Physique mesoscopique des electrons et des photons -Structures fractales et quasi-periodiques

Photo Archive

ERIC AKKERMANS PHYSICS-TECHNION

Aux frontieres de la physique mesoscopique, Mont Orford Quebec, Canada,

Towards a quantitative description : the tools of quantum mesoscopic physics

Towards a quantitative description : the tools of quantum mesoscopic physics

1. More details on diffusion and quantum crossings

Towards a quantitative description : the tools of quantum mesoscopic physics

1. More details on diffusion and quantum crossings

2. The global scattering approach (Landauer-Schwinger)

Towards a quantitative description : the tools of quantum mesoscopic physics

1. More details on diffusion and quantum crossings

2. The global scattering approach (Landauer-Schwinger)

3. How to relate **local** quantum crossings to the **global** scattering approach ?

Towards a quantitative description : the tools of quantum mesoscopic physics

1. More details on diffusion and quantum crossings

2. The global scattering approach (Landauer-Schwinger)

3. How to relate **local** quantum crossings to the **global** scattering approach ?

4. A brief overview on Anderson localization phase transition

Multiple scattering of electrons

2 characteristic lengths:

Wavelength: $\lambda_F = k_F^{-1}$ Elastic mean free path: l (Disorder - Origin ?)

Weak disorder $\lambda_F \ll l$: independent scattering events

Multiple scattering of electrons

2 character congths: Wavelength: $\lambda_F = k_F^{-1}$ Elastic mean free path: l (Disorder - Origin ?)

Weak disorder $\lambda_F \ll l$: independent scattering events

Probability of quantum diffusion

Propagation of a wavepacket centered at energy ϵ between any two points. It is obtained from the probability amplitude (Green's function for the afficionados !): $G_{\epsilon}(\mathbf{r}, \mathbf{r}') = \sum_{j} A_{j}(\mathbf{r}, \mathbf{r}')$

Superposition of amplitudes associated to all multiple scattering trajectories that relate $r \ {\rm and} \ r'$.

Probability of quantum diffusion

Propagation of a wavepacket centered at energy ϵ between any two points. It is obtained from the probability amplitude (Green's function for the afficionados !): $G_{\epsilon}(\mathbf{r}, \mathbf{r}') = \sum_{j} A_{j}(\mathbf{r}, \mathbf{r}')$

Superposition of amplitudes associated to all multiple scattering trajectories that relate $r \ {\rm and} \ r'$.

The probability of quantum diffusion averaged over disorder is:

Before averaging : speckle pattern (full coherence)Configuration average: most of the contributions vanish because of large phase differences.

Before averaging : speckle pattern (full coherence)Configuration average: most of the contributions vanish because of large phase differences.

A new design !

Vanishes upon averaging

$$r \leftarrow r' \quad \square \qquad P_{cl}(\mathbf{r}, \mathbf{r}') = \overline{\sum_{j} |A_j(\mathbf{r}, \mathbf{r}')|^2}$$
 Diffuson

The diffusion approximation:

How to calculate $P_{cl}(\mathbf{r}, \mathbf{r}')$? It may be obtained as an iteration equation Iteration of the Drude-Boltzmann term $P_0(r, r') = \overline{G}(r, r')\overline{G}^*(r', r) \propto \frac{e^{-R_{l_e}}}{R^2}$

 $P_{cl}(\mathbf{r},\mathbf{r}') = P_0(\mathbf{r},\mathbf{r}') + \frac{1}{\tau_e} \int d\mathbf{r}'' P_{cl}(\mathbf{r},\mathbf{r}'') P_0(\mathbf{r}'',\mathbf{r}')$

Summation over scattering sequences

The diffusion approximation:

How to calculate $P_{cl}(\mathbf{r}, \mathbf{r}')$? It may be obtained as an iteration equation Iteration of the Drude-Boltzmann term $P_0(r, r') = \overline{G}(r, r')\overline{G}^*(r', r) \propto \frac{e^{-R_{l_e}}}{R^2}$

$$P_{cl}(\mathbf{r},\mathbf{r}') = P_0(\mathbf{r},\mathbf{r}') + \frac{1}{\tau_e} \int d\mathbf{r}'' P_{cl}(\mathbf{r},\mathbf{r}'') P_0(\mathbf{r}'',\mathbf{r}')$$

In the limit of slow spatial and temporal variations, $|\mathbf{r} - \mathbf{r}'| \gg l_e$ and $t \gg \tau_e$

Summation over

scattering sequences

$$\frac{\partial}{\partial t} - D\Delta \Big] P_{cl}(\mathbf{r}, \mathbf{r}', t) = \delta(\mathbf{r} - \mathbf{r}')\delta(t)$$

with $D = \frac{v_g l_e}{2}$

(diffusion equation)

Did we miss something ?

The probability of quantum diffusion must be *normalized*,

$$\int dr' P(r,r',t) = 1 \quad \forall t \iff P(q=0,\omega) = \frac{i}{\omega}$$

The probability of quantum diffusion must be *normalized*,

$$\int dr' P(r,r',t) = 1 \quad \forall t \iff P(q=0,\omega) = \frac{i}{\omega}$$

At the approximation of the Diffuson, we have from the iteration eq. $P_{cl}(q,\omega) = \frac{P_0(q,\omega)}{1 - \frac{P_0(q,$

The probability of quantum diffusion must be *normalized*,

$$\int dr' P(r,r',t) = 1 \quad \forall t \iff P(q=0,\omega) = \frac{i}{\omega}$$

At the approximation of the Diffuson, we have from the iteration eq. $P_{cl}(q,\omega) = \frac{P_0(q,\omega)}{P_0(q,\omega)}$

$$1 - \frac{P_0(q,\omega)}{\tau_e}$$

$$1 - \frac{P_0(q,\omega)}{\tau_e}$$

$$P_{cl}(\mathbf{r},\mathbf{r}') = P_0(\mathbf{r},\mathbf{r}') + \frac{1}{\tau} \int d\mathbf{r}'' P_{cl}(\mathbf{r},\mathbf{r}'') P_0(\mathbf{r}'',\mathbf{r}')$$

The probability of quantum diffusion must be *normalized*,

$$\int dr' P(r,r',t) = 1 \quad \forall t \iff P(q=0,\omega) = \frac{l}{\omega}$$

At the approximation of the Diffusor

$$P_{cl}(q,\omega) = \frac{P_0(q|P_0(r,r')=\bar{G}(r,r')\bar{G}^*(r',r) \propto \frac{e^{-\frac{R'}{l}}}{R^2}}{1-\frac{P_0(r,r')\bar{G}^*(r',r) \propto \frac{e^{-\frac{R'}{l}}}{R^2}}{\tau_e}}$$
$$P_0(q,\omega) = \frac{\tau_e}{1-i\omega\tau_e} \to P_{cl}(q=0,\omega) = \frac{i}{\omega}$$

the iteration

since

eq.

The Diffuson provides a normalized approx. to the probability of Quantum diffusion ! Missing terms ?

The probability of quantum diffusion must be *normalized*,

$$\int dr' P(r,r',t) = 1 \quad \forall t \iff P(q=0,\omega) = \frac{i}{\omega}$$

At the approximation of the Diffuson, we have from the iteration eq. $P_{cl}(q,\omega) = \frac{P_0(q,\omega)}{1 - \frac{P_0(q,\omega$

since

$$P_0(q,\omega) = \frac{\tau_e}{1 - i\omega\tau_e} \to P_{cl}(q=0,\omega) = \frac{i}{\omega}$$

The Diffuson provides a normalized approx. to the probability of Quantum diffusion ! Missing terms ?

For time reversal invariant systems, Green's functions have the property:

G(r,r',t) = G(r',r,t)

For time reversal invariant systems, Green's functions have the property:

$$G(r,r',t) = G(r',r,t)$$

<u>Reciprocity thm.</u> states that the complex amplitude associated to a multiple scattering sequence and its time reversed are equal.

For time reversal invariant systems, Green's functions have the property:

$$G(r,r',t) = G(r',r,t)$$

<u>Reciprocity thm.</u> states that the complex amplitude associated to a multiple scattering sequence and its time reversed are equal.

By reversing the two amplitudes of $P_{cl}(r, r')$ gives $P_{cl}(r', r)$

For time reversal invariant systems, Green's functions have the property:

$$G(r,r',t) = G(r',r,t)$$

<u>Reciprocity thm.</u> states that the complex amplitude associated to a multiple scattering sequence and its time reversed are equal.

By reversing the two amplitudes of $P_{cl}(r, r')$ gives $P_{cl}(r', r)$

For time reversal invariant systems, Green's functions have the property:

$$G(r,r',t) = G(r',r,t)$$

<u>Reciprocity thm.</u> states that the complex amplitude associated to a multiple scattering sequence and its time reversed are equal.

By reversing the two amplitudes of $P_{cl}(r, r')$ gives $P_{cl}(r', r)$

Reversing only ONE of the two amplitudes should also give a contribution to the probability, but it is not anymore a Diffuson!

For time reversal invariant systems, Green's functions have the property:

$$G(r,r',t) = G(r',r,t)$$

<u>Reciprocity thm.</u> states that the complex amplitude associated to a multiple scattering sequence and its time reversed are equal.

By reversing the two amplitudes of $P_{cl}(r, r')$ gives $P_{cl}(r', r)$

Reversing only ONE of the two amplitudes should also give a contribution to the probability, but it is not anymore a Diffuson!

The Diffuson approx. does not take into account all contributions to the probability.

 $r_1 \rightarrow r_a \rightarrow r_b \cdots \rightarrow r_y \rightarrow r_z \rightarrow r_2$

 $r_1 \rightarrow r_a \rightarrow r_b \cdots \rightarrow r_y \rightarrow r_z \rightarrow r_2$

 $r_{2} \rightarrow r_{z} \rightarrow r_{y} \cdots \rightarrow r_{b} \rightarrow r_{a} \rightarrow r_{1}$

 $r_1 \rightarrow r_a \rightarrow r_b \cdots \rightarrow r_y \rightarrow r_z \rightarrow r_2$

 $\mathbf{r_2} \rightarrow \mathbf{r_z} \rightarrow \mathbf{r_y} \cdots \rightarrow \mathbf{r_b} \rightarrow \mathbf{r_a} \rightarrow \mathbf{r_1}$

$$\overline{|A(\mathbf{k}, \mathbf{k}')|^2} = \sum_{\mathbf{r_1}, \mathbf{r_2}} |f(\mathbf{r_1}, \mathbf{r_2})|^2 \Big[1 + e^{i(\mathbf{k} + \mathbf{k}') \cdot (\mathbf{r_1} - \mathbf{r_2})} \Big]$$

Generally, the interference term vanishes due to the sum over r_1 and r_2 , except for two notable cases:

$$\overline{|A(\mathbf{k}, \mathbf{k}')|^2} = \sum_{\mathbf{r_1}, \mathbf{r_2}} |f(\mathbf{r_1}, \mathbf{r_2})|^2 \Big[1 + e^{i(\mathbf{k} + \mathbf{k}') \cdot (\mathbf{r_1} - \mathbf{r_2})} \Big]$$

Generally, the interference term vanishes due to the sum over r_1 and r_2 , except for two notable cases:

 $\mathbf{k} + \mathbf{k}' \simeq 0$: Coherent backscattering

Coherent backscattering
$$\overline{|A(\mathbf{k}, \mathbf{k}')|^2} = \sum_{\mathbf{r_1}, \mathbf{r_2}} |f(\mathbf{r_1}, \mathbf{r_2})|^2 \Big[1 + e^{i(\mathbf{k} + \mathbf{k}') \cdot (\mathbf{r_1} - \mathbf{r_2})} \Big]$$

Generally, the interference term vanishes due to the sum over r_1 and r_2 , except for two notable cases:

 $\mathbf{r_1} - \mathbf{r_2} \simeq 0$: closed loops, weak localization and $\phi_0/2$ periodicity of the Sharvin effect.

A Diffusion is the product of 2 complex amplitudes: it can be viewed as a" diffusive trajectory with a phase". Coherent effects result from the Cooperon which can be viewed as a self-crossing

A Diffuson is the product of 2 complex amplitudes: it can be viewed as a" diffusive trajectory with a phase". Coherent effects result from the Cooperon which can be viewed as a self-crossing

Crossing mixes the amplitudes and pair them differently \Rightarrow phase shift. Small phase shift $\leq 2\pi \Rightarrow$ crossing spatially localized

A Diffuson is the product of 2 complex amplitudes: it can be viewed as a" diffusive trajectory with a phase". Coherent effects result from the Cooperon which can be viewed as a self-crossing

Crossing mixes the amplitudes and pair them differently \Rightarrow phase shift. Small phase shift $\leq 2\pi \Rightarrow$ crossing spatially localized

volume of a crossing $\lambda^{d-1} l_e$

A Diffuson is the product of 2 complex amplitudes: it can be viewed as a" diffusive trajectory with a phase". Coherent effects result from the Cooperon which can be viewed as a self-crossing

Crossing mixes the amplitudes and pair them differently \Rightarrow phase shift. Small phase shift $\leq 2\pi \Rightarrow$ crossing spatially localized

Crossing probability of 2 diffusons:

volume of a crossing $\lambda^{d-1} l_{e}$

$$p_{\times} = \int_{0}^{\tau_{D}} \frac{\lambda^{d-1} v_{g} dt}{L^{d}} = \frac{1}{g}$$

 $g = \frac{l_e}{3\lambda^{d-1}} L^{d-2} \gg 1$

Weak disorder limit: $\lambda \ll l \Rightarrow g \gg 1$

Weak disorder limit: $\lambda \ll l \Rightarrow g \gg 1$

Probability of a crossing $(\propto 1/g)$ is small: phase coherent corrections to the classical limit are small.

Weak disorder limit: $\lambda \ll l \Rightarrow g \gg 1$

Probability of a crossing $(\propto 1/g)$ is small: phase coherent corrections to the classical limit are small.

Quantum crossings modify the classical probability (*i.e.* the Diffuson) but it remains normalized.

Weak disorder limit: $\lambda \ll l \Rightarrow g \gg 1$

Probability of a crossing $(\propto 1/g)$ is small: phase coherent corrections to the classical limit are small.

Quantum crossings modify the classical probability (*i.e.* the Diffuson) but it remains normalized.

Due to its long range behavior, the Diffuson propagates (localized) coherent effects over large distances.

Weak disorder limit: $\lambda \ll l \Rightarrow g \gg 1$

Probability of a crossing $(\propto 1/g)$ is small: phase coherent corrections to the classical limit are small.

Quantum crossings modify the classical probability (*i.e.* the Diffuson) but it remains normalized.

Due to its long range behavior, the Diffuson propagates (localized) coherent effects over large distances.

Quantum crossings are independently distributed :

We can generate higher order corrections to the Diffuson as an expansion in powers of 1/g

How to calculate $P_{int}(t)$?

 $P_{\text{int}}(t) = \int P_{\text{int}}(r,r,t) d^d r$

Return probability is doubled !!

If time reversal invariance

Probability P_{cl}+ P_{int}

Important difference :

 $P_{cl}(r,r',t) \implies$ paired trajectories follow the same direction

 $P_{int}(r, r', t) \implies$ paired trajectories follow opposite directions

 $P_{\text{int}}(r,r,t) = P_{cl}(r,r,t)$

If time reversal invariance

If phase coherence between the reversed trajectories is preserved

In the presence of a dephasing mechanism that breaks time coherence, only trajectories with $t < \tau_{\phi}$ contribute.

In the presence of a dephasing mechanism that breaks time coherence, only trajectories with $t < \tau_{\phi}$ contribute.

In the presence of an Aharonov-Bohm flux, paired amplitudes in the Cooperon acquire opposite phases:

In the presence of a dephasing mechanism that breaks time coherence, only trajectories with $t < \tau_{\phi}$ contribute.

In the presence of an Aharonov-Bohm flux, paired amplitudes in the Cooperon acquire opposite phases:

Sample specific interference

Phase difference $2\pi \frac{\phi}{\phi_0}$

Oscillates with period h/e

Survives disorder average

Phase difference $4\pi \frac{\phi}{\phi_0}$

Oscillates with period h/2e

Weak localization- Electronic transport

To the classical probability corresponds the Drude conductance G_{cl}

Weak localization- Electronic transport

To the classical probability corresponds the Drude conductance G_{cl}

First correction $(\propto 1/g)$ involves one quantum crossing and the probability $p_o(\tau_D)$ to have a closed loop:

$$\frac{\Delta G}{G_{cl}} = -p_o(\tau_D)$$

$$\tau_D = L^2/D$$

Weak localization- Electronic transport

To the classical probability corresponds the Drude conductance G_{cl}

First correction $(\propto 1/g)$ involves one quantum crossing and the probability $p_o(\tau_D)$ to have a closed loop:

$$\frac{\Delta G}{G_{cl}} = -p_o(\tau_D)$$

$$\tau_D = L^2/D$$

$$p_o(\tau_D) = \frac{1}{g} \int_0^{\tau_D} Z(t) \frac{dt}{\tau_D}$$

quantum correction decreases the conductance: weak localization

Return probability
$$Z(t) = \int dr P_{int}(r, r, t) = \left(\frac{\tau_D}{4\pi t}\right)^{d/2}$$

Quantum mesoscopic physics :

the global scattering approach

(Landauer-Schwinger)

An Intermezzo ! global

Aim of the intermezzo:

to present in general terms, a **global (i.e. non local)** approach to account for both the <u>thermodynamic</u> and the <u>non equilibrium</u> behavior of **quantum complex systems**

quantum numbers.

Elastic disorder does not break phase coherence and it does not introduce irreversibility Disorder introduces randomness and complexity: All symmetries are lost, there are no good quantum numbers.

Exemple: speckle patterns in optics

Diffraction through a circular aperture: order in interference

Transmission of light through a disordered suspension: complex system

Aim of the intermezzo:

to present in general terms, a **global (i.e. non local)** approach to account for both the <u>thermodynamic</u> and the <u>non equilibrium</u> behavior of **quantum complex systems**

In complex systems (metals, dielectrics, ...), it is difficult to obtain local quantities and sometimes it is even impossible. But in many cases, it is also not necessary.

Aim of the intermezzo:

to present in general terms, a **global (i.e. non local)** approach to account for both the <u>thermodynamic</u> and the <u>non equilibrium</u> behavior of **quantum complex systems**

In complex systems (metals, dielectrics, ...), it is difficult to obtain local quantities and sometimes it is even impossible. But in many cases, it is also not necessary.

Use a global description : Landauer-Schwinger approach **Basics**: Usually we start from local differential equations and try to solve them with appropriate boundary conditions.

Express local physical quantities, e.g. electrical conductivity, dielectric function in terms of local Green's functions for the quantum coherent matter field (electrons)

Basics: Usually we start from local differential equations and try to solve them with appropriate boundary conditions.

Express local physical quantities, e.g. electrical conductivity, dielectric function in terms of **local Green's functions** for the quantum coherent matter field (electrons)

$$\sigma_{xx}(\omega) = s \frac{\hbar}{\pi \Omega} \operatorname{Tr} \left[\hat{j}_x \operatorname{Im} \hat{G}^R_{\epsilon_F} \hat{j}_x \operatorname{Im} \hat{G}^R_{\epsilon_F - \omega} \right]$$

$$\sigma_{\alpha\beta}(\mathbf{r},\mathbf{r}') = -s \frac{e^2 \hbar^3}{2\pi m^2} \left[\partial_{\alpha} \mathrm{Im} G^R_{\epsilon}(\mathbf{r},\mathbf{r}') \partial'_{\beta} \mathrm{Im} G^R_{\epsilon}(\mathbf{r}',\mathbf{r}) - \mathrm{Im} G^R_{\epsilon}(\mathbf{r},\mathbf{r}') \partial_{\alpha} \partial'_{\beta} \mathrm{Im} G^R_{\epsilon}(\mathbf{r}',\mathbf{r}) \right]$$

This approach is often doomed to failure due to either :

This approach is often doomed to failure due to either :

I. local divergences of the Green's functions close to a boundary

PHYSICAL REVIEW D

VOLUME 20, NUMBER 12

15 DECEMBER 1979

Boundary effects in quantum field theory

D. Deutsch and P. Candelas

Center for Theoretical Physics, Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (Received 15 September 1978)

Electromagnetic and scalar fields are quantized in the region near an arbitrary smooth boundary, and the renormalized expectation value of the stress-energy tensor is calculated. The energy density is found to diverge as the boundary is approached. For nonconformally invariant fields it varies, to leading order, as the inverse fourth power of the distance from the boundary. For conformally invariant fields the coefficient of this leading term is zero, and the energy density varies as the inverse cube of the distance. An asymptotic series for the renormalized stress-energy tensor is developed as far as the inverse-square term in powers of the distance. Some criticisms are made of the usual approach to this problem, which is via the "renormalized mode sum energy," a quantity which is generically infinite. Green's-function methods are used in explicit calculations, and an iterative scheme is set up to generate asymptotic series for Green's functions near a smooth boundary. Contact is made with the theory of the asymptotic distribution of eigenvalues of the Laplacian operator. The method is extended to nonflat space-times and to an example with a nonsmooth boundary.

This approach is often doomed to failure due to either :

I. local divergences of the Green's functions close to a boundary

PHYSICAL REVIEW D

VOLUME 20, NUMBER 12

15 DECEMBER 1979

Boundary effects in quantum field theory

D. Deutsch and P. Candelas

Center for Theoretical Physics, Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (Received 15 September 1978)

Electromagnetic and scalar fields are quantized in the region near an arbitrary smooth boundary, and the renormalized expectation value of the stress-energy tensor is calculated. The energy density is found to diverge as the boundary is approached. For nonconformally invariant fields it varies, to leading order, as the inverse fourth power of the distance from the boundary. For conformally invariant fields the coefficient of this leading term is zero, and the energy density varies as the inverse cube of the distance. An asymptotic series for the renormalized stress-energy tensor is developed as far as the inverse-square term in powers of the distance. Some criticisms are made of the usual approach to this problem, which is via the "renormalized mode sum energy," a quantity which is generically infinite. Green's-function methods are used in explicit calculations, and an iterative scheme is set up to generate asymptotic series for Green's functions near a smooth boundary. Contact is made with the theory of the asymptotic distribution of eigenvalues of the Laplacian operator. The method is extended to nonflat space-times and to an example with a nonsmooth boundary.

2. average over existing intrinsic disorder : no analytic known solution of the Anderson problem either for weak or strong disorder.

3. It can be also because we simply do not have local differential eqs., e.g. on <u>fractals</u>

3. It can be also because we simply do not have local differential eqs., e.g. on <u>fractals</u>

4. Or because the physical quantity we wish to calculate <u>does not</u> <u>have a local description</u> : for instance there exists a local wave eq. but we do not have a (local) Kubo formula for the diffusion coefficient.

Transport in a metal : Landauer approach

I. Electric transport:

Local Kubo formulation for the electric current:

$$j(x) = \int dx' \,\sigma(x, x') \, E(x') \Longrightarrow j(x) = \sigma E(x)$$

where $\sigma(x, x')$ is the local conductivity (response) expressed in terms of local solutions (Green's functions).

Transport in a metal : Landauer approach

I. Electric transport:

Local Kubo formulation for the electric current:

$$j(x) = \int dx' \,\sigma(x, x') E(x') \Longrightarrow j(x) = \sigma E(x)$$

where $\sigma(x, x')$ is the local conductivity (response) expressed in terms of local solutions (Green's functions).

The Landauer formula proposes an <u>equivalent</u> global description based on <u>SCattering data.</u>

Transport in a metal : Landauer approach

I. Electric transport:

Local Kubo formulation for the electric current:

$$j(x) = \int dx' \,\sigma(x, x') \, E(x') \Longrightarrow j(x) = \sigma E(x)$$

where $\sigma(x, x')$ is the local conductivity (response) expressed in terms of local solutions (Green's functions).

The Landauer formula proposes an <u>equivalent</u> global description based on <u>SCattering data.</u>

$$\underbrace{a}_{a} \underbrace{b}_{a'} \underbrace{a}_{b'} \underbrace{a}_{b'} \underbrace{a}_{b'} \underbrace{a}_{c'} \underbrace{f}_{a,b} \underbrace{f}$$

2. Waves through complex disordered/chaotic media:

for instance there exists a local wave eq. but we do not have a (local) Kubo formula for the diffusion coefficient.

But there is a well defined Landauer description based on the Scattering matrix-Transmission coefficient, etc.

Waves in free space : Density of states $ho_0(\omega)$ per unit volume.

Waves in free space : Density of states $\rho_0(\omega)$ per unit volume.

Scatterer:

Waves in free space : Density of states $\rho_0(\omega)$ per unit volume.

The <u>S-matrix</u> accounts for all relevant changes : e.g. DOS $\rho(\omega)$ f the waves in the presence of the scatterer is:

$$\rho(\omega) - \rho_0(\omega) = -\frac{1}{\pi} \Im m \frac{d}{d\omega} \ln Det S(\omega)$$
 Krein formula

Waves in free space : Density of states $\rho_0(\omega)$ per unit volume.

The <u>S-matrix</u> accounts for all relevant changes : e.g. DOS $\rho(\omega)$ f the waves in the presence of the scatterer is:

$$\rho(\omega) - \rho_0(\omega) = -\frac{1}{\pi} \Im m \frac{d}{d\omega} \ln Det S(\omega)$$
 Krein formula

Thermodynamic changes can be deduced from this formula:

Variation of the partition function (Dashen, Ma, Bernstein):

$$Tr \, e^{-\beta H} - Tr e^{-\beta H_0} = -\frac{1}{\pi} \int d\omega \, e^{-\beta \omega} \, \Im m \, \frac{d}{d\omega} \ln Det \, S(\omega) \qquad \qquad H = H_0 + V$$

Energy spectrum of an electron in a Aharonov-Bohm magnetic flux

$$\epsilon_n = \frac{\hbar^2}{2m} \left(\frac{2\pi}{L}\right)^2 (n-\varphi)^2$$

Easy !

Disordered metal

Less easy !

$$I(\phi) = \frac{1}{2i\pi} \int dE \frac{\partial}{\partial \phi} \ln Det S(E,\phi)$$

$$I(\phi) = \frac{1}{2i\pi} \int dE \frac{\partial}{\partial \phi} \ln Det S(E,\phi)$$

Electrical conductance G (out of equilibrium)

$$G = \frac{2e^2}{\pi\hbar} \left(\Im m \frac{\partial}{\partial\phi} \ln Det S(E_F, \phi(0)) \right)^2$$

Equivalent to the Landauer formula.

$$j(x) = \int dx' \,\sigma(x, x') E(x') \Longrightarrow j(x) = \sigma E(x)$$

QUANTUM CONDUCTANCE AND SHOT NOISE

Slab geometry - two-terminal conductors

$$G = \frac{e^2}{h} Trtt^{\dagger}$$

Noise power is defined as the symmetric current-current correlation function

$$S(\omega,V) = \int dt \, e^{i\omega t} \left\langle \delta \hat{I}(t) \delta \hat{I}(0) + \delta \hat{I}(0) \delta \hat{I}(t) \right\rangle$$

where $\delta \hat{I}(t) = \hat{I}(t) - \langle I \rangle$ are electronic current operators

Equilibrium noise (V=0)

$$S(\omega,0) = 2G\omega \operatorname{coth}\left(\frac{\omega}{2T}\right)$$

(Nyquist fluctuation-dissipation)

Non-equilibrium noise $V \neq 0$ at T = 0

$$S(0,V) - S(0,0) = \frac{e^2}{h} |2eV| Tr \ tt^{\dagger} (1 - tt^{\dagger})$$

Excess noise measures the second cumulant of charge fluctuations :

$$S(0,V)-S(0,0)\propto \langle Q_t^2 \rangle - \langle Q_t \rangle^2$$

THE FANO FACTOR

 T_{ab} is the transmission coefficient along the channel ab

F TAKES A UNIVERSAL VALUE 1/3 FOR WEAKLY DISORDERED "ONE-DIMENSIONAL" METALS

Well known examples (Landauer-Schwinger approach).

Well known examples (Landauer-Schwinger approach).

Basic idea of Landauer-Schwinger is to provide a non local approach by means of tools like the S-matrix.

Physically relevant quantities of a system are expressed in terms of in-out signals, including correlations.

Well known examples (Landauer-Schwinger approach).

Basic idea of Landauer-Schwinger is to provide a non local approach by means of tools like the S-matrix.

Physically relevant quantities of a system are expressed in terms of <u>in-out signals</u>, including correlations.

This idea has been successfully used in Quantum mesoscopic physics, quantum optics, quantum field theory,...

Well known examples (Landauer-Schwinger approach).

Basic idea of Landauer-Schwinger is to provide a non local approach by means of tools like the S-matrix.

Physically relevant quantities of a system are expressed in terms of <u>in-out signals</u>, including correlations.

This idea has been successfully used in Quantum mesoscopic physics, quantum optics, quantum field theory,...

It is relatively new and promising in other fields:

1.Shannon information theory- MIMO (Multiple input-Multiple output)

- 2.Full counting statistics and shot noise (quantum mesoscopic physics)
- 3.Out of equilibrium quantum systems- Wigner time delay
- 4.Casimir effects

5.Non-perturbative effects (Unruh effects, Hawking radiation, Schwinger pair production,...) 6.Waves and quantum mechanics on fractal structures.

Energy spectrum - Thermodynamics - Transport?

Energy spectrum - Thermodynamics - Transport?

Energy spectrum - Thermodynamics - Transport?

and calculate the S-matrix : possible

- How to connect the 2 previous approaches:
- * Local quantum crossings
- * Global Landauer scattering formalism

Coherent backscattering and Saturn rings

Cassini mission 2006

Beyond the conductance

、 /

Fluctuations and correlations

transmission coefficient

transmission coefficient :

$$C_{aba'b'} = \frac{\overline{\delta T_{ab}} \delta T_{a'b'}}{\overline{T}_{ab} \overline{T}_{a'b'}}$$

Slab geometry

Fluctuations and correlations

transmission coefficient

Slab geometry

$$T_{ab} = \left| t_{ab} \right|^2$$

correlations involve the product of 4 complex amplitudes with or without quantum crossings

Correlation function of the transmission coefficient :

$$C_{aba'b'} = \frac{\overline{\delta T_{ab}} \delta T_{a'b'}}{\overline{T}_{ab} \overline{T}_{a'b'}}$$

(b)

(d)

a a

 $a'_{a'}$

Fluctuations and correlations

transmission coefficient

(c)

(e)

b'

b'

a a :----

a' a'

 $T_{ab} = \left| t_{ab} \right|^2$

correlations involve the product of 4 complex amplitudes with or without quantum crossings

Correlation function of the transmission coefficient :

$$C_{aba'b'} = \frac{\overline{\delta T_{ab}} \delta T_{a'b'}}{\overline{T}_{ab} \overline{T}_{a'b'}}$$

Slab geometry

+

b'

···. b b'

No conductance fluctuations !

Speckle fluctuations vs conductance fluctuations

 $\overline{\delta T_{ab} \delta T_{a'b'}} = \frac{2}{3g} \overline{T_{ab}} \ \overline{T_{a'b'}} \ F(b,b')$

Angular correlations of intermediate range

$$\overline{\delta g^2} = \frac{2}{3g} \sum_{a,a',b,b'} \overline{T_{ab}} \ \overline{T_{a'b'}} \ F(b,b') : 0$$

No conductance correlations !

Speckle fluctuations vs conductance fluctuations

 $\overline{\delta T_{ab}} \delta \overline{T_{a'b'}} = \frac{2}{15g^2} \overline{T_{ab}} \overline{T_{a'b'}}$

Long-range angular correlations, with very weak amplitude

Local quantum effects (crossings) are propagated over long distances through classical diffusion

Fluctuations and correlations - Summary

$$\overline{\delta T_{ab}\delta T_{a'b'}} = \overline{T_{ab}} \ \overline{T_{a'b'}} \left(f(a,a',b,b') + \frac{2}{3g} \left[F(a,a') + F(b,b') \right] + \frac{2}{15g^2} \right)$$

Fluctuations and correlations - Summary

$$\overline{\delta T_{ab}\delta T_{a'b'}} = \overline{T_{ab}} \ \overline{T_{a'b'}} \left(f(a,a',b,b') + \frac{2}{3g} \left[F(a,a') + F(b,b') \right] + \frac{2}{15g^2} \right)$$

$$\overline{\delta g^2} = \frac{2}{15g^2} \sum_{a,a',b,b'} \overline{T_{ab}} \ \overline{T_{a'b'}} = \frac{2}{15g^2} \sum_{a,a',b,b'} \overline{T_{a'b'}} = \frac{2}{15g^2} \sum_{a,a',b,b'} \overline{T_{ab}} \ \overline{T_{a'b'}} = \frac{2}{15g^2} \sum_{a,a',b,b'} \overline{T_{ab}} \ \overline{T_{a'b'}} = \frac{2}{15g^2} \sum_{a,a',b,b'} \overline{T_{a'b'}} = \frac{2}{15g^2} \sum_{a,a',b,b'} \overline{T_{ab}} \ \overline{T_{a'b'}} = \frac{2}{15g^2} \sum_{a,a',b,b'} \overline{T_{ab}} \ \overline{T_{a'b'}} = \frac{2}{15g^2} \sum_{a,a',b,b'} \overline{T_{ab}} \ \overline{T_{a'b'}} = \frac{2}{15g^2} \sum_{a,a',b,b'} \overline{T_{a'b'}} = \frac{2}{15g^2} \sum_{a,a',b',b'} \overline{T_{a'b'}} = \frac{2}{15g^2} \sum_{a'b',b',b'} \overline{T_{a'b'}} = \frac$$

Universal conductance fluctuations

A direct consequence: quantum corrections to electrical transport

Cla Not that simple !
Not that simple !
Need to sum up Feynman diagrams.
So that
$$\Delta G = \# \frac{e^2}{h}$$
 is universal

THE FANO FACTOR

F TAKES A UNIVERSAL VALUE 1/3 FOR WEAKLY DISORDERED "ONE-DIMENSIONAL" METALS

Shot noise and C_2 - correlation - Is there a relation?

Shot noise

 $S = 2eI \times \frac{1}{3}$ Fano factor

Shot noise and C_2 - correlation - Is there a relation?

 $G = \frac{e^2}{h} Tr tt^{\dagger}$

 $\left\langle \delta g^2 \right\rangle = \left\langle \left(Tr \ tt^{\dagger} \right)^2 \right\rangle - \left\langle Tr \ tt^{\dagger} \right\rangle^2 = \frac{2}{15}$

 $S = 2\frac{e^2}{h}eV Tr tt^{\dagger}(1-tt^{\dagger})$

 $\left\langle Tr tt^{\dagger}tt^{\dagger}\right\rangle?$ $\left(\sum_{aba'b'} t_{ab} t_{ba'}^* t_{a'b'} t_{b'a}^*\right)$

 $g^2 \times \frac{4}{3g}$

Blanter, Büttiker (97)

Summary ... and closed loops :

$$Z(t) = \int dr P_{cl}(r,r,t) = \left(\frac{\tau_D}{4\pi t}\right)^{d/2}$$

Summary ... and closed loops :

Weak localization corrections to the electrical conductance

$$\frac{\Delta G}{G_{cl}} \propto -\frac{1}{g} \int_{0}^{\tau_{D}} Z(t) \frac{dt}{\tau_{D}}$$

Conductance fluctuations

An exercise

Universal conductance fluctuations

Universal conductance fluctuations

There are 4 diagrams : 2 involve diffusons and 2 cooperons.

How to differentiate them ?

Universal conductance fluctuations

There are 4 diagrams : 2 involve diffusons and 2 cooperons.

How to differentiate them ?

sensitive to an applied Aharonov-Bohm magnetic flux ϕ

Universal conductance fluctuations

46 Si-doped GaAs samples at 45 mK

(Mailly-Sanquer)

We expect the conductance fluctuations to be reduced by a factor 2

vanishing of the weak localization correction for the same magnetic field

In the presence of incoherent processes $L > L_{\phi}$:

 δG^2

 $\overline{\delta G^2} \to 0$

Beyond weak disorder - a glimpse of Anderson localization phase transition

Weak disorder physics

Weak disorder limit: $\lambda \ll l \Rightarrow g \gg 1$

Probability of a crossing $(\propto 1/g)$ is small: phase coherent corrections to the classical limit are small.

Quantum crossings modify the classical probability (*i.e.* the Diffuson) but it remains normalized.

Due to its long range behavior, the Diffuson propagates (localized) coherent effects over large distances.

Quantum crossings are independently distributed :

We can generate higher order corrections to the Diffuson as an expansion in powers of 1/g

A quantum phase transition: Anderson localization

Expansion in powers of quantum crossings 1/g allows to calculate quantum corrections to physical quantities.

A quantum phase transition: Anderson localization

Expansion in powers of quantum crossings 1/g allows to calculate quantum corrections to physical quantities.

The diffusion coefficient D is reduced (weak localization) and becomes size dependent :

$$D(L) = D\left(1 - \frac{1}{\pi g} \ln\left(\frac{L}{l}\right) + \left(\frac{1}{\pi g} \ln\left(\frac{L}{l}\right)\right)^2 +\right) \qquad (d = 2)$$

This <u>singular</u> perturbation expansion is not a simple coincidence but an expression of scaling

A quantum phase transition: Anderson localization

Expansion in powers of quantum crossings 1/g allows to calculate quantum corrections to physical quantities.

The diffusion coefficient D is reduced (weak localization) and becomes size dependent :

$$D(L) = D\left(1 - \frac{1}{\pi g} \ln\left(\frac{L}{l}\right) + \left(\frac{1}{\pi g} \ln\left(\frac{L}{l}\right)\right)^2 +\right) \qquad (d = 2)$$

This <u>singular</u> perturbation expansion is not a simple coincidence but an expression of scaling

A renormalization of D(L) changes also g(L):

$$g(L) = \frac{D(L)}{c \lambda^{d-1}} L^{d-2}$$

If we know g(L), we know it at any scale :

If we know g(L), we know it at any scale :

 $g(L(1+\varepsilon)) = f(g(L),\varepsilon)$

If we know g(L), we know it at any scale :

 $g(L(1+\varepsilon)) = f(g(L),\varepsilon)$

Expanding, we have $g(L(1 + \epsilon)) = g(L)(1 + \epsilon\beta(g) + O(g^{-5}))$ with $\beta(g) = \frac{d \ln g}{d \ln L}$ (*Gell-Mann - Low function*)

If we know g(L), we know it at any scale :

 $g(L(1+\varepsilon)) = f(g(L),\varepsilon)$

Expanding, we have $g(L(1 + \epsilon)) = g(L)(1 + \epsilon\beta(g) + O(g^{-5}))$ with $\beta(g) = \frac{d \ln g}{d \ln L}$ (*Gell-Mann - Low function*)

Scaling behavior :

$$g(L,W) = f\left(\frac{L}{\xi(W)}\right)$$

 $\xi(W)$ is the localization length

Numerical calculations on the (universal) Anderson Hamiltonian

FIG. 1. Scaling function λ_H / M vs λ_w / M for the localization length λ_H of a system of thickness M for (a) d=2 ($M \ge 4$) and (b) d=3 ($M \ge 3$). Insets show the scaling parameter λ_w as a function of the disorder W.

Anderson localization phase transition occurs in d > 2It has been observed experimentally with electromagnetic waves (Aegarter, Maret *et al.*, 2006)

INTERMEZZO : HEAT AND WAVES

FROM CLASSICAL DIFFUSION TO WAVE PROPAGATION

THERE IS A VERY IMPORTANT RELATION BETWEEN CLASSICAL DIFFUSION AND WAVE PROPAGATION ON A MANIFOLD.

IT EXPRESSES THIS PROFOUND IDEA THAT IT IS POSSIBLE TO MEASURE AND CHARACTERIZE A MANIFOLD USING WAVES, MORE PRECISELY WITH THE EIGENVALUE SPECTRUM OF THE LAPLACIAN OPERATOR.

CAN YOU HEAR THE SHAPE OF A DRUM ? (KAC, 1966) BLACKBODY RADIATION (LORENTZ, 1910)

How does it work ?

 $\frac{\partial \phi}{\partial t} = D \frac{\partial^2 \phi}{\partial x^2}$ Diffusion (heat) equation in d=1

whose solutions are such that
$$Z(x,y,t) = \frac{e^{-\frac{(x-y)^2}{4Dt}}}{(4\pi Dt)^{\frac{1}{2}}}$$

Probability of diffusing from x to y in a time t.

In d space dimensions:

$$Z_{d}(x,y,t) = \frac{e^{-\frac{(x-y)^{2}}{4Dt}}}{(4\pi Dt)^{d/2}}$$

We can characterize the "space geometry" by watching how the heat flows. The heat kernel Z(t) is

$$Z_d(t) = \int_{Vol.} d^d x Z_d(x, x, t) = \frac{Volume}{\left(4\pi Dt\right)^{d/2}}$$

Find the volume of the manifold

Boundary terms- Hearing the shape of a drum

Mark Kac (1966)

Dirichlet :
$$\lambda_n = \left(\frac{n\pi}{L}\right)^2$$
, $n = 1, 2, ...$
Neumann : $\lambda_n = \left(\frac{n\pi}{L}\right)^2$, $n = 0, 1, 2, ...$
 $Z_N(t) = \sum_{n=0}^{\infty} e^{-\left(\frac{n\pi}{L}\right)^2 t} = 1 + Z_D(t)$
Poisson formula $\implies Z_{\left\{\frac{D}{N}\right\}}(t) = \frac{L}{\sqrt{4\pi t}} \mp \frac{1}{2} + ...$
Weyl expansion (2d)
 $\sum_{n=0}^{\infty} \frac{Vol.}{4\pi t} - \frac{L}{4} + \frac{1}{4\pi t} + \frac{1}{6} + ...$
bulk integral of bound.
curvature

THE HEAT KERNEL IS RELATED TO THE DENSITY OF STATES OF THE LAPLACIAN

There are Laplace transform of each other:

$$Z(t) = \int_{0}^{\infty} d\omega \,\rho(\omega) e^{-t\omega}$$

From the Weyl expansion, it is thus possible to obtain the density of states.

And now the miracle !

We do <u>**not**</u> need to know the spectrum and/or the local form of the Laplacian (differential eq.) to calculate the Heat Kernel

Very convenient on a fractal since both are not available.

End of the Intermezzo !