss [1956] sought to measure photons from stars
(and wrongly concluded so). Consider then light emitted by a black body (with
thermal fluctuations). Inspect then

P (m, t) = e−〈n(t)〉 〈n (t)〉m

m! , (5.17)

with · · · a thermal average.
Remark 5.3 (Intermezzo). Consider a thermodynamic system. In order to char-
acterize this thermodynamic system, one has to calculate the partition function.
Any quantity is calculated by expression of this sort

〈
e−βH

〉
. Now, consider dis-

order (say of magnetic spins on a lattice). This is calculated by an average over
configurations

〈
e−βH̄

〉
. Note the abuse of notations. It is important to notice

that
〈e−βH〉 6=

〈
e−βH̄

〉
, (5.18)

but one problem is hard whereas the other is trivial.
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5.2.1 Detector Response

For each realization of I (t), calculate

〈n2〉 − 〈n〉2 = 〈n〉. (5.19)

Now, since

〈n2〉 −
(
〈n〉
)2

= 〈n〉︸︷︷︸
Shot noise

+
(
〈n〉 〈n〉 −

(
〈n〉
)2

︸ ︷︷ ︸
Intensity fluctuations

)
. (5.20)

One can identify the distributions of the shot noise we have calculated and
additional (intensity) fluctuations. This new contribution is essential for our
later discussion.

In reality, detectors D do not have an instantaneous response. The current
reads

J (t) =
∑
m

k (t− tm) , (5.21)

with k (t) the detector response for a single particle. Define the local particle
density

ρ (t) =
∑
m

δ (t− tm) , (5.22)

so that

J (t) =
∫ +∞

−∞
dt′ k (t− t′) ρ (t′) . (5.23)

The measured quantity is thus,

〈δJ (t+ τ) δJ (t)〉 ≡ 〈J (t+ τ) J (t)〉 − 〈J (t+ τ)〉 〈J (t)〉

=
∫

dt1 dt2 k (t+ τ − t1) k (t− t2)×[
〈ρ (t1) ρ (t2)〉 − 〈ρ (t1)〉 〈ρ (t2)〉

]
. (5.24)

5.2.2 Generating Function

Recall the definition of the generating function. In the new notations it is
written as

M (ξ, t) =
〈

exp
[
ξ

∫ t

0
dt1 ρ (t1)

]〉
, (5.25)

with

n (t) =
∫ t

0
dt1 ρ (t1) . (5.26)

Now, take into account the fluctuations of I (t) by promoting the fluctuating
source to be a function of time ξ (t). Thus, we have to generalize M (ξ, t) by
taking realizations ξ (t) such that

M ({ξ (t)} , t) =
〈

exp
[∫ t

0
dt1 ξ (t1) ρ (t1)

]〉
. (5.27)
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Here, {ξ (t)} means that for each time interval [ti, ti+1] we have a different
realization of ξ:

+
0

ξ(t1)
+
t1

ξ(t2)
+
t2

+ + . . . + +
t

(5.28)

Note that this entire discussion is classical.
Let us continue.22 Suppose ξ (t) is a stair function constant over the intervals

Ip ≡
[
pt
N ,

(p+1)t
N

]
. Therefore,

M ({ξ (t)} , t) =
〈

exp
[
N−1∑
p=0

ξp

∫ (p+1)t
N

pt
N

dt1 ρ (t1)
]〉

. (5.29)

Here
∫ (p+1)t

N
pt
N

dt1ρ (t1) is the number of particles detected during Ip. We assume
that the particles are independent; thus contributions of 2 distinct intervals are
independent and one obtains

M ({ξ (t)} , t) =
N−1∏
p=0

〈
exp

[
ξp

∫ (p+1)t
N

pt
N

dt1 ρ (t1)
]〉

=
N−1∏
p=0

exp
[(

eξp −1
) ∫ (p+1)t

N

pt
N

dt1 ρ (t1)
]

= exp
[
N−1∑
p=0

(
eξp −1

) ∫ (p+1)t
N

pt
N

dt1 ρ (t1)
]

(5.30)

Here we used Eq. (5.15) to proceed from the 1st to the 2nd rows. In the limit
N →∞ one has

M (ξ (t) , t) = exp
[∫ t

0
dt1
(

eξ(t)−1
)
I (t1)

]
. (5.31)

Expand both sides of this expression up to the second order in ξ to have

1 +
∫ t

0
dt1 ξ (t1) 〈ρ (t1)〉+ 1

2

∫ t

0
dt1
∫ t

0
dt2 ξ (t1) ξ (t2) 〈ρ (t1) ρ (t2)〉+ . . .

= 1 +
∫ t

0
dt1 ξ (t1) I (t1) + 1

2

∫ t

0
dt1 ξ2 (t1) I (t1)

+ 1
2

∫ t

0
dt1
∫ t

0
dt2 ξ (t1) ξ (t2) I (t1) I (t2) + . . . (5.32)

Compare term-by-term to have{
〈ρ (t1)〉 = I (t1)
〈ρ (t1) ρ (t2)〉 = I (t1) δ (t1 − t2) + I (t1) I (t2)

(5.33)

With thermal average one can make the identification{
〈ρ (t1)〉 = I (t1)
〈ρ (t1) ρ (t2)〉 = I (t1)︸ ︷︷ ︸

shot noise

δ (t1 − t2) + I (t1) I (t2)︸ ︷︷ ︸
intensity fluc.

(5.34)

22 Lesson #17 @ 05/06/2017
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Remark 5.4. Up to the ’50s people were aware only about the shot noise. The
first that have shown the 2nd term were Hanbury Brown and Twiss [1956].
Remark 5.5. The calculation—by Einstein—we will show shortly tells us that
for a classical field there is no 2nd term, but for a photon source the fluctuation
term also exist. This is (another) Einstein relation. By this analogy Hanbury
Brown and Twiss claimed that their measuring of light from stars shows a photon
field. We will deconstruct this claim below.

5.3 Quantum Theory of Photodetection
Consider a fluctuating source of light (stars, blackbody radiation, lasers, etc.).

5.3.1 Fluctuations of the Number of Photons in a Finite Box

In a semi-classical picture of detection one calculates the total number of photons
in a finite box, as in Fig. 5.2. The photon number reads

Fig. 5.2: Photons in a box.

Ntot =
∫ d3k

(2π)3 â
† (k) â (k) , (5.35)

for scalar waves. Define the field operators{
ψ̂ (r, t) ≡

∫ d3k
(2π)3 e i(k·r−ωt) â (k)

ψ̂† (r, t) ≡
∫ d3k

(2π)3 e− i(k·r−ωt) â† (k) ,
(5.36)

with the commutation relations[
ψ̂ (r, t) , ψ̂† (r′, t)

]
= δ(3) (r − r′) . (5.37)

We dropped the polarization for the sake of convenience. The number of photons
in a box reads

N̂B =
∫
B

d3r ψ̂† (r′, t) ψ̂ (r′, t) . (5.38)

5.3.2 Probabilities and Distributions

Now, ask what is the probability that NB = n for n ∈ Z. Start with the case of
a single boson operator

(
â, â†

)
such that[

â, â†
]

= 1. (5.39)
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For a state |ψ〉, the probability to have n is

Pn = |〈ψ|n〉|2 , (5.40)

for the state

|n〉 =
(
a†
)n

√
n!
|0〉 . (5.41)

Introduce the generating function,

M (ξ) ≡
〈
eξn̂
〉

=
〈
ψ
∣∣∣ eξâ†â ∣∣∣ψ〉 =

∞∑
n=0

eξn Pn. (5.42)

We want |n〉 to admit the Poisson distribution. There exists such (complex
valued) states, called “coherent states” with Pn the Poisson dist.:

|z〉 ≡ e− 1
2 |z|

2
ezâ
†
|0〉 =

∞∑
n=0

e− 1
2 |z|

2 zn√
n!
|n〉 . (5.43)

Therefore,

Pn (z) = |〈z|n〉|2 = e−|z|
2 z2n

n! , (5.44)

is Poisson distribution.
These states |z〉 are the eigenstates of

a |z〉 = z |z〉 . (5.45)

Now, since we know |z〉, we can calculate the generating function

Mz (ξ) = exp
[
|z|2

(
eξ −1

)]
=
〈
z
∣∣∣ eξâ†â ∣∣∣ z〉 . (5.46)

5.3.3 Methodological Intermezzo – Normal Ordering

Now we will show another derivation of Eq. (5.46). We will also show—by the
way—that the 1

2 in the harmonic oscillator eigenenergy En = ~ω
(
n+ 1

2
)
has

no physical meaning.
Consider the generating function〈

z
∣∣∣ eξâ†â ∣∣∣ z〉 =

∞∑
n=0

ξn

n!

〈
z
∣∣∣ (â†â)n ∣∣∣ z〉 . (5.47)

Now,

• For n = 1: 〈
z
∣∣ â†â ∣∣ z〉 = |z|2 = 〈n〉 . (5.48a)

• For n = 2:〈
z
∣∣∣ (â†â)2 ∣∣∣ z〉 =

〈
z
∣∣ â†â†ââ+ â†â

∣∣ z〉 = |z|4 + |z|2 , (5.48b)

because â†ââ†â = â†â†ââ+ â†â has a normal order.
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• For n = 3: 〈
z
∣∣∣ (â†â)3 ∣∣∣ z〉 = |z|6 + 3 |z|4 + |z|2 . (5.48c)

Generally, we need the terms that involve〈
z
∣∣∣ (â†)p (â)p

∣∣∣ z〉 = |z|2p . (5.49)

Therefore, we want the product of all â and â†s such that all â†s are on the left.
This is the normal ordering, which we denote by : (. . .) : with the operators
inside the brackets.

Let us give a few examples

: â†â : = â†â (5.50a)
: â†ââ† : = â†â†â =: ââ†â† : (5.50b)

:
(
â†â
)p : =

(
â†
)p
âp (5.50c)

: exp
(
yâ†â

)
: =

∞∑
p=0

yp

p!
(
â†
)p
âp. (5.50d)

Let us expand the last equation.

: exp
(
yâ†â

)
: |n〉 =

∞∑
p=0

n!
(n− p)!p!y

p |n〉 = (1 + y)n |n〉 . (5.51)

This is since the terms with p > n have âp |n〉 = 0 so that

(
â†
)p
âp |n〉 = n (n− 1) . . . (n− p+ 1) |n〉 = n!

(n− p)! |n〉 . (5.52)

Continue and have

: exp
(
yâ†â

)
: |n〉 = en ln(1+y) |n〉 = eln(1+y)â†â |n〉 . (5.53)

This is true ∀n. Thus,

: exp
(
yâ†â

)
:= exp

[
ln (1 + y) â†â

]
. (5.54)

5.3.4 Back to the Characteristic Function

Rewrite the characteristic function in terms of the normal ordering to have

M (ξ) =
〈
z
∣∣ : exp

(
yâ†â

)
:
∣∣ z〉

=
∑
m,n

e−|z|
2 z̄m√

m!
zn√
n!
〈
m
∣∣ : exp

(
yâ†â

)
:
∣∣n〉︸ ︷︷ ︸

(1+y)n〈m|n〉=(1+y)nδmn

=
∞∑
n=0

e−|z|
2 |z|2n

n! (1 + y)n

= e−|z|
2
∞∑
n=0

1
n!

(
|z|2 (1 + y)

)n
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= e−|z|
2

e|z|
2(1+y)

= ey|z|
2
. (5.55)

Plug in y = eξ −1 to have

M (ξ) =
〈
z
∣∣∣ eξâ†â ∣∣∣ z〉 =

〈
z
∣∣ : exp

((
eξ −1

)
â†â
)

:
∣∣ z〉

= exp
[
|z|2

(
eξ −1

)]
. (5.56)

Remark 5.6. The detection procedure uses generating function with normal
ordering to count clicks. Since we can put whatever value in z, the value of 1

2
in quantum Harmonic oscillator does not matter.

5.3.5 Thermal (Blackbody) Light – Einstein Relation

As everything else with Einstein, this formula work for blackbody (thermal
light). Let us return to

N̂B =
∫
B

d3r ψ̂† (r′, t) ψ̂ (r′, t) . (5.57)

The expectation value of the number of particles is given by the Bose-Einstein
distribution, {〈

â† (k) â (k)
〉

= (2π)3
δ
(
k − k′

)
nBE

(
~ω(k)
kBT

)
nBE (x) ≡ 1

ex−1 .
(5.58)

Thus, 〈
N̂B

〉
=
∫
B

d3r
〈
ψ̂† (r′, t) ψ̂ (r′, t)

〉
=
∫
B

d3r

∫ d3k

(2π)3

∫ d3k′

(2π)3 e− i(k−k′)·r 〈â† (k) â
(
k′
)〉
. (5.59)

Hence, 〈
N̂B

〉
= (Vol (B))

∫ d3k

(2π)3nBE

(
~ω (k)
kBT

)
= C1

Vol (B)
λ3
T

, (5.60)

with
C1 = 4π

∫ ∞
0

dx x2

ex−1 , (5.61)

and
λT = hc

kBT
. (5.62)

the thermal wavelength.
Let us continue.23 The second moment of N̂B reads〈

N̂2
B

〉
=
∫
B

d3r d3r′
∫ 4∏

i=1

d3ki

(2π)3 e i(k2−k1)·r+i(k4−k3)·r′ 〈â† (k1) â (k2) â† (k3) â (k4)
〉
.

(5.63)
23 Lesson #18 @ 06/06/2017



82 5 Statistical Properties of Photons

According to Wick theorem, the product of 〈. . . 〉 can be decomposed into two
contractions

â† (k1) â
(1)

(k2) â† (k3) â (k4)
(2)

(5.64)

They explicitly read

〈
â† (k1) â (k2) â† (k3) â (k4)

〉
=

〈N̂B〉2︷ ︸︸ ︷〈
â† (k1) â (k2)

〉 〈
â† (k3) â (k4)

〉
+
〈
â† (k1) â (k4)

〉 〈
â (k2) â† (k3)

〉
, (5.65)

with the first line corresponding to (1) and the second to (2). Therefore, after
some algebra one obtains〈
N̂2
B

〉
−
〈
N̂B

〉2
=
∫ d3k1

(2π)3

∫ d3k2

(2π)3nBE

(
~ω (k1)
kBT

)(
1 + nBE

(
~ω (k2)
kBT

))
F (k1 − k2) ,

(5.66)
with

F (k) =
∣∣∣∣∫
B

d3r exp (ik · r)
∣∣∣∣2 , (5.67)

the structure factor. For a spherical box B of radius R one has that

F (q) = 16π2R
2

q4

(
cos qR− sin qR

qR

)2
, q = k1 − k2. (5.68)

The Bose-Einstein distribution is dependent on the thermal wavelength

nBE (kλT ) = 1
eλT k −1 , (5.69)

but F (q) varies on the scale of 1
R .

Fig. 5.3: Structure factor F (q) for R = 1.

Now, for 1
R �

1
λT
⇔ λT � R (big box or large temperature). In this limit,

one takes F (q → 0), where the change is minimal, and obtains〈
N̂2
B

〉
−
〈
N̂B

〉2
=
∫ d3k

(2π)3nBE

(
~ω (k)
kBT

)(
1 + nBE

(
~ω (k)
kBT

))∫ d3q

(2π)3F (q)︸ ︷︷ ︸
Vol(B)

.

(5.70)
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Therefore,

〈
N̂2
B

〉
−
〈
N̂B

〉2
= Vol (B)

∫ d3k

(2π)3nBE

(
~ω (k)
kBT

)
︸ ︷︷ ︸

shot noise

+ Vol (B)
∫ d3k

(2π)3n
2
BE

(
~ω (k)
kBT

)
︸ ︷︷ ︸

fluctuations of intensity

.

(5.71)
This is the Einstein formula [Einstein, 1917]. By this Einstein claimed that the
fluctuations of intensity are proof of photons. Yet, there is nothing quantum
here, since its blackbody radiation. That’s why the explanation of Hanbury
Brown and Twiss [1956] is wrong.
Remark 5.7. There is another way to obtain this result without the approxima-
tion λT � R we made. It is still classical.

5.4 Photons vs. Semiclassical Theories
In this section we consider the question, when do we really need photons (“to
photon or not to photon”). We shall do it via photodetection with and without
photons.

5.4.1 Photodetection

Let us consider HA an atomic Hamiltonian. The interaction is ex dipolar with

Fig. 5.4: Level scheme for the photodetection experiment.

classical radiation E sin (ωt) so that the potential reads

V (t) = −exE sin (ωt) . (5.72)

The probability for the detector to do its job reads

P (t) =
∑
a

RaPg→a (t) , (5.73)

where Ra is the collection efficiency with

• Ra = δ (Ea − E) collect only electrons of energy E.

• Ra = 1 (broadband) collects everything.

The probability to go from the ground state to a is

Pg→a (t) = e2E2

4 |xag|2
(

sin ωag−ω
2 t

ωag−ω
2

)2

︸ ︷︷ ︸
F (t,ωag−ω)

, (5.74)
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with ωag = Ea − Eg and xag = 〈a|x̂|g〉 the matrix element. Define

S = e2E2

4
∑
a

Ra |xag|2 (5.75)

be the detector collection efficiency.

Fig. 5.5: Spectral detection bands. In blue, the F (t, ωag − ω) emission factor,
with t given in dotted purple. In orange, the detector collection effi-
ciency S, with bandwidth ∆ given in dashed yellow line.

When the time is much larger than the energy separation t � 1
∆ (with ∆

the detector bandwidth in S, meaning we have a broadband detector) one has

F = 2πt δ (ω − ωag) . (5.76)

Hence,

P (t) = 2π
∑
a

Ra
e2E2

4 |xag|2 δ (ω − ωag)︸ ︷︷ ︸
W

t = Wt. (5.77)

It is simply photoelectric effect given by Fermi golden rule.

5.4.2 Generalization to a Classical Wave

Let the electric field be

E (r, t) =
∑
k

αk e i(kr−ωt) +α∗k e− i(kr−ωt) ≡ E(+) (r, t) + E(−) (r, t) . (5.78)

The intensity reads
I (r, t) =

∣∣∣E(+) (r, t)
∣∣∣2 . (5.79)

Fluctuations are given by some distribution function on αk, P ({αk}).
Let us calculate the photoionization. The probability to go to the excited

state reads

Pg→a (t) = e2 |xag|2
∫ t

0
dt′
∫ t

0
dt′′ e iωag(t′−t′′) E(−) (r, t′′) E(+) (r, t′). (5.80)

Here we have repeated the calculation before. To make measurement we take
the average over fluctuation distributions . . .. Let us define

G(1) (r, t′′, r, t′) = E(−) (r, t′′) E(+) (r, t′). (5.81)
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The detection probability thus reads

P (t) = 1
2π

∫∫ t

0
dt′ dt′′

∫ +∞

−∞
S (ω) eiω(t′−t′′) G(1) (r, t′′, r, t′) , (5.82)

where
S (ω) = 2πe2

∑
a

|xag|2Raδ (ω − ωag) . (5.83)

Now, let us assume that S (ω) varies slowly with ω. We get

P (t) = S

∫ t

0
dt′ G(1) (r, t′, r, t′) . (5.84)

Therefore, we have

W1 (t) ≡ dP
dt = S G(1) (r, t′, r, t′) = S I (r, t). (5.85)

Notice that I (r, t) is the shot noise. Therefore, ionization only measures the
shot noise.

5.4.3 Quantum Calculation

Let us consider a quantum electrical field

Ê (r) =
∑
k

âk e ik·r +â†k e− ik·r . (5.86)

Take the Hamiltonian

H = HA +HR + V = HA +
∑
k

~ω
(
â†kâk + 1

2

)
− ex̂ Ê (r) . (5.87)

Here we use the interaction picture

Ê (r, t) = eiHRt Ê (r) e− iHRt . (5.88)

In the quantum picture, in order to skip all the boring calculations, we have
the following transformation

E(+) (r, t)→
〈
f
∣∣∣ Ê(+) (r, t)

∣∣∣ i〉 , (5.89)

where |i〉 is the initial state of the radiation, and |f〉 is the final. Also,

E(−) (r, t′′) E(+) (r, t′) =
〈
i
∣∣∣ Ê(−) (r, t′′)

∣∣∣ f〉〈f ∣∣∣ Ê(+) (r, t′)
∣∣∣ i〉 . (5.90)

Averaging over the classical field will translate to summing over all the final
fields (we measure the initial state and the ionization of the atom). Therefore,

E(−) (r, t′′) E(+) (r, t′) =
∑
f

〈
i
∣∣∣ Ê(−) (r, t′′)

∣∣∣ f〉〈f ∣∣∣ Ê(+) (r, t′)
∣∣∣ i〉

=
〈
i
∣∣∣ Ê(−) (r, t′′) Ê(+) (r, t′)

∣∣∣ i〉 . (5.91)

But this is the normal ordering.
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Corollary 5.1. Measurement always leads to normal ordering of operators by
default.

Consider now initial states |i〉. Generally, one has a mixed state

ρR =
∑
i

πi |i〉 〈i| . (5.92)

When we talk about the averages, we take trace over the operators

G(1) (r, t′′, r, t′) = TrR
(
ρRÊ

(−) (r, t′′) Ê(+) (r, t′)
)
. (5.93)

Hence,
W1 (t) = S G(1) (r, t′, r, t′) . (5.94)

Corollary 5.2. There are no quantum effects in the correlation function of a
single atom.

5.4.4 Reminder24

Working in the scheme of Figure 5.4, we have HA the atomic Hamiltonian,
ex̂ the dipolar interaction with V (t) = −ex̂ (E sinωt) with the radiation of a
classical wave E sinωt. We have also defined P (t) the probability to excite one
particle in the continuum.

Assuming broad-band detector, we saw that

P (t) = s I (r, t) = s |E|2 , (5.95)

with
E (r, t) =

∑
k

(
αk e i(k·r−ωt) +c.c.

)
, (5.96)

and the classical amplitudes αk fluctuate. We saw that

P (t) = s

∫ t

0
dt′ G(1) (r, t′, r, t) , (5.97)

such that
w1 (t) ≡ dP

dt = s E(−) (r, t) E(+) (r, t) = s I (r, t). (5.98)

Using quantum radiation field we saw that

Ê (r) =
∑
k

âk e ik·r +â†k e− ik·r, (5.99)

with V = −ex̂ · Ê (r). Similarly, we calculated

w1 (t) = s
〈
Ê(−) (r, t) Ê(+) (r, t)

〉
= sG(1) (r, t′, r, t) . (5.100)

In conclusion, we saw that

1. There is no way to detect quantum from classical calculations using a
single particle.

2. The normal ordering comes naturally for measurements.
24 Lesson #19 @ 19/06/2017
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5.5 Correlation between Two Photoionizations
In this section we will show that a two-particle correlation G(2) can distinguish
between classical and quantum correlations. We will show that bunching does
not distinguish between them, whereas anti-bunching does.

5.5.1 The Problem Description

• Two atoms (1, 2) placed at r1 and r2.

• Neglect all interactions between them.

• Probability: for atom 1 to be ionized between t1 and t1 + dt1
and for atom 2 to be ionized between t2 and t2 + dt2,
which is denoted w2 (r1, t1; r2, t2) dt1 dt2 (note that w2 is not 2nd atom
but both).

The Hamiltonian thus reads

Ĥ = HA1 +HA2 +HR − ex̂1 · Ê (r1)− ex̂2 · Ê (r2) . (5.101)

First, let us calculate the amplitude to be in the ground state of both atoms
and some field |g1g2i〉 to the evolution to some state

A =
〈
a1a2f

∣∣ Ũ (0, t)
∣∣ g1g2i

〉
. (5.102)

What is important are the interaction terms V̂i = −ex̂i · Ê (ri). To first order
is not interesting, since we want to ionize both atoms.

5.5.2 Second Order in Perturbation

Let us then calculate the second order in perturbation. It reads

A→
〈
a1a2f

∣∣∣∣ ∫ t

t′
dt′′

∫ t

0
dt′ Ṽ (t′′) Ṽ (t′)

∣∣∣∣ g1g2i

〉
, (5.103)

where Ṽ = Ṽ1 + Ṽ2. To avoid double interaction with the same atom, replace
Ṽ (t′′) Ṽ (t′) by Ṽ2 (t′′) Ṽ1 (t′) + Ṽ1 (t′′) Ṽ2 (t′). Therefore,

A→ −e2
∫ t

t′
dt′′

∫ t

0
dt′ (x̂1)a1g1

(x̂2)a2g2
e iωa1g1 t

′
e iωa2g2 t

′′
〈f |Ê(+) (r2, t

′′) Ê(−) (r1, t
′) |i〉

+ (terms where 1 � 2) . (5.104)

Approximation: Drop the anti-resonant terms ωaigi + ω; keep resonant terms
ωaigi − ω.

After some tedious calculations, obtain the probability P = |A|2,

Pig1g2→fa1a2 (t) = e4
∫ t

0
dt′
∫ t

0
dt′′

∫ t

0
dt(3)

∫ t

0
dt(4)

∣∣∣(x̂1)a1g1

∣∣∣2 ∣∣∣(x̂2)a2g2

∣∣∣2
× e iωa1g1(t′−t(3)) e iωa2g2(t′′−t(4))

× 〈i|Ê(−) (r1, t
(3)) Ê(−) (r2, t

(4)) |f〉 〈f |Ê(+) (r2, t
′′) Ê(+) (r1, t

′) |i〉 .
(5.105)
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Now, assume in the measurement, we do not measure the state |f〉 of the field.
Thus, we need to trace it out

∑
|f〉. Therefore, one replaces the field operators

with ∑
|f〉

〈i|Ê(−)Ê(−)|f〉 〈f |Ê(+)Ê(+)|i〉 = 〈i|E(−)E(−)E(+)E(+)|i〉 , (5.106)

which is in the normal ordering of the field.
In the classical description of the field, one has the correlation of two ad-

vanced and two retarded fields,

G(2) (. . .) = E(−)E(−)E(+)E(+). (5.107)

Return to the quantum field. After summation over a1 and a2∑
a1

Ra1 → s δ
(
t′ − t(3)

)
∑
a2

Ra2 → s δ
(
t′′ − t(4)

)
,

(5.108)

the probability reads

P (t) = s2
∫ t

0
dt′
∫ t

0
dt′′G(2) (r1, t

′, r2, t
′′; r2, t

′, r1, t
′′) . (5.109)

Now, distinguish t1 from t2 to have

P (t1, t2) = s2
∫ t1

0
dt′
∫ t2

0
dt′′G(2) (r1, t

′, r2, t
′′; r2, t

′, r1, t
′′) . (5.110)

Define

w2 (r1, t1, r2, t2) ≡ d2P

dt1 dt2
= s2G(2) (r1, t1, r2, t2; r2, t2, r1, t1) . (5.111)

For the classical field one has classical correlations with quantum atoms

w2 (r1, t1, r2, t2) = s2 E(−)E(−)E(+)E(+) = I (r2, t2) I (r1, t1). (5.112)

If one has anything quantum, then it is seen in w2 – the correlations of intensi-
ties.

5.6 Classical and Quantum Correlation Functions – Analogies
and Differences

5.6.1 Classical Case

Here E (r, t) =
∑
k

(
αk e i(k·r−ωt) +c.c.

)
, and αk complex random variables.

Denote {α} = {α1, α2, . . .} a realization of the field. Denote P ({α}) the
probability of {α}. P ({α}) ≥ 0 and real. Now,

1 =
∫
P ({α}) d2 {α} =

∫
P (α1, α2, . . .) d2α1 d2α2 . . . (5.113)

The correlation function then reads

G(2) (r1, t1, r2, t2) =
∫

d2 {α}P ({α}) E(−) (r2, t2, {α}) E(+) (r1, t1, {α}) .
(5.114)
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5.6.2 Quantum Fields

Here Ê (r) =
∑
k âk e ik·r +â†k e− ik·r. Let |αk〉 be the eigenstates of âk with

eigenvalues αk ∈ C (coherent states), such that

âk |αk〉 = αk |αk〉 . (5.115)

Describe the state of the quantum field Ê as a product of coherent state for
each mode k,

|{α}〉 = |α1〉 |α2〉 |α3〉 . . . |αk〉 . . . (5.116)

Explicitly, we have the correspondence,

Ê(+) (r1, t1, {α}) |{α}〉 = E(+) (r1, t1, {α}) |{α}〉 . (5.117)

Calculating the correlation, one has for a single coherent state,

〈{α} |Ê(−) (r2, t2, {α}) Ê(+) (r1, t1, {α}) | {α}〉 = E(−) (r2, t2, {α}) E(+) (r1, t1, {α}) .
(5.118)

Usually, the quantum field is a statistical superposition described with a density
matrix ρ̂:

ρ̂ =
∫

d2 {α}PQ ({α}) |{α}〉 〈{α}| , (5.119)

where PQ ({α}) is a quantum distribution. There are several properties of ρ̂:
ρ̂ = ρ̂†

Tr ρ̂ = 1
diag ρ̂ ≥ 0

(5.120)

Therefore,

PQ ({α}) ∈ R =⇒ 1 =
∫

d2 {α}PQ ({α}) . (5.121)

Remark 5.8. Unlike the classical case, PQ ({α}) does not have to be positive
(e.g., Wigner distribution).

5.6.3 Correlations

The quantum correlation reads

G(1) (r1, t1, r2, t2) = Tr
(
ρ̂ Ê(−) (r2, t2) Ê(+) (r1, t1)

)
=
∫

d2 {α}PQ ({α}) E(−) (r2, t2) E(+) (r1, t1) . (5.122)

Corollary 5.3. If PQ ({α}) is positive, there is no way to distinguish between
classical and quantum fields.

Corollary 5.4. Moreover, even if the radiation is quantum, but PQ ({α}) is
positive, one can find a classical systems that has exactly the same correlations.
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Fig. 5.6: The Hanburry-Brown & Twiss setups. (A) time-independent setup;
(B) time-dependent setup. Incident field is indicated by red arrows;
split field by yellow arrows; signal by gray arrows. PM is photomulti-
plier (detector); C is a correlator.

5.7 The Hanburry-Brown & Twiss Effect
Consider25 the two setups as in Figure 5.6.

(A) The spatial setup. Here r1 6= r2 but t1 = t2. Here, the spatial difference
can be very large.

(B) Time dependent setup. Here one interested in the time difference τ .

5.7.1 Bunching of “Photons” – Simple Explanation

Let us present the bunching of “photons” for a classical and fluctuating wave –
HBT without photons.

Let us inspect G(2) (r1, r2, τ) for two cases: τ = 0 and τ →∞. Both of these
are classical; a simple explanation is as follows.

G(2) (r1, r2, τ = 0) = I (r, t) I (r, t) = I2, (5.123a)
G(2) (r1, r2, τ =∞) = lim

τ→∞
I (r, t) I (r, t+ τ)

= I (r, t) · I (r, t+ τ) = I (r, t)
2
. (5.123b)

However, we always have

I2 − I2 =
(
I − I

)2 ≥ 0, (5.124)

so that
G(2) (r1, r2, 0) ≥ G(2) (r1, r2,∞) . (5.125)

This is the bunching of photons at τ = 0.
For the spatial correlation one has

G(2) (r1 = r2) = I2 ≥ G(2) (|r1 − r2| → ∞) ' I (r1) · I (r2) = I (r)
2
. (5.126)

25 Lesson #20 @ 20/06/2017
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What Hanbury Brown and Twiss claimed that since the photons are bosons,
this bunching shows their bosonic nature, thus proving them being particles.
We will show why it is wrong.

5.7.2 Bunching of “Photons” – Fano Factor

The right quantity to study, as we will see, it is the Fano factor. Inspect the
time-dependent setup. Let us define

g1 (τ) = G
(1) (r, τ)
G(1) (r, 0)

, (5.127a)

g2 (τ) = G
(2) (r, r, τ)∣∣G(1) (r, 0)

∣∣2 . (5.127b)

The normalization in the last equation is due to

G(2) (r, r,∞) = I
2 =

∣∣∣G(1) (r, 0)
∣∣∣2 . (5.128)

Now, the difference reads

g2 (0)− g2 (∞) = g2 (0)− 1 =
G(2) (r, r, 0)−

∣∣G(1) (r, 0)
∣∣2∣∣G(1) (r, 0)

∣∣2
= I2 − I2

I
2 . (5.129)

This is the Fano factor.

5.7.3 Bunching of “Photons” – Probability Distributions

Let us use the language of probabilities we defined in the previous section in
order to show interesting results. The G-factors can be written as

G(2) (r, r, 0) =
∫

d2 {α}P ({α})
∣∣∣E(+) (r, t, {α})

∣∣∣4 , (5.130a)

G(1) (r, 0) =
∫

d2 {α}P ({α})
∣∣∣E(+) (r, t, {α})

∣∣∣2 . (5.130b)

Since {α} is not the right variable to use, we shall change the variables P ({α})→
P (J) such that J ≡ |E(+) (r, t, {α})|2. In other words,

P (J) =
∫

d2 {α}P ({α}) δ
(
J −

∣∣∣E(+) (r, t, {α})
∣∣∣2) . (5.131)

Note that P (J) ≥ 0 and normalized.
With this change of variables, our equations read

G(2) (r, r, 0) =
∫

dJ J2P (J) , (5.132a)

G(1) (r, 0) =
∫

dJ J P (J) . (5.132b)
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Therefore, the Fano factor reads

g2 (0)− g2 (∞) =
∫

dJ P (J)
(
J −

∫
dJ ′ J ′ P (J ′)

)2(∫
dJ J P (J)

)2 . (5.133)

Corollary 5.5. Since P (J) ≥ 0 one has g2 (0)−g2 (∞) ≥ 0. This is bunching,
which is the result of P (J) being positive, and nothing else.

5.7.4 Quantum Distribution

In the quantum case, one has PQ {α}. Therefore, the equations change to

G(2) (r, r, 0) =
∫

d2 {α}PQ ({α})
∣∣∣E(+) (r, t, {α})

∣∣∣4 , (5.134a)

G(1) (r, 0) =
∫

d2 {α}PQ ({α})
∣∣∣E(+) (r, t, {α})

∣∣∣2 . (5.134b)

Change the variables PQ ({α}) → PQ (J) such that J ≡ |E(+) (r, t, {α})|2. In
other words,

PQ (J) =
∫

d2 {α}PQ ({α}) δ
(
J −

∣∣∣E(+) (r, t, {α})
∣∣∣2) . (5.135)

Note that PQ is normalized, but not necessarily positive.
With this change of variables, our equations read

G(2) (r, r, 0) =
∫

dJ J2PQ (J) , (5.136a)

G(1) (r, 0) =
∫

dJ J PQ (J) . (5.136b)

Therefore, the Fano factor reads

g2 (0)− g2 (∞) =
∫

dJ PQ (J)
(
J −

∫
dJ ′ J ′ PQ (J ′)

)2(∫
dJ J PQ (J)

)2 . (5.137)

Corollary 5.6. For PQ ≤ 0 one has g2 (0)−g2 (∞) ≤ 0. This is anti-bunching.

Remark 5.9. If we get a positive Fano factor, it doesn’t mean that our system
is definitely classical. Rather, the system can be quantum, but we could always
find a classical system with the same results.

5.8 Gaussian Classical Fields
In this section we describe the case of Gaussian classical fields – practical ap-
plications of HBT.

5.8.1 Chaotic Sources

By this we mean stars, blackbodies, etc. In this case, we can calculate g2 (r1, r2, τ)
and g1 (r1, r2, τ). Recall that

G(2) (r1, t1, r2, t2) ≡ E(−) (r1, t1) E(+)
←(first)→

(r2, t2) E(−) (r2, t2) E(+) (r1, t1)
⇔(second)

. (5.138)
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Wick’s theorem allows us to reduce this product into a sum of products,

G(2) = EE · EE︸ ︷︷ ︸
first contraction

+ EE · EE︸ ︷︷ ︸
second contraction

. (5.139)

In the case of Gaussian fields, this can be written as

G(2) = G(1) (r1, t1, r1, t1)G(1) (r2, t2, r2, t2) +
∣∣∣G(1) (r1, t1, r2, t2)

∣∣∣2 , (5.140)

thus,
g2 (r1, r2, τ) = 1 + |g1 (r1, r2, τ)|2 , (5.141)

with t1 and t2 = t1 + τ (Siegert formula). This is Einstein’s formula in disguise;
purely classical.

5.8.2 Applications

1. First application: measure correlation times τc. The idea is as follows.
Make an HBT measurement with r1 = r2; plot g2 (r, r, τ) vs. τ (see
Fig. 5.7A).

2. Second application: measure spatial correlations L. Here, t1 = t2 such
that τ = 0 (see Fig. 5.7B). The L one finds is the diameter of the measured
star.

Fig. 5.7: Normalized g2 plots. (A) the first application of correlation times;
(B) the second application of spatial correlations.

5.9 Quantum Behavior of the Radiation
Consider a simple experiment, as in Figure 5.8.

1. Classical wave: A and B are reached. A source with N � 1 emitting
atoms.

2. Quantum (S,A,B): |esgAgB〉 →
{
|gseAgB〉
|gsgAeB〉
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Fig. 5.8: Quantum radiation experiment. S is a source (classical or quantum);
A and B are detectors.

In such a setup, it is conceptually easy to check the quantum character of the
system: an atom emits a photon, which is then detected. In practice, there are
many atoms, so that one has interference with other sources of light, and the
quantum effects become obscured.

5.9.1 Hanburry-Brown & Twiss as an Interference Effect

This description is due to Fano [1961]. Consider N independent atoms i =
1, 2, . . . , N . Diagrammatically, denote

E(+)
i (rA, tA)

rA, tA

E(−)
i (rB , tB)

rB , tB

. (5.142)

Here, above is the field E(±) and below is the detector (rA, tA). Now, the
different statistical averages read

EiEj = Ei · Ej
EiEjEi = E2

i · Ej
Ei = 0 (random phases) .

(5.143)

5.9.2 Structure of G(1)

Let us inspect

G(1) (rA, tA, rB , tB) =
(∑

i
E(−)
i (rA, tA)

)(∑
i
E(+)
i (rB , tB)

)
. (5.144)

Diagrammatically it reads
(α)

i 6= j

A B

(β)

i

A B

. (5.145a)

A specific case of A = B reads

(α′)
i 6= j

A

(β′)
i

A

. (5.145b)
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Now, we want a closed loop from a source to a target. Thus, α = α′ = 0 and

β′ =
∑
i

Ii (r, t), (5.146)

and
β =

∑
i
E(−)
i (rA, tA) E(+)

i (rB , tB) |rA−rB |�L−−−−−−−−→
|tA−tB |�τc

0. (5.147)

Hence, only β′ 6= 0.

5.9.3 Structure of G(2)

We want to inspect the structure of G(2) (rA, tA, rB , tB), which shows nontrivial
correlations. Inspect

(γ)

i

A B

(δ)

i j

A B

(γ′)
i

A

(δ′)
i j

A

, (5.148a)

and
(ε)

i j

A B

(ζ)

i j

A B

(η)

i j

A B

. (5.148b)

In this case, we want fully connected diagrams from two distinct sources to two
distinct targets; thus, γ = γ′ = δ′ = 0.

Now, note that δ, ε, ζ, η result from interference between two amplitudes

(κ)

i j

A B

(κ∗)

i j

A B

(λ)

i j

A B

(λ∗)

i j

A B

.

(5.149)
such that

(κ+ λ) (κ∗ + λ∗) = κκ∗︸︷︷︸
δ

+ κλ∗︸︷︷︸
ζ

+ κ∗λ︸︷︷︸
η

+ λλ∗︸︷︷︸
ε

. (5.150)

All that is left to do is to calculate the appropriate values from these Feynman
diagrams.

Let us continue.26

• For A = B that is (rA, tA) = (rB , tB) the diagrams collapse. In this case,
κ = λ so that

δ + ε+ ζ + η = |2κ|2 = 4 |κ|2 . (5.151)

• For A 6= B we expect interference effects, that is

|κ+ λ|2 ≤ 4 |κ|2 . (5.152)
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Fig. 5.9: Normalized G(2) as an interference.

For a strong dephasing,

|κ+ λ|2 = |κ|2 + |λ|2 = 2 |κ|2 . (5.153)

Corollary 5.7. HBT is an interference effect between 2 amplitudes

i A

j B

and
i A

j B

. (5.154)

This is a classical phenomenon.

5.9.4 Quantum “Photons”

Here,
gi eA

44

ei

OO

gA

OOgj eB
44

ej

OO

gB

OO gi eB
22

ei

OO

gB

OOgj eA

((

ej

OO

gA

OO

(5.155)

Here, ei are the atoms and gI are the detectors.

5.9.5 Summary

1. Bunching of HB&T is an interference effect resulting from 2 atom pro-
cesses.

2. It can be interpreted classically (without photons) or quantum-mechanically
(with photons).

3. Distinction between photons and no photons arises for single atomic sources:

• Photons = antibunching;
• No photons = bunching.

4. Must get rid of HB&T bunching to observe quantum effects.

26 Lesson #21 @ 27/06/2017



97

6 Atoms in Cavities (Cavity QED)27

In this chapter, we will show how to observe quantum phenomena using cavities.

6.1 Basic Properties of Optical Cavities
So far, we have only seen photons in an open space. The idea now is to put
atom in a finite volume.

6.1.1 Planar Cavity

Inspect Fig. 6.1. Let us calculate the phase shift between (1) and (2). Let δ be

Fig. 6.1: Planar cavity scheme. (A) The setup. (B) The resonator scheme.

the length difference given by

δ = [J1I2J2 − J1H]

= 2Lcav

cos i − (2Lcav tan i) sin i

= 2Lcav

cos i
(
1− sin2 i

)
= 2Lcav cos i. (6.1)

Hence, for i = 0 one has the phase difference

ϕ = 2π
λ

2Lcav . (6.2)

Let a0 be the amplitude of the incident wave. Let r and t be the reflection
and transmission coefficients, respectively

r2 = R

t2 = T

R+ T = 1.
(6.3)

The total transmitted amplitude reads

A = a0 e iϕ t2 + a0 e iϕ t2r2 e iϕ + . . .

= a0 e iϕ T
(
1 +R e iϕ +R2 e2iϕ + . . .

)
27 Lesson #21 @ 27/06/2017
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= a0 e iϕ T

1−R e iϕ . (6.4)

The transmitted intensity

I = I0
T 2

(1 +R)2 − 2R cosϕ

= I0

(
T

1−R

)2 1
1 + 4R

(1−R)2 sin2 ϕ
2
, (6.5)

so that

I = I0
1

1 + 4F 2

π2 sin2 ϕ
2
. (6.6)

The finesse of the cavity is defined by

F ≡ π
√
R

1−R. (6.7)

The intensity I is maximal for sin2 ϕ
2 = 0 or ϕ

2 = πn, n ∈ Z. Hence,

4πLcav

λ
= 2πn =⇒ Lcav

λ
= n

2 . (6.8)

6.1.2 Finesse

Fig. 6.2: Maximal Intensity vs. ϕ.

The finesse is also given in terms of angle full-width half-max (FWHM)

F = 2π
∆ϕ. (6.9)

Hence,
I = Imax

2 for ϕ = 2πn± ∆ϕ
2 . (6.10)

In other words,
1
2 = 1

1 + 4R
(1−R)2 sin2

(
2πn±∆ϕ

2
2

)
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= 1
1 +m sin2

(
∆ϕ
4

)
' 1

1 +m∆ϕ2

16
, (6.11)

with m = 4R
(1−R)2 . Thus,

F = 2π
∆ϕ = π

2
√
m. (6.12)

The angular frequency of each resonant mode is given by

ω = 2πc
λ

= 2πc
2Lcav

n = πc

Lcav
n. (6.13)

Define the spectral width to be ∆ω. Hence,

ϕ = 4π
λ
Lcav =⇒ ϕ = 2Lcav

c
ω

=⇒ ∆ϕ = 2Lcav

c
∆ω = 2π

F
. (6.14)

Thus,

∆ω = πc

Lcav
. (6.15)

6.1.3 “Photon” Lifetime in a Cavity

The round-trip time T is given by

Fig. 6.3: Photon lifetime in cavity.

t = T

2 = Lcav

c
. (6.16)

After 2t there are R2N photon left from N . Therefore, we lose

∆N = N (1−R) = NT (6.17)

photons per t = Lcav
c in time. Thus,

dN
dt = − ∆N

Lcav/c
= −c1−R

Lcav
N. (6.18)
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Hence,
N (t) = N0 e−t/τcav , (6.19)

where
τcav = Lcav

c (1−R) ≡
1
κ
, (6.20)

where κ is the photon decay rate. Thus,

∆ω = πc

Lcav

1−R
π
√
R

R'1∼ c (1−R)
Lcav

= 1
τcav

= κ. (6.21)

6.1.4 Summary

There are 2 key parameters: ωm of resonant modes, and F the finesse (∆ω).
We thus define the quality factor

Q = ω

∆ω . (6.22)

6.2 Atom-Cavity Coupling
As usual, we would couple a two-level atom to a cavity.

6.2.1 Basics

The strength of atom-cavity coupling depends on

1. The decay rate κ;

2. Non-resonant decay rate Γ;

3. Atom-photon coupling parameter g0.

• For g0 � κ,Γ we are in the strong coupling regime.

• For g0 � κ,Γ we are in the weak coupling regime.

6.2.2 Strong Coupling Limit

If the photon leaves the cavity, it is the old physics we know – an irreversible
process. But, if the photon stays in a cavity, it can be reabsorbed by the
atom; a reversible process. This is the new physics of the strong coupling limit.
Therefore, one must build good cavities with excellent reflectivity. We shall
show it below.

Recall that the interaction energy between field (vacuum) and atom is given
by

∆E = |dEvac| , Evac =
√

~ω
2ε0V

. (6.23)

Hence, the coupling reads

∆E ≡ ~g0 =

√
d2~ω
2ε0V

, (6.24)
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so that

g0 =

√
d2ω

2ε0~V
. (6.25)

The strong coupling condition reads

g0 �
ω

Q
, (6.26)

where Q is the quality factor, so that

Q�
√

2ε0~ωV
d2 . (6.27)

Plugging in typical values results in Q � 3 · 106. Hence, 1 − R � 10−5. With
such a high-Q factor, S. Haroche made the experiments leading to his Nobel
prize of 2012 (see Brune et al. [1996]).

6.2.3 Spontaneous Emission in a Cavity – Purcell Effect28

Let us inspect the spontaneous emission in a single-mode cavity; this is the
Purcell effect. We would calculate it qualitatively.

Recall that the free-space spontaneous emission rate

Γf = 2π
~2 d

2ρ (ω)E2
vac. (6.28)

Substituting all the values we have found results in

Γf = 2π
~2 d

2 ω
2
��V

π2c3
~ω

2ε0��V
. (6.29)

Note that it is independent on the volume.
Let us inspect a single-mode cavity. In this case, we are interested only in

this cavity mode ωc. The density of states can be approximated to Lorentzian
and normalized to 1,

Fig. 6.4: Cavity DOS.

ρc (ω) = 2
π∆ωc

∆ω2
c

4 (ω − ωc)2 + ∆ω2
c

. (6.30)

28 Lesson #22 @ 28/06/2017
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At resonance,

ρc (ωc) = 2
π∆ωc

= 2
π

Q

ωc
. (6.31)

The cavity emission rate is thus,

Γc = 2π
~2

Q

ωc
d2 ~ω

2ε0Vm

= 2Qd2

~ε0Vm
. (6.32)

6.2.4 What is V ?

In free space, it is innocuous quantization volume. In cavity, we take a single
mode and quantize it |n〉 such that{

a |n〉 =
√
n |n− 1〉

a† |n〉 =
√
n+ 1 |n+ 1〉 .

(6.33)

The electric field operator reads,

Êvac =
√

~ωc
2ε0Vm

(
ε̂âf (r) + ε̂∗â†f∗ (r)

)
, (6.34)

where f (r) is the spatial profile of the field.
Next, we want to calculate the volume Vm. Recall that the average of the

stored energy in cavity is

~ωc
(
n+ 1

2
)

= ε0

∫
cavity

d3r 〈n|Ê
2
vac|n〉 . (6.35)

Hence, the mode volume (modal volume) Vm reads

Vm =
∫

cavity

d3r |f (r)|2 . (6.36)

We thus define the Purcell [1946] factor

Fp = Γc
Γf

= Qλ3

4π2Vm
. (6.37)

Corollary 6.1. In order to get strong coupling we could either improve the
quality factor Q – or, equivalently, reduce the mode volume Vm.

Corollary 6.2. Another way is to use quasiperiodic cavities.

6.3 CQED – Jaynes & Cummings Hamiltonian
Here we would describe the Jaynes and Cummings [1963] model in cavity QED
(CQED).
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6.3.1 Single Model Cavity + Atom (Static)

Let us inspect
Ĥ = Ĥat + Ĥfield + Ĥint, (6.38)

with

Ĥat = Eb |b〉 〈b|+ Ea |a〉 〈a| , (6.39a)

Ĥfield = ~ω`
(
â†` â` + 1

2

)
, (6.39b)

Ĥint = −iE` D̂ · ε̂`
(
â` − â†`

)
. (6.39c)

Here, D̂ is the dipole operator. Taking ε̂` ‖ ẑ one has

Ĥint ∝ (|a〉 〈b|+ |b〉 〈a|)
(
â` − â†`

)
. (6.40)

We thus have 4 processes

atom field
(i) b→ a n→ n− 1
(ii) b→ a n→ n+ 1
(iii) a→ b n→ n− 1
(iv) a→ b n→ n+ 1

(6.41)

Close to resonance, only (ii) and (iii) remain (recall RWA).
Setting Ea = 0 and ignoring the constant term 1

2~ω`, one obtains the Jaynes
and Cummings Hamiltonian

ĤJC = ~ω0 |b〉 〈b|+ ~ω`â†` â` + i ~Ωv
2

(
|a〉 〈b| â†` − |b〉 〈a| â`

)
, (6.42)

with ω0 = Eb − Ea. The Rabi frequency of the vacuum reads

~Ωv = 2E`dab. (6.43)

This Hamiltonian can be shown to be strongly entangled.

6.3.2 Eigenstates and Eigenvalues29

The Jaynes-Cummings Hamiltonian (6.42) has a very nice property{
ĤJC |a;n〉 = n~ω` |a;n〉 − i~Ωv

√
n |b;n− 1〉

ĤJC |b;n− 1〉 = ~ (ω0 + (n− 1)ω`) |b;n− 1〉+ i~Ωv
√
n |a;n〉 .

(6.44)

Notice that Mn the subspace {|a;n〉 , |b;n− 1〉} is closed under the action of
ĤJC. We also need the initial condition

ĤJC |a; 0〉 = 0. (6.45)

Call |ψ±n〉 the 2 eigenvalues

ĤJC |ψ±n〉 = E±n |ψ±n〉 . (6.46)
29 Lesson #23 @ 03/07/2017
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A direct calculation reads

E±n = ~
(
nω` −

δ

2 ±
1
2
√
nΩ2

v + δ2
)
, δ = ω` − ω0. (6.47)

And the eigenstates read{
|ψ+n〉 = cos θn |a;n〉+ i sin θn |b;n− 1〉
|ψ−n〉 = i sin θn |a;n〉+ cos θn |b;n− 1〉 ,

tan 2θn = −Ωv
√
n

δ
. (6.48)

Remark 6.1. The eigenstates |ψ±n〉 cannot be factorized into |ψ±n〉 = |ψat〉 ⊗
|ψrad〉. Meaning, there is a strong correlation between atom and field; in other
words, this is entanglement.
Remark 6.2. The eigenstates |ψ±n〉 are called “dressed states”. Cohen-Tannoudji
has got his Nobel prize for them.

Example. For δ = 0 and θn = π
4 one has{

|ψ+n〉 = 1√
2 ( |a;n〉+ i |b;n− 1〉)

|ψ−n〉 = 1√
2 (i |a;n〉+ |b;n− 1〉) .

(6.49)

These are maximally entangled states.

6.4 Spontaneous Emission of an Atom in a Cavity
With these dressed states of the Jaynes-Cummings model, we can calculate
interesting physics. We shall inspect spontaneous emission.

6.4.1 Revisiting Previous Results

Consider an atom in an excited state without a photon

|ψ (0)〉 = |b; 0〉 ; t = 0. (6.50)

And for simplicity, we assume δ = 0 (i.e., the radiation is at resonance with the
atom energy).

This |ψ (0)〉 is not an eigenstate of the subspace M1 = {|b; 0〉 ; |a; 1〉}. In
terms of its eigenstates, it reads

|ψ (0)〉 = 1√
2i (|ψ+1〉+ i |ψ−1〉) . (6.51)

The time evolution ∀t thus reads

|ψ (t)〉 = e− iω0t

√
2i

(
e− iΩv t2 |ψ+1〉+ i e+iΩv t2 |ψ−1〉

)
, (6.52)

or
|ψ (t)〉 = e− iω0t

(
cos
( 1

2Ωvt
)
|b; 0〉 − sin

( 1
2Ωvt

)
|a; 1〉

)
. (6.53)

Since we are dealing with a single atom with a definite quantum level, we
cannot apply the Fermi golden rule. The probability to stay in the excited state
thus reads

Pb (t) =
∑
n

〈b;n|ψ (t)〉 〈ψ (t) |b;n〉 = cos2 ( 1
2Ωvt

)
. (6.54)
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This probability oscillates between |b〉 and |a〉. It is called “Vacuum Rabi oscil-
lations”. It is a quantum squash between an atom and a photon.

If we release this constraint δ 6= 0 and repeat the calculations, we get that
the behavior will still be oscillatory, but with a smaller amplitude for δ � Ωv:

Pb (t) = 1− Ω2
v

Ω2
v + δ2 sin2

(√
Ω2
v + δ2 · t2

)
' 1. (6.55)

Remark 6.3. Spontaneous emission is a characteristic of both the atom and the
cavity (environment).

6.4.2 Quantum Evolution of the Atom under the Excitation of a Pure
Fock State

Prepare the system at t = 0 such that

|ψ (0)〉 = |a;n〉 ; t = 0. (6.56)

After some algebra, one gets

|ψ (t)〉 = e− inω0t
(
cos
( 1

2
√
nΩvt

)
|a;n〉 − sin

( 1
2
√
nΩvt

)
|b;n− 1〉

)
. (6.57)

The probability to stay in the excited state is

Pb (t) = cos2 ( 1
2
√
nΩvt

)
. (6.58)

This is the “Rabi oscillation” (no vacuum).

Example. For a π
2 -pulse:

√
nΩvtπ2 = π

2 , the state reads

∣∣ψ (tπ
2

)〉
= e− inω0tπ2

√
2

(|a;n〉+ |b;n− 1〉) . (6.59)

This state is very different from

|ψat〉 = 1√
2

(|a〉+ |b〉) . (6.60)

This is because the expectation value reads

〈ψat|D̂|ψat〉 6= 0, (6.61)

but {
〈ψ
(
tπ

2

)
|D̂|ψ

(
tπ

2

)
〉 = 0

〈Ê〉 = 0.
(6.62)

The last result is due to entanglement.

6.4.3 Quantum Evolution under the Excitation by a Coherent State30

Recall that the Fock state is not a pure classical state. Set the state to a coherent
state

|ψ (0)〉 = |0〉 ⊗ |α〉 , t = 0, (6.63)
30 This section helps to solve homework assignment #1.
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with
|α〉 =

∑
n

cn |n〉 , cn = e− 1
2 |α|

2 αn√
n!
. (6.64)

In other words,
|ψ (0)〉 =

∑
n

cn |a;n〉 . (6.65)

Since the equations are closed under the subspace Mn = {|a;n〉 , |b;n− 1〉}
for each n, we can write the evolution ∀t as

|ψ (t)〉 =
∑
n

e− inω0t cn
(
cos
( 1

2
√
nΩvt

)
|a;n〉 − sin

( 1
2
√
nΩvt

)
|b;n− 1〉

)
.

(6.66)
Thus, the probability Pa (t) to find the atom in the initial state |a〉 is

Pa (t) =
∑
n

|cn|2 cos2 ( 1
2
√
nΩvt

)
. (6.67)

These are called (see Figure 6.5) “quantum revivals”. The pulse “dies” and then
reappears. This is in contrast with Rabi oscillations, where the pulse envelope
never decays.

Fig. 6.5: Quantum revivals. Here Ωv = 20 and α = 6.

Remark 6.4. In a coherent state, α counts the number of photons. For α ∼ 1,
we have the quantum revivals. For a large α � 1, the state decomposes back
to |ψ (t)〉 = |ψat〉 ⊗ |ψcoh〉, where |ψcoh〉 is classical (usual Bloch eqs., etc.).
Remark 6.5. With non-perfect mirrors (leaking of the EM field outside), one
doesn’t have the nice property that the subspace is closed. What one gets is an
apparition of Mollow triplet.
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7 Cooperative Effects between Atoms31

This description is due to Dicke [1954]. Thus far, we have seen ensembles of
atoms that do not interact coherently. This has given rise to effects such as
blackbody radiation or the Casimir effect. In this chapter, we will inspect what
happens when the atoms can speak coherently.

Consider, for example, a state of N atoms, all of which are in the excited
state and such that all of them are in a superradiant coherent state (Dicke state).
When they emit, they can form a laser without mirrors. We shall inspect what
is required to prepare such a state.

7.1 Collective Atomic States
7.1.1 Introduction

Consider N identical atoms

|ei〉

��
~ωi
OO

|gi〉
(7.1)

placed at a point ri. Define the operators

Ŝ+
i ≡ |ei〉 〈gi| (7.2a)
Ŝ−i ≡ |gi〉 〈ei| (7.2b)
Ŝzi ≡ − 1

2 (|gi〉 〈gi| − |ei〉 〈ei|) . (7.2c)

These operators
(
Ŝ±i , Ŝzi

)
satisfy the algebra of angular momenta[

Ŝ+
i , S

−
j

]
= 2δijSiz (7.3a)

Ŝ+
i Ŝ
−
i + Ŝ−i Ŝ

+
i = 1. (7.3b)

This defines the atomic Hamiltonian

Ĥat =
N∑
i=1

~ω0 |ei〉 〈ei| =
N∑
i=1

~ω0Ŝzi. (7.4)

The last equation is because

|ei〉 〈ei| = |gi〉 〈gi|+ 2Ŝzi = 1− |ei〉 〈ei|+ 2Ŝzi, (7.5)

so that
|ei〉 〈ei| = 1

21 + Ŝzi. (7.6)

The dipole moment operator is defined by

d̂j = dj (|ej〉 〈gj |+ h.c.) = dj
(
Ŝ+
j + Ŝ−j

)
, (7.7)

with dj ∈ R3.
31 Lesson #23 @ 03/07/2017
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7.1.2 Interaction Hamiltonian32

The interaction between atoms and radiation reads

Ĥint = −
N∑
i=1

di
(
Ŝ+
i + Ŝ−i

)
· Ê (ri) , (7.8)

with the electric field operator

Ê (ri) = i
∑
k,ε̂

ε̂k

√
2π~ωk
V

(
âkε̂ e ik·r −â†kε̂ e− ik·r

)
. (7.9)

Using the RWA, one obtains (as we have seen earlier),

Ĥint =
∑
k,ε̂

N∑
i=1

gkε̂

(
âkε̂Ŝ

+
i e ik·r +â†kε̂Ŝ

−
i e− ik·r

)
, (7.10)

with

gkε̂ = −i ε̂k · d
√

2π~ωk
V

. (7.11)

Now, define the Fourier transform of Ŝ±i ,

Ŝ±k ≡
N∑
i=1

Ŝ±i e± ik·r . (7.12)

Thus,

Ĥint =
∑
k,ε̂

(
gkε̂âkε̂Ŝ

+
k + g∗kε̂â

†
kε̂Ŝ
−
k

)
. (7.13)

Similarly, define

Ŝz ≡
N∑
i=1

Ŝzi, (7.14)

so that the total Hamiltonian reads

Ĥ = ~ω0Ŝz +
∑
k,ε̂

~ωkâ†kε̂âkε̂ + Ĥint. (7.15)

7.1.3 Dicke Atomic States

Define the collective spin operators

Ŝ± ≡
N∑
i=1

Ŝ±i , Ŝz. (7.16)

Notice that the algebra of those operators is the algebra of spins. Use two
operators

(
Ŝ2, Ŝz

)
such that

Ŝ2 |s,m〉 = s (s+ 1) |s,m〉 (7.17a)
32 Lesson #24 (last) @ 04/07/2017
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Ŝz |s,m〉 = m |s,m〉 (7.17b)

Ŝ± |s,m〉 =
√
s (s+ 1)−m (m± 1) |s,m± 1〉 , (7.17c)

with {
m = −s,−s+ 1, . . . ,+s
s = 0, 1, 2, . . . N2 .

(7.18)

These |s,m〉 are called Dicke states [Dicke, 1954]. They are degenerate.

7.1.4 Atomic Product States

Let us inspect another state of atomic states, called “atomic product states”,

|φ〉 = |g1g2e3, . . . , gN 〉 . (7.19)

With the operator
Ŝzi = 1

2
(
Ŝ+
i Ŝ
−
i − Ŝ

−
i Ŝ

+
i

)
, (7.20)

one obtains
Ŝz |φ〉 = 1

2 (Ne −Ng) |φ〉 , (7.21)

where Ne,g is the total number of excited/ground states. Define

m = 1
2 (Ne −Ng) (7.22)

be the total atomic inversion.

7.1.5 Relation between Product and Dicke States

Let us inspect the case N = 2. We have 4 product states

|g1g2〉 , |g1e2〉 , |e1g2〉 , |e1e2〉 . (7.23)

The Dicke states s = 0, 1 read{
S = 0 =⇒ m = 0 : |00〉 Singlet state,
S = 1 =⇒ m = −1, 0, 1 : |1,−1〉 , |1, 0〉 |1, 1〉 Triplet states.

(7.24)

Now, to combine them have

• For s = 0:
|00〉 = 1√

2 (|e1g2〉 − |g1e2〉) . (7.25a)

• For s = 1: 
|1, 1〉 = |e1e2〉
|1, 0〉 = 1√

2 (|e1g2〉+ |g1e2〉)
|1,−1〉 = |g1g2〉

(7.25b)

Note that the triplet states are not degenerate:

2⊗ 2 = 1⊕ 3. (7.26)
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7.1.6 Clebsch-Gordan Decomposition

We need a general rule to translate Dicke states to product states and vice versa.
This is the Clebsch-Gordan decomposition

For instance, with N = 4,

2⊗ 2⊗ 2⊗ 2 = (3⊕ 1)⊗ (3⊕ 1)
= (3⊗ 3)⊕ (3⊗ 1)⊕ (1⊗ 3)⊕ (1⊗ 1)
= (5⊕ 3⊕ 1)⊕ (3)⊕ (3)⊕ (1) . (7.27)

We thus have 1 spin 2 state (5); 3 spin 1 states (3); and 2 spin 0 states (1).

7.2 Cooperative Spontaneous Emission of N Atoms
For N atoms, we have two possibilities: Dicke states and Product states. Let
us calculate both.

7.2.1 Cooperative Spontaneous Emission in a Dicke State

Let us reinspect the interaction Hamiltonian

Ĥint = âkŜ
+
k + â†kŜ

−
k , (7.28)

where

Ŝ±k ≡
N∑
i=1

Ŝ±i e± ik·r . (7.29)

The problem with this, is that there is nothing one can do with N > 2.33 We
therefore make the following assumption to get rid of the e± ik·r factor:

Conjecture 7.1 (Dicke assumption). All atoms are withing a volume � λ3.

Doing these assumptions accumulates to inspect the electric fields at Ê (ri = 0).
In other words, we can look on a single operator. The interaction Hamiltonian
therefore reads,

Ĥint = −D̂ · Ê (0) = −
(
〈g|d|e〉 Ŝ− + 〈e|d|g〉 Ŝ+

)
· Ê (0) . (7.30)

Here, 〈e|d|g〉 is the transition rate for a single atom. Define

Ŵ = 〈g|d|e〉 · Ê (0) Ŝ−, (7.31)

so that
Ĥint = −

(
Ŵ + Ŵ †

)
. (7.32)

Consider the transition rate Γ given by the Fermi golden rule,

Γ ∝
∑
f

∣∣∣〈f |Ŵ |s,m; 0〉
∣∣∣2 , (7.33)

33 Say, the atoms are distributed randomly. Then the quantities one measures have to be
averaged, which means that the phases wash out. It is unclear what is to be measured. Similar
arguments hold for atoms on a lattice.
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with the initial state of 0 photons |s,m; 0〉 . Thus,

Γ = Γ0 〈s,m|ŴŴ †|s,m〉
= Γ0 〈s,m|Ŝ+Ŝ−|s,m〉 , (7.34)

with Γ0 the emission rate of a single atom. Hence,

Γ
Γ0

= (s+m) (s−m+ 1) . (7.35)

Corollary 7.1. All the cooperative part of the spontaneous emission in a Dicke
state is in the (s+m) (s−m+ 1) part.

7.2.2 Analyzing Interesting Cases for Dicke States

1. All the atoms are excited: |s,m〉 = |N2 ,
N
2 〉. In this case,

Γ
Γ0

= N, (7.36)

so that there is nothing interesting.

2. Half of the atoms are in the excited states |s, 0〉. Here

Γ
Γ0

= s (s+ 1) (7.37a)

(a) If s = N
2 is maximum, then

Γ
Γ0

= N

2

(
N

2 + 1
)

; (7.37b)

this is superradiance.
(b) If s = 0 is minimum, then

Γ
Γ0

= 0; (7.37c)

this is subradiance (atoms are “swinging”: one up and its neighbor
is down).

3. A single atom is excited among N , |s, 1− N
2 〉 = |s,−s+ 1〉. Here,

Γ
Γ0

= 2s. (7.38)

Take, for example, s = N
2 , then

Γ
Γ0

= N . (7.39)

4. All atoms are in the ground state, |s,m〉 = |s,−s〉, then

Γ
Γ0

= 0. (7.40)
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Remark 7.1 (Important). We have studied the N -atoms dipole operator

D̂ = 〈g|d|e〉 Ŝ− + 〈e|d|g〉 Ŝ+. (7.41)

Then, calculating the strength of the dipole moment of N atoms reads for Dicke
states

〈s,m|D̂|s,m〉 = 0. (7.42)

Yet the strength of fluctuations of D̂ is not 0; this is the source of spontaneous
emission for the Dicke states.

7.2.3 Cooperative Spontaneous Emission in a Product State

Let us inspect the following product state

|φ〉 =
N⊗
j=0

(cg |gj〉+ ce |ej〉) , (7.43)

with
|cg|2 + |ce|2 = 1. (7.44)

Describe this state using the density matrix

ρ = |φ〉 〈φ| ⊗ |0〉 〈0| . (7.45)

Next, use the same assumption Ê (ri = 0) for the same reasons. The inter-
action Hamiltonian reads

Ĥint = −D̂ · Ê (0) , (7.46)

so that

Γ
Γ0

=
〈
φ

∣∣∣∣∑N

i=1

∑N

j=1
Ŝ+
i Ŝ
−
j

∣∣∣∣φ〉
= N |ce|2 +N (N − 1) |ce|2 |cg|2 . (7.47)

7.2.4 Analyzing Interesting Cases for Product States

1. All atoms are in the excited state cg = 0, then

Γ
Γ0

= N. (7.48)

2. Half of the atoms are in the excited state, ce = cg = 1√
2 . Then,

Γ
Γ0

= N

2 + N (N − 1)
2 = N (N + 1)

2 ∼ N2

2 . (7.49)

This case is often called “superradiance”, but there is a definite distinction
between it and the real superradiant case, since there is no subradiant case.
This is actually superfluorescence.
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3. All atoms are in the ground state |g〉 so that ce = 0. Then

Γ
Γ0

= 0. (7.50)

Fact 7.1. There is no subradiance for product states.

Remark 7.2 (Important). Let us reinspect the N -atoms dipole operator D̂. Its
strength is given by

〈φ|D̂|φ〉 = 〈g|d|e〉 〈φ|Ŝ−|φ〉+ c.c.
= 2N Re (〈g|d|e〉 c∗ecg) . (7.51)

This is a huge factor proportional to N . The atomic correlations

∆Ŝ± = Ŝ± − 〈Ŝ±〉 , (7.52)

read {
〈s,m|∆Ŝ+∆Ŝ−|s,m〉 = s (s+ 1) 6= 0 Dicke states
〈φ|∆Ŝ+∆Ŝ−|φ〉 = 0. Product states

(7.53)

Note that product states have classical correlations.
Remark 7.3. Typically, when superradiance was reported, it was actually super-
fluorescence. To show real quantum effect, one have to show subradiance. The
first to show that was Guerin, Araújo, and Kaiser [2016].
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