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4 Lesson 4
4.1 Stochastic Processes
4.1.1 Relation between γ and the mobility µ

Where γ−1 = µ
Let’s look on a stochastic process ~v (t). Let’s define a (1D) relation

r (t) =
ˆ t′

0
v (t′) dt′ (4.1)

This is well defined (thanks to Ito calculus). We, therefore, can write the correlation

〈
r2 (t)

〉
=
ˆ t′

0

ˆ t′′

0
〈v (t′) v (t′′)〉︸ ︷︷ ︸

new correlation Kvv
(
t′, t′′

) (4.2)

such that
Kξξ (t, t′) = 〈ξ (t) ξ (t′)〉︸ ︷︷ ︸

τ∗

(4.3)

and we can:
Anticipate the result

t� τ,
〈
r2 (t)

〉
= 6Dt. (4.4)

Note that the correlation time of the velocity, Kvv (t′, t′′) = τ = m
γ is different than

τ∗ → 0.
Show that (as in the last week)

v (t) = v (0) e−t/τ + e−t/τ 1
m

ˆ t

0
dt′ et

′/τξ (t′) (4.5)

such that the correlation

〈v (t+ s) v (t)〉 ' v2 (0) e−(2t+s)/τ+e−(2t+s)/τ 1
m2Cξξ

ˆ t+s

0
dt′
ˆ t

0
dt′′ e(t′+t′′)/τδ (t′ − t′′)

(4.6)
using Kξξ (t, t′) = Cξξδ (t− t′). Therefore

〈v (t+ s) v (t)〉 t�τ−−−→ kBT

m
e|s|/τ , (4.7)

where {
Cξξ = 2kBTγ (D = 1)
τ = m

γ

. (4.8)

Hence 〈
r2 (t)

〉
= t→∞−−−→ t

ˆ ∞
−∞

ds 〈v (t′ + s) v (t′)〉 ≡ tCvv = 2Dt (4.9)

and when we plug Cvv = 2kBT
m τ , we get the Einstein relation:

D = kBT

γ
(4.10)

and
Cvv =

ˆ ∞
−∞

ds 〈v (s) v (0)〉 = 2kBT

γ
(4.11)
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4.1.2 Correlation Functions

Following the previous discussion, we have three correlation functions:

1. The Noise Correlation Function

1
µ

= γ = 1
2kBT

ˆ ∞
−∞

ds 〈ξ (s) ξ (0)〉 (4.12)

which describes the white noise;

2. The Velocity Correlation Function

µ = 1
2kBT

ˆ ∞
−∞

ds 〈v (s) v (0)〉 (4.13)

which is derived from the noise, but has different correlation argument;

3. The Diffusion
D =

ˆ ∞
−∞

ds 〈v (s) v (0)〉 (4.14)

4.1.3 Nyquist theorem — Kubo formula

Let’s look on the following circuit:

which is described by the simple formula

L
dI
dt = Vext︸︷︷︸

"gravity"

−RI (t) + V ′ (t)︸ ︷︷ ︸
underlying

stochastic process

(4.15)

such that the noise is thermal:
〈I〉 = 1

R
Vext (4.16)

and the resistance of the stochastic process1 abides

R = 1
2kBT

ˆ ∞
−∞

ds 〈V ′ (t+ s)V ′ (t)〉 = CV V (0)
2kBT

(4.17)

Hence, we can write a correlation function

CV V (ω) =
ˆ ∞
−∞

ds eiωs 〈V ′ (s)V ′ (0)〉 ' 2kBT R. (4.18)

This is the Nyquist-Johnson theorem2.
1The equipartition assumption we use is due to the kinetic term in the Hamiltonian, 1

2 L
〈

I2
〉

=
1
2 kBT , similarly to the mechanical 1

2 m
〈

v2
〉

= 1
2 kBT .

2This is true only in the classical case; in the quantum case the formulae break, since T → 0.
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We can also write it in terms of the conductance:

1
R

= G = 1
2kBT

ˆ ∞
−∞

ds 〈I (t+ s) I (t)〉 (4.19)

It is usually more convenient to write it in terms of the conductivity σ, where G = σLd−2

(using R = ρLS ):

G = 1
2kBT

ˆ ∞
−∞

ds 〈j (s) j (0)〉 . (4.20)

This is the Kubo formula3.

Corollary. Any time we have some “viscosity”, we must seek the noise.

Remark. When we have several sources of noise (classical), each characterized by its
own viscosity ηi, then we can add all of them linearly H =

∑
i ηi (The Mathison rule).

In quantum case it is not true: due to entanglement we cannot separate them (this is
the quantum mesoscopic physics).

4.2 Fluctuation-Dissipation Theorem (FDT) – Linear Response
Idea & objective: Formalize all the previous results.

4.2.1 Basic Idea

Each time we have a system out of equilibrium we can express its properties (viscosity,
etc.) using the properties of the system in equilibrium (correlation function). This result
is attributed to Callen & Welton (PR, 1951)4.

The basic idea behind (Onsager regression hypothesis, 1930): If you take a system
out of equilibrium, in order to return back to equilibrium there will be fluctuations.
However, there isn’t any difference between those fluctuations and the fluctuations at
equilibrium.

The derivation of Callen & Welton is quantum mechanical, but it ought not to
be so.

4.2.2 Classical description

1. Hamiltonian Mechanics. Let there be a system S and microscopic states (point in
phase space) {p1, p2 . . . pn} ∪ {q1, q2 . . . q} ≡ (p, q).
At t = 0 we have (p (0) , q (0)). The state of S at time t is completely determined
by initial conditions +H (p (0) , q (0)), where we have defined the time evolution
Tt : (p (t) , q (t)) = Tt (p (0) , q (0)). We also assume statistical mechanics: the
microstates of S at equilibrium are distributed with

P (p, q) = 1
Q

e−βH(p,q), Q =
ˆ

dp dq e−βH(p,q) (4.21)

2. Time Setup. t→ −∞.
S is perturbed → new equilibrium at t = 0 characterized by H′ (p, q). At t = 0
turn off the perturbation H (p, q).
Relaxation: physical variable A (p, q).

3In the quantum case, we have the same formula without the 1
2kBT

factor, after deriving the Kubo
formula using another source of noise (not thermal).

4Before that, Einstein (1905), Nyquist (1928).
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3. Linear response: Perturbation is weak enough such that

H′ = H+ ∆H (4.22)

where
∆H = −fA (4.23)

and f is the perturbing field. With this definition,

f = ∂F

∂A
(4.24)

and F is the free energy.

Let’s solve. At t = 0
P ′ (p, q) = 1

Q′
e−βH

′(p,q), (4.25)

and the relaxation
〈A〉 = 1

Q′

ˆ
dp dq e−βH

′(p,q)A (p, q) . (4.26)

At t > 0, we have f → 0 and the system S evolves with H. Therefore

〈A (t)〉 = 1
Q′

ˆ
dp dq e−βH

′(p,q)A (Tt (p, q)) . (4.27)

Now we expand to the 1st order (because f is small)

〈A (t)〉 '
´

dp dq e−βH (1− β∆H) A (Tt (p, q))´
dp dq e−βH (1− β∆H)

. (4.28)

After some algebra,

〈A (t)〉 '
´

dp dq e−βHA (Tt (p, q))´
dp dq e−βH

+ βf

´
dp dq e−βHA (p, q)A (Tt (p, q))´

dp dq e−βH

− βf
´

dp dq e−βHA (p, q)´
dp dq e−βH

´
dp dq e−βHA (Tt (p, q))´

dp dq e−βH
.

(4.29)

This is equivalent to

〈A (t)〉 ' 〈A (t)〉0 + βf
(
〈A (0)A (t)〉0 − 〈A〉

2
0

)
(4.30)

where 〈·〉0 is equilibrium w.r.t. H. The last term in the equation is because equilibrium
at 0 is equal to equilibrium at t.

Let us define δA (t) = A (t)− 〈A〉0. We get

∆A = 〈A (t)〉 − 〈A (t)〉0 = βf 〈δA (0) δA (t)〉0 . (4.31)

This is another form of the Fluctuation Dissipation Theorem.

4.2.3 Generalize

Let’s take some perturbation f (t) (not constant). Using the same calculation, we’d get

∆A (t) =
ˆ

dt′ χ (t, t′) f (t′) (4.32)

Therefore, the relaxation at time t is related to all the relaxations (possible equilibrium
correlations) at all the times prior to t. But, we cannot drive the system with times
t′ > t (causality). Therefore

χ (t, t′) = 0 @ t′ > t (4.33)
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5 Lesson 5

5.1 Linear Response (Classical Approach)
5.1.1 The last time

We looked on the perturbed Hamiltonian

H′ = H− fA, (5.1)

and got the Onsager Fluctuation-Dissipation theorem

∆A = βf 〈δA (0) δA (t)〉0 , (5.2)

which states that the response of the system is indistinguishable from the fluctuations
in equilibrium.

5.1.2 Calculation of χ

We have also generalized the calculation to the case of f (t):

∆A (t) =
ˆ

dt′ χ (t, t′) f (t′) . (5.3)

In order to have causality, χ (t, t′) = 0 for t′ > t.

Remark. The susceptibility χ depends on the system S only and not on f .

For a system S at equilibrium (stationary)

χ (t, t′) = χ (t− t′) , (5.4)

therefore,

χ (t, t′) =
{
χ (t− t′) , t > t′

0, t′ > t
(5.5)

Take, for example, a step-wise f

f (t) =
{
f, t > t′

0, t′ > t
(5.6)

therefore

∆A (t) =
ˆ 0

−∞
dt′ χ (t, t′) f =

χ(t−t′)
f

ˆ ∞
t

dt′ χ (t′) . (5.7)

Hence

β 〈δA (0) δA (t)〉0 =
ˆ ∞
t

dt′ χ (t′) , (5.8)

and we obtain

χ (t) =
{
−β d

dt 〈δA (0) δA (t)〉0 t > 0
0 otherwise

. (5.9)

We could generalize this to any f .
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5.1.3 Generalization

Let’s generalize the Hamiltonian to any perturbation B

H′ = H− fB, (5.10)

and measure the response of A. We’d get

∆A (t) = βf 〈δB (0) δA (t)〉0 (5.11)

and the susceptibility depends on both A and B,

χAB (t) =
{
−β d

dt 〈δB (0) δA (t)〉0 t > 0
0 otherwise

. (5.12)

5.1.4 Example: Brownian of a Particle in a Fluid

When we apply a force f0 to the system (particle), the conjugate coordinate to the force
(position x) changes, and we measure the velocity v. In this case,

H′ = H− f0x, (5.13)

and

v (t) =
ˆ 0

−∞
dt′ χvx (t− t′) f (t′) = f0

ˆ ∞
t

dt′ χvx (t′) . (5.14)

Apply f0 from −∞ to 0 and f = 0 at t = 0; expect

v (0) = µf0 (5.15)

where µ is the mobility,

µ = 1
kBT

ˆ ∞
0
〈v (t) v (0)〉0︸ ︷︷ ︸
Kvv, symmetric

dt, (5.16)

hence
v (0) = f0

ˆ ∞
0

dt′ χvx (t′)︸ ︷︷ ︸
out of equilibrium

= f0

kBT

ˆ ∞
0
〈v (t) v (0)〉0 dt︸ ︷︷ ︸

in equilibrium

. (5.17)

This suggest a relation between the fluctuation out of equilibrium (linear response the-
ory) and the correlation functions in equilibrium:

χxv (t) = βKvv (t) . (5.18)

This is the Onsager relation hypothesis.

5.1.5 Proof of (5.18)

Claim.
χxv (t) = −β d

dt 〈x (0) v (t)〉0 . (5.19)

Proof. In the stationary case,

〈x (0) v (t)〉0 = 〈x (t′) v (t′ + t)〉0 . (5.20)
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Now, derive with respect to t′,

0 = d
dt′ 〈x (t′) v (t′ + t)〉0 = 〈ẋ (t′) v (t′ + t)〉0 +

〈
x (t′) d

dt′ v (t′ + t)
〉

0 . (5.21)

Also,
d
dt 〈x (t′) v (t′ + t)〉0 = 〈x (t′) v̇ (t′ + t)〉0 = −〈ẋ (t′) v (t′ + t)〉0

= −〈v (t) v (0)〉0 = −Kvv (t)
(5.22)

hence
χxv (t) = Kvv (t) = 1

me−t/τ . (5.23)
This is the Onsager Regression Hypothesis.

5.2 Fluctuation-Dissipation Theorem in Fourier Space
5.2.1 Brownian Particle

Let us look on the susceptibility,

x (t) =
ˆ

dt′ χ (t− t′) f (t′) . (5.24)

We can automatically write the the correlation function,

χxx (t) = −β d
dt 〈x (t)x (0)〉0 = −β d

dtKxx (t) . (5.25)

Now, take a Fourier transform and get a wrong result

χ̃xx (ω) 6= −βiωK̃xx (ω) . (5.26)

Because {
χxx (t) is defined for t < 0 only!
Kxx (t) is defined for all t.

(5.27)

How to solve this problem? Recall that{
F [real & symmetric] = real & symmetric
F [real & odd] = purely imaginary & odd

.

Therefore, break χxx (t) into even and odd functions

χxx (t) = χe (t) + χo (t) (5.28)

and call the Fourier parts {
χ̃e (ω) = χ′ (ω)
χ̃o (ω) = iχ′′ (ω)

(5.29)

such that
χxx (ω) = χ′ (ω) + iχ′′ (ω) . (5.30)

Now,
χxx (t) = 2χo (t) = −β d

dt 〈x (t)x (0)〉0 = −β d
dtKxx (t) (5.31)

hence,
2iχ′′ (ω) = iβω 〈xωx−ω〉0 (5.32)

and, finally,
χ′′ (ω) = 1

2ωβ
〈
|xω|2

〉
0. (5.33)

This is the FD theorem in Fourier space.
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5.3 Onsager Reciprocity Relations
Assign our simple working horse, Brownian Particle, in order to make things a bit
simpler. Our usual Hamiltonian,

H′ = H− fx. (5.34)

From now on f and x are not necessarily force and position, but any type of conjugated
variables. We get the ‘velocity’,

v (t) = ẋ (t) = 1
kBT

ˆ ∞
0

dτ f (t− τ) 〈ẋ (0) ẋ (τ)〉0 . (5.35)

Let’s generalize to other velocities,

H′ = H− fixi (5.36)

so that
ẋi (t) = β

ˆ ∞
0

dτ fj (t− τ) 〈ẋj (0) ẋi (τ)〉0 , (5.37)

(where the order of i and j is similar to our previous discussion of A and B).

5.3.1 Principle of Dynamical Reversibility of Microscopic Processes

The macroscopic behaviour is irreversible (e. g., friction). The outlined microscopic
process, however, is reversible. Any correlation can be written as

〈ẋj (0) ẋi (τ)〉0 =
reversibility

〈ẋj (0) ẋi (−τ)〉0 =
translation
in time

〈ẋj (τ) ẋi (0)〉0 , (5.38)

hence
〈ẋj (0) ẋi (τ)〉0 = 〈ẋi (0) ẋj (τ)〉0 . (5.39)

5.3.2 Essential Ingredients of Onsager Relations

Onsager Relations. Let’s write the Onsager relations,

dv
dt = −γv =⇒ dẋi

dt = −γij ẋj . (5.40)

Remark. γij has no reasons to be symmetric.
Define the mobility,

v = ẋ = µF =⇒ ẋi = µijFj . (5.41)

Note that for a single particle, γ = µ−1. The Onsager relations state that µij has to be
symmetric. Therefore, γij 6= µ−1

ij .

Thermodynamic Equilibrium. In equilibrium we can define any transformation through
the entropy:

1
kB

dS = βdU − β
∑
s

fsdxs, (5.42)

at equilibrium,
U = x0, β = F0. (5.43)
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Let’s set some definitions,
Fs ≡ −βfs
Σ ≡ S/kB

(5.44)

such that
dΣ =

∑
s

Fsdxs ⇐⇒ Fs = ∂Σ
∂xs

. (5.45)

At equilibrium Σ = 0 and x̄s = 0. Therefore, close to equilibrium,

Σ = −1
2Sijxixj (5.46)

where Sij is not necessarily symmetric, but must be negative definite.
Let’s introduce some more terminology,

Ji ≡ ẋi = dxi
dt

fluxes (currents) (5.47)

Fi = ∂Σ
∂xi

= −Sikxk (forces) (5.48)

such that
Ji = µijFj . (5.49)

Let’s define the probability

P (x0, . . . , xn) dx0 . . . dxn ∝ eΣdx0 . . . dxn. (5.50)

Hence, at equilibrium,

〈xiFj〉0 =

´
dxieΣ ∂Σ

∂xj
xj´

dxieΣ = δij , (5.51)

and we get
〈xiFj〉0 = δij . (5.52)

On the other hand,

〈xi (τ)xj (0)〉 = 〈xi (−τ)xj (0)〉 , (5.53)

hence
〈xi (τ)xj (0)〉 = 〈xi (0)xj (τ)〉 , (5.54)

but
〈xi (τ)xj (0)〉 − 〈xi (0)xj (0)〉

τ
= 〈xi (0)xj (τ)〉 − 〈xi (0)xj (0)〉

τ
, (5.55)

and when τ → 0,
〈ẋi (0)xj (0)〉 = 〈xi (0) ẋj (0)〉 . (5.56)

Put in Eq. (?) and get

µik 〈Fkxj (0)〉 = µjk 〈xi (0)Fk〉 (5.57)

or
− µikδkj = −µjkδik, (5.58)

and we get the Onsager relations (only at equilibrium!)

µij = µji (5.59)

Remark. Outside of equilibrium µij is not symmetric.
Generally,

γijµjk = Sik (5.60)
and Sik is not generally symmetric.
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6 Lesson 6
We have talked about the fluctuation-dissipation relations, linear response, Kubo for-
mula and Onsager reciprocal relations. All of these were done close to equilibrium.
Today, we will talk about systems far from equilibrium.

6.1 Generalization of the F. D. Relations far from Equilibrium
6.1.1 Synopsis

• Notion of Equilibrium: detailed balance.

• Generalization of the F. D. Relations: fluctuation theorems.5

• Large deviations.

6.1.2 Thermal Equilibrium.

Definition. Thermal equilibrium is the # Ω of microscopic configurations C of energy
E (C). The probability is given by the Gibbs-Boltzmann distribution

Peq (C) = 1
Z

e−E(C)/kBT (6.1)

The entropy is given by

S = −kB
∑
C

Peq (C) lnPeq (C) (6.2)

6.1.3 Markov process

Lets examine the process from configuration Ci to Cj

Ci
t
→ Cj

t+dt
(6.3)

The Markov Assumption: Let M (Cj , Ci, t) dt the probability to have a transition
Ci → Cj at t during dt. And let’s examine the network of transitions

Ci // Cj //

Cl // Ck //

OO
(6.4)

And let Pt (C) be the probability to be at configuration C at tine t. We can write the
master equation

d
dtPt (C) =

∑
C′ 6=C

M (C,C ′)Pt (C ′)︸ ︷︷ ︸
arrives to C

−M (C ′, C)Pt (C)︸ ︷︷ ︸
leaving C

(6.5)

A stationary state is
d
dtPt (C) = 0 (6.6)

and it gives conditions on Ω.
5Gallavotti & Cohen, 1995
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Shorter Constraint (Onsager)

∀C,C ′ : M (C,C ′)Pt (C ′) = M (C ′, C)Pt (C) (6.7)

and we have 1
2Ω (Ω− 1) constraints.

Eq. 6.7 is a necessary condition for equilibrium. A system that breaks Eq. 6.7 is
necessarily out of equilibrium. This means, that in Detailed Balance we have absence
of currents.

Time reversal

Theorem. The equilibrium state of a system, which satisfies Eq. 6.7 is necessarily
invariant by time reversal,

P (C (t)) = P (ΘC (t)) (6.8)
where Θ is the time reversal operator.

6.1.4 Physical Consequences of Detailed Balance

1. At equilibrium:
Let P (Q) is the probability that the system S gives heat Q to the reservoir R.
Then, P (−Q) is the same:

P (Q)
P (−Q) = 1 (6.9)

2. Out of Equilibrium (far from equilibrium):
Let us look on two reservoirs with temperatures TH > TC

TH
Mean heat flux +3 TL

rare events

kk (6.10)

and the mean heat of flow is related to the system entropy

〈Q〉
T

= 〈S〉 (6.11)

Thermodynamics says nothing about fluctuations. We would like to know, what
is the probability to observe a rare event, such that a heat flows to the other
direction.
Claim. The probability distribution P (Qτ ) of exchanging with the reservoir C the
heat Qτ in a time τ is related to that of exchanging −Qτ . In simple words,

ln
(
P (Qτ )
P (−Qτ )

)
= ∆βQτ (6.12)

where
∆β = 1

kB

(
1
TC
− 1
TH

)
(6.13)

but
∆βQτ = σ︸︷︷︸

rate of entropy change

τ (6.14)

hence
P (σ)
P (−σ) = eστ (6.15)

This is the Large Deviation Function (LDF).
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Corollary. The fluctuations always dissipate heat.
Remark. The heat and entropy are extensive properties. Therefore, in very large
systems (e. g., human body), eστ ≫ 1. Therefore, P (σ)≫ P (−σ), and we don’t
see rare events. We need nanoscopic or mesoscopic systems to see such events.

6.1.5 Examples of Large Deviation Functions

Example 1. Consider a sum of independent random variables ε1, ε2, . . . , εN , where

εi =
{

+1 probability p
−1 probability q

. Then

1. Large Numbers Thm.: let SN =
∑N
i=1 εi; then

SN
N

N→∞−−−−→ 〈ε〉 = p− q.

2. Central Limit Thm.: SN−N(p−q)√
4pqN

is the Gaussian

The behaviour of the probability P
(
SN
N = r

)
for large N and r ∈ [−1, 1] is

Prob
(
SN
N

= r

)
∼

N→∞
e−Nφ(r) (6.16)

where
φ (r) = 1 + r

2 ln
(

1 + r

2p

)
+ 1− r

2 ln
(

1− r
2q

)
(6.17)

and {
φ (r = p− q) = 0
φ′ (p− q) = 0

. (6.18)

The function φ (r) is called the Large Deviation Function of this problem. It is a convex
function with a minimum at p− q.
Example 2. Free Energy as an example of LDF. Consider N particles in a volume V
with a density r = N

V . Let’s look on some small volume v � V inside the large one with
particles n. Therefore,

Prob
(n
v

= ρ
)
∼ e−va(ρ) (6.19)

for some density ρ.
The free energy f per unit volume is

f (ρ) = lim
V→∞

−kBT
lnZV (ρV )

V
(6.20)

with the partition function
Z = e−βV f(

N
V ) (6.21)

and the probability

P
(n
v

= ρ
)

= ZV (n)ZV−v (N − n)
ZV (N) = e−va(ρ) (6.22)

and the LDF a (ρ),

va (ρ) = 1
kBT

(
vf (ρ) + (V − v) f

(
V r − vρ
V − v

)
− V f (r)

)
'

v�V

v

kBT
(f (ρ)− f (r)− (ρ− r) f ′ (r)) .

(6.23)
Remark. We can consider the free energy f itself as a LDF.
Remark. From the LDF we can calculate all the former fluctuation theorems (Onsager
relations, etc.).
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6.2 Fluctuation Theorems (Gallavotti and Cohen Relations)
6.2.1 Introduction

Let’s look on some system coupled to a reservoir

S R (6.24)

with E ≡ ∆T,∆ρ,∆V, . . . and x (t) particles are transferred between S and R. Then
the probability for some current j is

Prob
(
x (t)
t

= j, C → C ′
)
∼

t→∞
etG(j,E). (6.25)

Note that in some cases this formula may not hold. The LDF G (j, E) is independent
of C and C ′ (prefactors can). Also G (̄, E) = 0 for the most probable current ̄.

We will prove the Gallavotti and Cohen Relation:

G (j, E)−G (−j, E) = Ej

kBT
(6.26)

and show that in order to break the detailed balance, we must follow a certain procedure.
In other words, not every process can break DB.
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7 Lesson 7
7.1 Fluctuation Theorems (Cont.)
7.1.1 Reminder

• We were talking about classical (non-quantum) description.

• We have described the Large Deviation Functions (LDFs).

• We have also stated the Gallavotti-Cohen relation between the values the LDF
takes and the applied field. We have shown the response of the system, and saw
that

Prob
(
x (t)
t

= j

∣∣∣∣C → C ′
)
∼ etG(j,E) (7.1)

where G is the LDF and E the applied field.

• We have shown the Detailed balance condition (in equilibrium):

Mx (C,C ′)Peq (C ′) = M−x (C ′, C)Peq (C) (7.2)

• We saw that one cannot break the detailed balance condition at will, but several
constraints must be applied.

7.1.2 Out of Equilibrium

Out of equilibrium, E 6= 0 and Eq. (7.2) is changed into

M̄x (C,C ′)Peq (C ′) = M̄−x (C ′, C)Peq (C) exp
(
E · x
kBT

)
. (7.3)

There exists a proof of (7.3) (not shown).
We therefore can calculate the outcome of the Detailed Balance probability:

Prob (C (t)|C → C ′) = Prob (ΘC (t)|C → C ′) Peq (C ′)
Peq (C) exp

(
E · x (t)
kBT

)
(7.4)

where x (t) is the total number of particles that has been exchanged after time t. Next,
we sum over all the trajectories C (t); a fixed x (t) is transformed to

Prob (x (t)|C → C ′) = exp
(
E · x (t)
kBT

)
Prob (−x (t)|C ′ → C) Peq (C ′)

Peq (C) . (7.5)

We now apply the LDF assumption, x(t)
t = j, to obtain

P
(
x
t = j

)
P
(
x
t = −j

) = exp
(
tjE

kBT

)
. (7.6)

Apply LDF’s P
(
x(t)
t = j

)
∼ etG(j,E) and get

tG (j, E) = tG (−j, E) + tjE

kBT
. (7.7)

Hence, we have the Gallavotti-Cohen relations

G (j, E)−G (−j, E) = jE

kBT
. (7.8)

The temperature T is the temperatures of the reservoirs (recall that it cannot be defined
out of equilibrium).
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7.1.3 Implications

The G&C relations implies the Fluctuation-Dissipation Theorem (FDT) and the On-
sager relations.

Reminder: FDT states that for

∆ =
〈
x2 (t)

〉
− 〈x (t)〉2

t

∣∣∣∣∣
E=0

(7.9)

and a linear response of the applied field E

σE = 〈x (t)〉
t

(7.10)

one has
∆ = 2kBTσ. (7.11)

Another reminder: for two fields jx and jy one has the Onsager relations,

σxy = σyx. (7.12)

To prove FDT, we expand G close to equilibrium has a up to second order,

G (j, E) = aj +BE + cj2 + djE + eE + . . . (7.13)

And since G = 0 for j = ̄ = σE one has

G (j, E) = − (j − ̄)2

2∆ . (7.14)

From G&C we have

− (j − σE)2

2∆ = − (j + σE)2

2∆ + Ej

kBT
(7.15)

hence
∆ = 2kBTσ. (7.16)

To prove Onsager relations, we need at least two fields Ex, Ey to have

G (jx, jy, Ex, Ey) = G (−jx,−jy, Ex, Ey) + Exjx
kBT

+ Eyjy
kBT

(7.17)

and after some algebra one has
σxy = σyx. (7.18)

7.2 Quantum Statistical Mechanics
In this chapter we will try to describe the statistical mechanics of a pure quantum
system.

7.2.1 KMS (Kubo-Martin-Schwinger) Condition

Let A be a quantum system. We define the thermal average of A by

〈
Â
〉

=
Tr
(
Âe−βĤ

)
Tr
(

e−βĤ
) (7.19)
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and let us define the partition function

Z = Tr
(

e−βĤ
)
. (7.20)

We now would like to look on the correlation functions

CAB (t) ≡
〈
Â (t) B̂ (0)

〉
= 1
Z

Tr
(

eβĤÂ (t) B̂ (0)
)
, (7.21)

where we used the Heisenberg evolution

Â (t) = eiĤt/~Â (0) e−iĤt/~. (7.22)

Plug in and obtain

CAB (t) = 1
Z

Tr
(

e−βĤeiĤt/~Â (0) e−iĤt/~B̂ (0)
)

= 1
Z

Tr
(

eiĤt/~e−βĤÂ (0) e−iĤt/~B̂ (0)
)

= 1
Z

Tr
(

e−βĤÂ (0) e−iĤt/~B̂ (0) eiĤt/~
)

=
〈
Â (t) B̂ (−t)

〉
.

(7.23)

where in the 3rd line we used the cyclicity of the trace. So far, nothing surprising. On
the other hand,

CAB (t) = 1
Z

Tr
(

e−iĤt/~B̂ (0) eiĤt/~e−βĤÂ (0)
)

= 1
Z

Tr
(

e−βĤe+βĤe−iĤt/~B̂ (0) eiĤt/~e−βĤÂ (0)
)

= 1
Z

Tr
(

e−βĤei Ĥ~ (−t−i~β)B̂ (0) e−i Ĥ~ (−t−i~β)Â (0)
)

=
〈
B̂ (−t− i~β) Â (0)

〉
.

(7.24)

We therefore have the KMS condition

CAB (t) = CBA (−t− i~β) . (7.25)

In other words, Quantum Mechanics is a game of imaginary time.

7.2.2 Remarks

In order to obtain the KMS results, we had to play with two operators. One is e−βĤ ,
which is a Trace Class (a trace of a given operator, Tr

(
Ô
)
<∞) and well defined. The

other operator is e+βĤ , which is ill-defined.
If we go to the complex t plane, where z = t+ is, we have

CAB (z) = 1
Z

Tr
(

e−iĤz/~B̂ (0) e−i Ĥ~ (−z−i~β)Â (0)
)
. (7.26)

In order to this quantity to be defined, we must have two conditions,{
< (−iz) < 0
< (−i (−z − i~β)) < 0

, (7.27)
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or equivalently,
−~β < = (t) < 0. (7.28)

Similarly,
C̃AB ≡

〈
B̂ (0) Â (t)

〉
implies that

0 < = (t) < ~β. (7.29)

7.2.3 The Opposite Direction

In other words, the KMS condition is very strong. It is a condition for a thermal
equilibrium.

Now, let us assume the KMS and show thermal equilibrium. Let

〈A〉 = Tr (ρA) , (7.30)

where Tr (ρ) = 1 and ρ is unknown. Some algebra gives〈
B̂ (0) Â (t+ i~β)

〉
= Tr

(
ρB̂ (0) Â (t+ i~β)

)
= . . .

= Tr
(

e−βĤÂ (t) eβĤρB̂ (0)
)

= Tr
(
ρÂ (t) B̂ (0)

)
.

(7.31)

The last line is simply the KMS condition. Note that it is true for any t and any Â. It
is possible only if ρeβĤ = N for N some number. Hence

ρ = Ne−βĤ (7.32)

7.2.4 Fourier Transforms

Let us define CAB (t) =
〈
Â (t) B̂ (0)

〉
= 1

2π
´∞
−∞ dω eiωtC̃AB (ω)

CAB (t) =
〈
B̂ (t) Â (0)

〉
= . . .

(7.33)

KMS condition states that〈
Â (t) B̂ (0)

〉
=
〈
B̂ (−t− i~β) Â (0)

〉
=
〈
B̂ (0) Â (t+ i~β)

〉
, (7.34)

hence
C̃AB (ω) = C̃BA (ω) eβ~ω. (7.35)

This is the Detailed Balance condition. Recall that KMS has

CAB (t) = CBA (−t− i~β) . (7.36)



19

8 Lesson 8
8.1 Quantum Statistical Mechanics
8.1.1 Reminder

We saw the equilibrium condition for a quantum system (the KMS condition),

CAB (t) = CBA (t) (−t− i~β) . (8.1)

for −~β < = (t) < ~β. We then went to the Fourier space, where this equation reads,

C̃AB (ω) = C̃BA (−ω) eβ~ω. (8.2)

This is the Detailed Balance Condition.
Remark. These results (previous and forthcoming) hold irrespective of the exact statis-
tics (e.g., Fermi-Dirac or Bose-Einstein).

8.1.2 Quantum Version of the F-D Theorem6

We have an Hamiltonian H and a perturbation f (t) B̂ (t). We are interested in the
quantity 〈

Â (t)
〉

= 1
Z

Tr
(

e−βHÛt (f)A (0) Û−1
t (f)

)
. (8.3)

Note that unlike the classical case, we do not start atH and stop and t = 0; nevertheless,
the calculation will be the same.

The evolution operator Ût (f) holds

− i~ ∂
∂t
Ût (f) =

(
H+ f (t) B̂ (t)

)
Ût (f) , (8.4)

hence,

Ût (f) = U (t) + i
~

ˆ t

0
dτ U (τ) f (τ)B (τ)U (t− τ)

− 1
~2

ˆ t

0
dτ1
ˆ τ1

0
dτ2 U (τ2) f (τ2)B (τ2)U (τ1 − τ2) f (τ1)B (τ1)U (t− τ1) +O

(
f3) .

(8.5)
More compactly, we can write this equation with T the time ordering operator:

Ût (f) = T
[
exp

(
i
~

ˆ t

0
dτ
(
H+ f (t) B̂ (t)

))]
. (8.6)

After we inserted this expression to
〈
Â (t)

〉
we obtain

〈
Â (t)

〉
=
〈
Â (0)

〉
+
ˆ t

0
dτ RAB (t− τ) f (τ) +O

(
f2) , (8.7)

with

RAB (t− τ) = − i
~
〈[A (t) , B (τ)]〉 = − i

~
1
Z

Tr
(
e−βH [A (t) , B (τ)]

)
, t > τ. (8.8)

6We will mostly follow the paper of Callen & Welton, PR., 1951
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8.1.3 A Massage and Games

We’d like to play with various functions. Let’s begin with the correlation function

C[A,B] (t) ≡ 〈[A (t) , B (0)]〉 = 〈A (t)B (0)−B (0)A (t)〉
= 〈A (t)B (0)−B (−t)A (0)〉 .

(8.9)

Now write the Fourier transform as

C[A,B] (t) = 1
2π

ˆ ∞
−∞

dω eiωtC̃[A,B] (ω) , (8.10)

to obtain
C̃[A,B] (ω) = C̃AB (ω)− C̃BA (−ω) = C̃AB (ω)

(
1− e−β~ω

)
, (8.11)

where in the last equation we used (8.2).
Now, let’s inspect the correlation function of the anti-commutator

C{A,B} (t) ≡
〈
{A (t) , B (0)}+

〉
. (8.12)

The same massage gives

C̃{A,B} (ω) = C̃AB (ω)
(
1− e−β~ω

)
. (8.13)

This gives us a direct relation between the two:

C̃[A,B] (ω) = 2 tanh
( 1

2β~ω
)
C̃{A,B} (ω) . (8.14)

We now can write (8.8) as

RAB (t) = − 1
2π

ˆ ∞
−∞

dω eiωt 2
~

tanh
( 1

2β~ω
)
C̃{A,B} (ω) . (8.15)

This is sometimes called the Quantum Fluctuation-Dissipation Theorem (QFDT).

8.1.4 Linear Response – Definitions and Properties

Let us write
RAB (t− τ) ≡ − i

~
〈[A (t) , B (τ)]〉Θ (t− τ) . (8.16)

Usually in the literature we see the susceptibility

χ̃AB (t− t′) ≡ i
~
〈[A (t) , B (t′)]〉Θ (t− t′) . (8.17)

This is sometimes called the Response function, Retarded Green function, Retarded
propagator, etc.

Let us now write the properties of H. We expand it in its eigenfunctions,

H |ϕn〉 = En |ϕn〉 , (8.18)

with the equilibrium population

ρeq = 1
Z

e−βH, (8.19)

such that
〈ϕn|ρeq|ϕn〉 ≡ Πnδnn′ = 1

Z
e−βEnδnn′ . (8.20)
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Therefore

χ̃AB (τ) = Θ (τ) i
~
∑
n,q

(Πn −Πq)AnqBqnei(En−Eq)τ/~, (8.21)

where Θ (τ) ensures causality. We can now write its Fourier components,

χAB (ω) ≡
ˆ ∞

0
dτ eiωτ χ̃AB (τ) . (8.22)

Let us introduce a factor eετ/~ with ε→ 0+ to have

χAB (ω) = 1
~
∑
n,q

(Πn −Πq)AnqBqn lim
ε→0+

1
ωqn − ω − iε , (8.23)

where ~ωqn ≡ Eq − En. This value χAB (ω) is called the Susceptibility, Admittance,
1/Impedance.
Remark. Note that we used simple quantum mechanics, and not quantum statistics.
Quantum statistics came after introducing QFT into quantum mechanics: when you
need to quantize a field (scalar or spinor), you need to know whether it is a Fermion or a
Boson. The statistics we used when calculating, for example, black body radiation were
not quantized. The FD or BE distributions are simply a matter of choice. Therefore all
this derivation is valid.

8.1.5 Extension of χAB (ω) to the Complex Plane

This is related to the Kramers-Krönig relations.
Let us look on the complex plane z = x+ iy,

χ̂AB (z) =
ˆ ∞
−∞

dτ eizτ χ̃AB (τ) =
ˆ ∞
−∞

dτ e−yτeixτ χ̃AB (τ) , (8.24)

on the upper half-plane y = = (z) ≥ 0. Here the �̂ denotes a function on the complex
plane. Note that χ̂AB (z) is well defined in the upper half-plane. It is analytic and given
by χAB (ω),

χAB (ω) = lim
ε→0+

χ̂AB (z = ω + iε) . (8.25)

Therefore,
χ̂AB (z) = 1

~
∑
n,q

(Πn −Πq)AnqBqn
1

ωqn − z
. (8.26)

Therefore, all the singularities of χ̂AB (z) come from the poles of 1
ωqn−z . Since ωqn are

real, all singularities of χ̂AB (z) are poles along the real axis.
There is a discrete energy spectrum for H. In the V → ∞ limit, we’ll obtain a cut

in the complex plane along the real axis (the poles become a line).

Corollary. A single isolated atom does not dissipate energy. You need a continuum in
order to dissipate.

8.1.6 Spectral Function (Dissipation)

Let us define
ξAB (ω) ≡ π

~
1
~
∑
n,q

(Πn −Πq)AnqBqnδ (ωqn − ω) . (8.27)
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It is usually denoted by χ′′AB (ω). Hence,

χ̂AB (z) = 1
π

ˆ ∞
−∞

dωξAB (ω)
ω − z

. (8.28)

Therefore
χAB (ω) = 1

π
lim
ε→0+

ˆ ∞
−∞

dω′ ξAB (ω′)
ω′ − ω − iε . (8.29)

On the other hand,

ξ̂AB (t) = 1
2π

ˆ ∞
−∞

dω e−iωtξAB (ω) , (8.30)

implies that
ξ̂AB (t) = 1

2~ 〈[A (t) , B (0)]〉 . (8.31)

Note that there is no Θ function; therefore ξ̂AB (t) (the spectral / Green’s function) does
not preserve causality. The relation between the two reads

χ̃AB (t) = 2iΘ (t) ξAB (t) . (8.32)

We can now write

ξAB (ω) = 1
2i lim

ε→0+
[χ̂AB (ω + iε)− χ̂AB (ω − iε)] , (8.33)

where we used the Cauchy principal value relation,

lim
ε→0+

1
ω′ − ω ∓ iε = P

(
1

ω′ − ω

)
± iπδ (ω′ − ω) . (8.34)

Remark. The value χ̂AB (ω − iε) exists in the lower-half plane. Since χAB (ω − iε) was
not shown to exist, it must preserve the hat χ̂. The hat on χ̂AB (ω + iε) is there for
solidarity.

Let us continue. Causality

χ̂AB (ω − iε) = 1
~
∑
n,q

(Πn −Πq)
AnqBqn

ωqn − ω + iε .

= 1
~
∑
n,q

(Πn −Πq)
(

A∗nqB
∗
qn

ωqn − ω − iε

)∗

= 1
~
∑
n,q

(Πn −Πq)
(

B†nqA
†
qn

ωqn − ω − iε

)∗
= (χ̂B†A† (ω + iε))∗ ,

(8.35)

and therefore well defined. Hence

ξAB (ω) = 1
2i (χAB (ω)− χ∗B†A† (ω)) . (8.36)

For A† = B we have
ξAA† (ω) = = (χAA† (ω)) ≡ χ′′AA† (ω) (8.37)
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9 Lesson 9
9.1 Quantum Statistical Mechanics
9.1.1 Reminder

We defined the retarded Green’s function,

χ̃AB (t− t′) ≡ i
~
〈[A (t) , B (t′)]〉eq Θ (t− t′) , (9.1)

and showed that its analytic continuation,

χ̂AB (z) =
ˆ ∞
−∞

dτ eizτ χ̃AB (τ) , (9.2)

is analytic for Im (z) > 0. We then showed that the limit

χAB (ω) = 1
π

lim
ε→0+

χ̂AB (z = ω + iε) (9.3)

is well defined.
We finished with the spectral function

ξAB (ω) ≡ π

~
1
~
∑
n,q

(Πn −Πq)AnqBqnδ (ωqn − ω) , (9.4)

and showed that’s its time-space counterpart is

ξ̃AB (t) = 1
2~ 〈[A (t) , B (0)]〉 . (9.5)

Therefore,
χ̃AB (t− t′) = 2iΘ (t− t′) ξAB (t− t′) . (9.6)

We will inspect the function

ξAA† (ω) = ImχAA† (ω) ≡ χ′′AA† (ω) (9.7)

9.1.2 What we will do today

We will show that this spectral function is related to the dissipation in the system. We
will also show that these results can be elementary derived from the KMS condition.
We will finally show that these results are not unique to Bosons. We will see how is
related to the Kramers-Krönig relations.

9.1.3 Physical meaning of ξAA† (ω) — Dissipation

Reminder: we are looking on a perturbation V cosωt. Let’s recall Fermi Golden Rule:
the probability per unit time to have a transition between a state |φi〉 and a group of
final states |φf 〉 is ∑

f

π

2~2 |〈φf |V |φi〉|
2 [δ (ωfi − ω) + δ (ωif − ω)] . (9.8)

If Ef > Ei, this is energy absorption; if Ef < Ei this is emission.
Let us define a (t) = a cosωt. Then, the total energy absorbed per unit time is

dWabs

dt = πa2

2~2

∑
nq

Πn~ω |Anq|2 δ (ωqn − ω) , (9.9)
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and the total energy emitted per unit time is

dWems

dt = πa2

2~2

∑
nq

Πn~ω |Anq|2 δ (ωnq − ω) = πa2

2~2

∑
nq

Πq~ω |Anq|2 δ (ωqn − ω) . (9.10)

At thermal equilibrium the lowest levels are more populated, or Πn > Πq. Therefore,
combining these last two equations we obtain

dW
dt = πa2

2~2

∑
nq

(Πn −Πq) ~ω |Anq|2 δ (ωqn − ω) = a2

2 ξAA† (ω) . (9.11)

9.1.4 Symmetrized version of FDT

Let’s inspect again the correlation

C̃AB (t) = 〈A (t)B (0)〉 , (9.12)

that define the statistical fluctuations in a quantum way. It is not real, since

〈A (t)B (0)〉∗ = 〈B (0)A (t)〉 . (9.13)

In order to symmetrize, we define

S̃AB (t) ≡ 1
2 〈A (t)B (0) +B (0)A (t)〉

= 1
2
〈
{A (t)B (0)}+

〉
.

(9.14)

Taking its Fourier transform we have

SAB (ω) = π
∑
nq

(Πn + Πq)AnqBqnδ (ωqn − ω) . (9.15)

Let’s massage it a bit:

Πn + Πq = (Πn −Πq)
Πn + Πq

Πn −Πq

= (Πn −Πq)
1 + e−β(Eq−En)

1− e−β(Eq−En)

= (Πn −Πq)
1 + e−βhω

1− e−βhω ,

(9.16)

where we used the direct Gibbs factors of Πn,q. Therefore,

SAB (ω) = ~
1 + e−βhω

1− e−βhω ξAB (ω) , (9.17)

or,

SAB (ω) = ~ coth
(
β~ω

2

)
ξAB (ω) . (9.18)

This is the symmetrized FDT.

Exercise: Show that for ~→ 0 we get the classical version.
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9.1.5 Einstein’s relations

Let’s return to the correlations.

CAB (ω) = 2~
1− e−βhω ξAB (ω) = 2~ (1 + nB (ω)) ξAB (ω) , (9.19)

where
nB (ω) = 1

1− e−βhω . (9.20)

People like to say: “Oh, look! We have the Bose-Einstein factor. Therefore it proves
the Bosonic nature of the photons”. However, our derivation had nothing to do with
Bosons! Therefore, it has no relation with the Bose-Einstein statistics.

9.1.6 Another derivation based on KMS

Let’s inspect

ξ̃AB = 1
2~ 〈[A (t) , B (0)]〉 = 1

2~
(
C̃AB (t)− C̃BA (−t)

)
. (9.21)

From KMS we have
C̃AB (t) = C̃BA (−t− i~β) . (9.22)

It implies that
C̃BA (−t) = C̃AB (t− i~β) . (9.23)

It implies, in turn, that its Fourier transform reads
ˆ

dt eiωtC̃AB (t− i~β) (t) =
ˆ

dt eiω(t+i~β)C̃AB

= e−β~ω
ˆ

dt eiωtC̃AB .

(9.24)

Therefore,
ξAB (ω) = 1

2~
(
CAB (ω)− e−β~ωCAB (ω)

)
(9.25)

or,
CAB (ω) = 2~ (1 + nB (ω)) ξAB (ω) . (9.26)

QED. �

Remark. In order to prove the quantum nature of photons (meaning, the radiation is
quantized), one does not need the black body radiation. In fact, all one needs is the
FDT. Einstein, in his 1905 proof, used thermodynamic arguments to show that light
has to be quantized. However, the first real need of the quantum nature was Haroche’s
demonstration of single photons, on which he got the Nobel prize.

9.1.7 Another look on causality – Kramers-Krönig relations

Here the causality is manifested in Θ (τ). We need a small set of assumptions:

1. χ̃AB (τ) is real (response function);

2. |χAB (τ)| is bound (< M); and

3. χAB (τ) is causal (meaning, it is 0 for τ < 0).
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Assumptions (2) and (3) imply that χAB (ω) is well defined and does not have poles for
Im (z) > 0 (z = x+ iy). Therefore,

χAB (x+ iy) =
ˆ ∞
−∞

dz χ̃AB (τ) eixτe−yτ < M

y
. (9.27)

Remark. Physical system has poles only in the lower half of the complex plane. For
example, for the Harmonic oscillator

mz̈ +mγż +mω2
0z = F (t) , (9.28)

we have solutions of the form

z (t) = −
ˆ t

−∞
dt′ G (t− t′)︸ ︷︷ ︸

retarded Green’s function

f (t′) , (9.29)

where f (t) = F (t) /m. In other words,

G̈ (τ) + γĠ (τ) + ω2
0G (τ) = −δ (τ) , (9.30)

such that

G (τ) = 1
2π

ˆ ∞
−∞

dω g (ω) e−iωt, (9.31)

where
g (ω) = 1

ω2 + iγω − ω2
0
. (9.32)

We have poles at ±ω1 − iγ
2 , where ω1 =

(
ω2

0 −
γ2

4

)1/2
.

Now, we want to calculate this retarded Green’s function.

• For τ < 0, G (τ) = 0. Hence, ω = α+ iβ, β > 0 and e−iωt = eβτe−iατ .

• For τ > 0, ω = α− iβ, β > 0 and

G (τ) = −2iπ
∑
resid.

1
2π

e−iωτ(
ω − ω1 + iγ2

) (
ω + ω1 + iγ2

) = −e−γτ/2 sinω1τ

ω1
(9.33)

Note that in the Harmonic oscillator example we needed the γ in order to get poles in
the lower half of the plane. However, we already showed in this course that this γ always
exists in fluctuating systems. Equivalently, we could say that a response to a Harmonic
perturbation cannot be infinite in time. [remark end]

Example. Let’s inspect

χ (ω) ≡
∑
n

1
ω2 − n2ω2

0
, (9.34)

has poles on the real axis, ω ≡ ω1 + iε. Then,

χ (ω1 + iε) = π

ωω0

(
1 + 2e−

2πε
ω0 e2iπ ωqω0

)
. (9.35)

These poles blur and become a line dividing the upper and lower planes.
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The Kramers-Krönig relations imply that

χAB (ω) = χ′ (ω) + iχ′′ (ω) . (9.36)

Let ω0 ∈ R. Let’s look on a half-circle contour Γ with iε distance above the real axis.
Its integral reads ˛

Γ

χ (ω)
ω − ω0

dω = 0. (9.37)

Let us define another contour Γ′, which is half-circle around ω0 with radius δ � ε. Then,
its integral reads

˛
Γ′

χ (ω)
ω − ω0

dω = 0 =
ˆ ω0−δ

−∞
· · ·+

ˆ ∞
ω0+δ

· · · − 1
22iπχ (ω0) . (9.38)

Figure 9.1: Integration contours of the Kramers-Krönig relations.

Let’s look on the principal value,

P
ˆ ∞
−∞

χ (ω)
ω − ω0

dω =
ˆ ω0−δ

−∞
· · ·+

ˆ ∞
ω0+δ

. (9.39)

Hence,
χ (ω0) = 1

π
P
ˆ ∞
−∞

χ (ω)
ω − ω0

dω. (9.40)

Therefore we obtain the Kramers-Krönig relations,
χ′ (ω0) = + 1

π
P
ˆ ∞
−∞

χ′′ (ω)
ω − ω0

dω,

χ′′ (ω0) = − 1
π
P
ˆ ∞
−∞

χ′ (ω)
ω − ω0

dω.
(9.41)

These Kramers-Krönig relations are a result of the causality.
Recall that we had

χAB = lim
ε→0+

ˆ ∞
−∞

ξAB (ω′)
ω′ − ω − iεdω′. (9.42)
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10 Lesson 10
10.1 Quantum Statistical Mechanics
10.1.1 Back to KMS – QM at finite T

Let’s recall the Boltzmann-Gibbs weight,

ρ̂ ∝ e−βĤ . (10.1)

This has the same functional expression as the evolution operator,

U (t) = e−
i
~ Ĥt. (10.2)

Therefore, the weight can be formally written as

ρ̂ = 1
Z

e−βĤ = 1
Z
U (−i~β) . (10.3)

In other words, it is statistical mechanics as a kind of imaginary time QM.
We would identify

Z = TrU (−i~β) , (10.4)

and an expectation value of an operator

〈
Â
〉

=
Tr
(
U (−i~β) Â

)
TrU (−i~β) . (10.5)

Aficionados of Spacial Relativity and QED: this is called the “proper time method”.
It was developed by Schwinger, Feinman, Fock, and 1

2Fock.

10.1.2 Generalizations

Let’s look on an analytic continuation of time to the complex plane. Define a “time” τ
through it

~ ↔ τ . This τ has dimensions of [1/Energy]. Generalize T = 0 of QM:
Schroedinger eq.
Heisenberg eq.
S-matrix
Permutation theory

Example.

• The Shroedinger representation:

H |ψs〉 = i~ ∂
∂t
|ψs〉 ←→H |ψs〉 = ∂

∂τ
|ψs〉 (10.6a)

|ψs (τ)〉 = e−Ht |ψs (0)〉 (10.6b)

• The Heisenberg representation:

|ψH (τ)〉 = |ψs (0)〉 (10.7a)
AH (τ) = eHtASe−Ht (10.7b)
∂AH
∂τ

= [H,AH ] (10.7c)
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Remark. The de Boglie wavelength:

− ~2

2m∇
2ψ = ∂

∂τ
ψ. (10.8)

• Ext. in space: ∇2ψ ∼ ψ
λ2 ;

• Ext. in time: ∂ψ
∂τ ∼

ψ
β

• Hence, λ2 ∼ β, or λ−1 =
√

2mkBT
~2 .

10.1.3 Free Particle Hamiltonian

Let’s inspect
H =

∑
k

εkc
†
kck, (10.9)

such that 
∂ck
∂τ = [H, ck] = −εkck,
∂c†
k

∂τ =
[
H, c†k

]
= +εkc†k.

(10.10)

Therefore {
ck (τ) = e−εkτ ck (0)
c†k (τ) = e−εkτ c†k (0) .

(10.11)

The operators c†k and c†k are no longer Hermitian conjugates.

10.1.4 Interaction Representation

Here, H = H0 + V , and we freeze the time evolution associated to H0:

|ψI (τ)〉 = eH0τ |ψS (τ)〉
= eH0τe−Hτ |ψH〉
≡ U (τ) |ψH〉 .

(10.12)

Here
|ψI (τ1)〉 = U (τ1)U−1 (τ2) |ψI (τ2)〉

≡ S (τ1, τ2)︸ ︷︷ ︸
S-matrix

|ψI (τ2)〉 , (10.13)

and we have defined the S-matrix. Now,

− ∂

∂τ
U (τ) = − ∂

∂τ

(
eH0τe−Hτ

)
= eH0τV e−Hτ

= eH0τV e−H0τU (τ) ≡ VI (τ)U (τ) .
(10.14)

Hence,
− ∂

∂τ1
S (τ1, τ2) = VI (τ1)S (τ1, τ2) . (10.15)

We would therefore write U and S in a time-ordered manner:

U (τ) = T exp
[
−
ˆ τ

0
dτ ′ VI (τ ′)

]
, (10.16)

S (τ1, τ2) = T exp
[
−
ˆ τ2

τ1

dτ ′ VI (τ ′)
]
. (10.17)
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10.1.5 A Straightforward Consequence: Peierls Perturbation Th.

Let’s inspect the partition function

Z = Tr
(
e−βH

)
= Tr

(
e−βH0U (β)

)
= Tr

(
e−βH0

)︸ ︷︷ ︸
Z0

Tr
(
e−βH0U (β)

)
Tr (e−βH0)︸ ︷︷ ︸
〈U(β)〉0

. (10.18)

Therefore we define this partition as a time ordering on the interaction

Z

Z0
= e−β∆F =

〈
T exp

[
−
ˆ β

0
dτ ′ VI (τ ′)

]〉
0

. (10.19)

This is an exact relation. It can be solved using a perturbation approach.

10.1.6 Imaginary Time Green’s Function

Let’s inspect the quantum fields ψ̂λ (τ) with quantum number λ. Let us define

Gλλ′ (τ, τ ′) ≡ −
〈
T ψ̂λ (τ) ψ̂†λ′ (τ

′)
〉

= Tr
(

e−β(H−F )ψ̂λ (τ) ψ̂†λ′ (τ
′)
)
, (10.20)

where the average 〈·〉 is wrt. H, T is the time ordering operator, and F ≡ −T lnZ.
Remark. Provided that H is time independent, we have Gλλ′ (τ − τ ′). In most cases,
the quantum number λ is conserved:

Gλλ′ (τ − τ ′) = δλλ′Gλ (τ − τ ′) . (10.21)

10.1.7 Non-interacting Systems

In non-interacting system with Hamiltonian

H =
∑
λ

ελψ̂
†
λψ̂λ, ελ = Eλ︸︷︷︸

single particle energies

−µ. (10.22)

Let us seek the expectation value of

〈
ψ̂†λψ̂λ′

〉
= δλλ′ ×

{
n (ελ) bosons
f (εk) fermions

. (10.23)

where we have defined the occupation probabilities by

n (ελ) = 1
eβελ − 1 , f (ελ) = 1

eβελ + 1 . (10.24)

In a similar matter,

〈
ψ̂λψ̂

†
λ′

〉
= δλλ′ ±

〈
ψ̂†λψ̂λ′

〉
= δλλ′ ×

{
1 + n (ελ) bosons
1− f (εk) fermions

. (10.25)

Using the time evolution of the operators{
ψ̂λ (τ) = e−ελτ ψ̂λ (0)
ψ̂†λ (τ) = e−ελτ ψ̂†λ (0)

, (10.26)
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we will obtain the Green’s function

Gλλ′ (τ − τ ′) = −
[
Θ (τ − τ ′)

〈
ψ̂λψ̂

†
λ′

〉
+ ϕΘ (τ ′ − τ)

〈
ψ̂†λ′ ψ̂λ

〉]
e−ελ(τ−τ ′), (10.27)

where Θ (τ − τ ′) is the time ordering operator and

ϕ =
{

+1 bosons
−1 fermions.

(10.28)

Therefore,

Gλλ′ (τ − τ ′) = −
[
Θ (τ − τ ′)

〈
ψ̂λ (τ) ψ̂†λ′ (τ

′)
〉
±Θ (τ ′ − τ)

〈
ψ̂†λ′ (τ

′) ψ̂λ (τ)
〉]
.

(10.29)
Consider

Gλλ′ (τ) = −ϕ
〈
ψ̂†λ′ (0) ψ̂λ (τ)

〉
= −ϕTr

(
e−β(H−F )ψ̂†λ′e

τH ψ̂λe−τH
)

= −ϕTr
(

eτH ψ̂λe−τHe−β(H−F )ψ̂†λ′
)

= −ϕTr
(

eβF eτH ψ̂λe−(τ+β)H ψ̂†λ′
)

= −ϕTr
(

e−β(H−F )e(τ+β)H ψ̂λe−(τ+β)H ψ̂†λ′
)
,

(10.30)

where from the 3rd to the 4th line we demanded τ + β > 0 so that the operator is trace
class. Hence

Gλλ′ (τ) = −ϕ
〈
ψ̂λ (τ + β) ψ̂†λ′ (0)

〉
= ϕGλλ′ (τ + β) , (10.31)

or
Gλλ′ (τ) = ϕGλλ′ (τ + β) , −β < τ < 0. (10.32)

Corollary. The imaginary time Green’s function is either periodic (bosons) or anti-
periodic (fermions) wrt. τ .

10.1.8 Fourier Series Expansion – Matsubara Frequencies

Let us define {
νn = 2πn

β bosons
ωn = π(2n+1)

β fermions,
(10.33)

so that {
eiνn(τ+β) = eiνnτ bosons
eiωn(τ+β) = eiωnτeiπ(2n+1) = −eiωnτ fermions.

(10.34)

Hence

Gλλ′ (τ) =
{∑∞

−∞Gλλ′ (νn) e−iνnτ bosons∑∞
−∞Gλλ′ (ωn) e−iωnτ fermions.

(10.35)

10.1.9 Simple Examples

Free fermions or bosons:

Gλλ′ (τ) = −e−iελτ ×

{
(1 + n (ελ)) Θ (τ) + n (ελ) Θ (−τ) bosons
(1− f (εk)) Θ (τ)− f (ελ) Θ (−τ) fermions.

(10.36)
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For fermions we have

Gλ (ωn) = −
ˆ β

0
dτ e(iωn−ελ)τ (1− f (εk))

= − 1
iωn − ελ

e(iωn−ελ)β − 1
1 + e−βελ = − 1

iωn − ελ
(−1) e−ελβ + 1

1 + e−βελ ,
(10.37)

Or
Gλ (ωn) = 1

iωn − ελ
, fermions. (10.38a)

Similarly, for bosons,
Gλ (νn) = 1

iνn − ελ
, bosons. (10.38b)
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11 Lesson 11
11.1 Quantum Statistical Mechanics
11.1.1 A few additional words on Matsubara Frequencies

A flavor on how it works. We will use the contour integral method.
For example, let’s inspect free Fermions,

f (z) = 1
eβz + 1 . (11.1)

This function has poles at each z = iωn with strength −kBT . We see it immediately
from

f (z = iω + δ) = 1
eβ(iω+δ) + 1

' − 1
βδ

= −kBT

δ
. (11.2)

Now, suppose we have a general function F (iωn). Then

kBT
∑
n

F (iωn) =
ˆ
C

dz
2πiF (z) f (z) , (11.3)

and C represents some contour, and we applied Jordan’s lemma.

Figure 11.1: The contour on Matsubara Frequencies.

11.1.2 Free energy of a gas of free Fermions

Let’s recall the Free energy of a gas of Fermions,

H =
∑
λ

ελc
†
λcλ, ελ = E = λ− µ. (11.4)

The number of particles N (µ) is given by the Green’s function

Nλ =
〈
c†λcλ

〉
= Gλ

(
0−
)
, (11.5)

where
Gλ (τ) = T

∑
iωn

Gλ (ωn) e−iωnτ . (11.6)

Therefore,
N (µ) =

∑
λ

Nλ = T
∑
λ,ωn

Gλ (iωn) eiωn0+
. (11.7)
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Hence,
N (µ) = −∂F

∂µ
⇒ F = −

ˆ µ

dµ′N (µ′) . (11.8)

Explicitly,

F = −T
∑
λ,ωn

ˆ µ

dµ eiωn0+

iωn − Eλ − µ
= −T

∑
λ,ωn

eiωn0+
ln (ελ − iωn) , (11.9)

and we have
F =

∑
λ

˛ dz
2πif (z) ln (ελ − z) ez0

+
. (11.10)

Notice that F (z) ≡ ln (ελ − z) has a branch cut running from ελ → +∞. Hence

F =
∑
λ

ˆ ∞
ελ

dω
π
f (ω) = −T ln

(
1 + e−βελ

)
. (11.11)

Similarly for free Bosons we’d have the same expression, but with a − sign and another
set of ελ.

11.1.3 Another approach

Let’s look on free Bosons (photon gas). Their partition function reads

lnZ (T, V ) =
∑
modes

(
− ln

(
1− e−β~ω

))
. (11.12)

But,

− ln
(
1− e−β~ω

)
=
∞∑
n=1

1
n

e−nβ~ω

=
∞∑
n=1

1
n

ˆ ∞
0

dτ
τ
· e−ω2τ

√
τ
· e−n

2 (~β)2
4τ · ~βn4π

= ~β
4π

ˆ ∞
0

dτ
τ

1√
τ

e−ω
2τ

( ∞∑
n=1

e−n
2 (~β)2

4τ

)
.

(11.13)

We shall now use the Poisson formula
∞∑

n=−∞
e−n

2t =
√
π

t

∞∑
n=−∞

e−π
2n2
t . (11.14)

We also have to account for the zero point energy ~ω
2 (since we are dealing with

harmonic oscillators). Therefore, the partition function goes to

lnZ (T, V ) =
∑
modes

(
−β~ω2 − ln

(
1− e−β~ω

))
, (11.15)

and after some calculation we have

lnZ (T, V ) = 1
2
∑
modes

ˆ ∞
0

dτ
τ

e−ω
2τ

∞∑
n=−∞

e−n
2( 2π

~ω )2
τ . (11.16)

Note that τ has units of
[
time2].
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11.1.4 Matsubara modes

Let’s define ∂2
0 ≡ ∂2

∂t2 + PBCs (periodic boundary conditions). Hence

∂2
0ϕ (t) = λ2ϕ (t) , ϕ (t+ ~β) = ϕ (t) . (11.17)

Also,

TrM
(

e−τ∂
2
0

)
=

∞∑
n=−∞

e−n
2( 2π

~ω )2
τ . (11.18)

We now can write

lnZ (T, V ) = 1
2
∑
modes

ˆ ∞
0

dτ
τ

e−ω
2τ TrM

(
e−τ∂

2
0

)
. (11.19)

Here M represents the Matsubara frequencies. Next, let ω = c |k| and ω2 = c2k2 so
that e−ω2τ = e−c2k2τ . Therefore∑

modes
e−ω

2τ = TrM
(

e−τc
2∆
)
, (11.20)

where ∆ is the Laplacian and M is some manifold, on which we integrate.
Hence we write

lnZ (T, V ) = 1
2

ˆ ∞
0

dτ
τ

TrM
(

e−τc
2∆
)

TrM
(

e−τ∂
2
0

)
= 1

2

ˆ ∞
0

dτ
τ

TrM×M
(

e−τ(∂
2
0 +c2∆)

)
= −1

2 TrM×M ln
(
∂2

0 + c2∆
)
.

(11.21)

Here we used −
´∞

0
dτ
τ exp

(
−Ôτ

)
= ln Ô. We now use the identity Tr ln Â = ln det Â,

and obtain

lnZ (T, V ) = −1
2 ln detM×M

(
∂2

0 + c2∆
)
. (11.22)

Note that though it looks like the wave equation, it is not. First, we used a special
time derivative ∂2

0 . Second, the wave equation has a minus sign; we have a plus because
we have an imaginary time.

11.1.5 Some Calculations

We shall now see how the equation (11.22) is useful. Let the volume of the system be
V = Ld. Therefore

lnZ (T, V ) =
ˆ ∞

0

dτ
τ

( ∞∑
n=−∞

e−n
2( 2π

~ω )2
τ

) ∑
modes

e−ω
2τ

=
ˆ ∞

0

du
u
f (u)

∑
modes

e−(~β)2ω2u u ≡ τ

(~β)2

=
ˆ ∞

0

du
u
f (u)

∑
n

e−(~βcV −1/d)2
un2

. ω = c |k| = c
2πn

V 1/d (in a box)

(11.23)
Hence

lnZ (T, V ) = g
(
~βcV −1/d

)
= g (Lβ/L) , (11.24)
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and Lβ = ~βc is the deBroglie wavelength and L is the geometrical wavelength.
Since we know the partition function, we can calculate several thermodynamic prop-

erties:

F (T, V ) = − 1
β

lnZ, (11.25a)

U = − ∂

∂β
lnZ (11.25b)

P = −
(
∂F

∂V

)
T

(11.25c)

and
PV = 1

d
U. (11.26)

11.1.6 Another approach: One-loop Quantum Corrections

Now, in the previous section we cheated a bit. We obtained an equation of the form

lnZ (T, V ) = −1
2 ln detM×M

(
Â
)
. (11.27)

Now, for example, the manifold as a line M = [0, L] and Â = − d2

dx2 . The spectrum now
is λn = π2

L2n
2, n ∈ Z∗. Hence det Â =

∏∞
n=−∞ n2. In other words, we got a beautiful

result (11.22), but never stopped to ask whether this g
(
~βcV −1/d) exists at all.

11.1.7 A useful representation: ζ-functions

Let’s use a regularization to solve this problem. Let an operator Â with spectrum {λn}.
Let us define

ζA (s) =
′∑
n

1
λsn
, s ∈ C. (11.28)

Also
ln det Â = Tr ln Â =

∑
n

lnλn. (11.29)

Formally, we write

d
dsζA (s) = d

ds

′∑
n

e−s lnλn = −
∑
n

lnλne−s lnλn , (11.30)

hence
d
dsζA (s)

∣∣∣∣
s=0

= −
∑
n

lnλn = − ln det Â. (11.31)

Herr Riemann (1859) defined the ζ-function as

ζ (s) =
∞∑
n=1

1
ns
, s ∈ C (except for s = 1). (11.32)

It has some useful relations

ζ (s) = ζ (1− s)χ (s)
χ (s) ≡ 2sπs−1 sin

(
πs
2
)

Γ (1− s)

}
⇒ . . .⇒ Γ

(
s
2
)
ζ (s) = πs−

1
2 Γ
( 1−s

2
)
ζ (1− s) .

(11.33)
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So that if it is defined somewhere, it is defined everywhere. For example, we have

ζ (0) = 1 + 1 + . . . = −1
2 . (11.34)

Let’s return to our sheep.

lnZ (T, V ) = −1
2 Tr ln

∂2
0 +c2∆︷︸︸︷
Â

= −1
22

∞∑
n=1

V

ˆ d3k

(2π)3 ln
[(

2πn
~β

)2
+ c2k2

]
.

(11.35)

Now, use the relation
ˆ d3k

(2π)3 ln
(
α2 + k2) = −

Γ
(
−d2
)

(4π)
d
2
αd, (11.36)

and have

lnZ (T, V ) = V

∞∑
n=1

Γ
(
− 3

2
)

(4π)
3
2

(
2πn
~β

)3

︸ ︷︷ ︸
ζ(−3)∝ζ(4)=π4

90

(11.37)

hence

lnZ (T, V ) = π2

90

(
kBT

~c

)3
V. (11.38)

Note that all of this is for equilibrium statistical mechanics.
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