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Part 2

Towards a quantitative description :
the tools of quantum mesoscopic physics

1. More details on diffusion and quantum crossings
2. The global scattering approach (Landauer-Schwinger)

3. How to relate local quantum crossings to the global
scattering approach ?

4. A brief overview on Anderson localization phase
transition
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Weak disorder A - < [ : independent scattering events
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Probability of quantum diffusion

Propagation of a wavepacket centered at energy e between any two points.
It 1s obtamed from the probability amplitude (Green’s function for the

afticionados !) : G.(r, 1)) = ZAJ'(I‘, )
J

Superposition of amplitudes associated to all multiple scattering
trajectories that relater and r’ .



Probability of quantum diffusion

Propagation of a wavepacket centered at energy e between any two points.
It 1s obtained from the probability amplitude (Green’s function for the

a

ficionados !) : Ge(r,x') =) Aj(r,r)
J

Superposition of amplitudes associated to all multiple scattering
trajectories that relater and r’ .
The probability of quantum diffusion averaged over disorder is:

P(r,r') oc [Ge(r, )2 = ) A;(r,r)[2 + ) Af(r,r)A;(r, 1)
j

/A

lassical ¢ interference between
A; it distinct trajectories: vanishes
upon averaging
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Before averaging : speckle pattern (full coherence)
Configuration average: most of the contributions vanish because
of large phase differences.
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Before averaging : speckle pattern (full coherence)
Configuration average: most of the contributions vanish because
of large phase differences.

A new design !
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The diffusion approximation:

How to calculate .;(r, r’)? It may be obtained as an iteration equation
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Iteration of the Drude-Boltzmann term | P (r,r") = G(r,r" )G (+',r) < e—ZJ
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e scattering sequences




The diffusion approximation:

How to calculate .;(r, r’)? It may be obtained as an iteration equation

% i
Iteration of the Drude-Boltzmann term | P (r,r") = G(r,r" )G (+',r) < 6—2}
9 R

1
PCZ (I‘, r/) — PO (I', I‘/) _I_ % /dI‘N cl (I‘, I‘//)P() (I‘//, I‘/) Summation over

e scattering sequences

In the limit of slow spatial and temporal
variations, |r — r’ | > le and T > T,

{% _ DA} P.(r,r',t) = 6(r —r")d(t)

(diffusion equation)



The diffusion motion 1s characterized by 1ts elementary step,
the elastic mean free path [. related to the elastic collision
time by [, = v, 7.
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Did we miss something ?
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The probability of quantum diffusion must be normalized,
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At the approximation of the Diffuson, we have from the iteration
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The probability of quantum diffusion must be normalized,

[ar P =1 Vi & Pg=0,0)=—

0
At the approximation of the Diffuson, we have from the iteration
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Normalization of the probability

The probability of quantum diffusion must be normalized,

jdr'P(r,r',t) =1 Vi & Plg=0,w)= L

eq.

since

The Ditffuson provides a normalized approx. to the probability of
Quantum diffusion ! Missing terms ?



The probability of quantum diffusion must be normalized,

[ar P =1 Vi & Pg=0,0)=—

0
At the approximation of the Diffuson, we have from the iteration
€q. P (
o\q, CU)
Pcl(Qa CU) — 1 Py (q,w)

Te
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The Diffuson provides a normalized approx. to the probability of
Quantum diffusion ! Missing terms ?
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Reciprocity theorem

For time reversal invariant systems, Green’s functions have the property:

G(r,r’',t)=G(r’,r,t)

Reciprocity thm. states that the complex amplitude associated to a
multiple scattering sequence and its time reversed are equal.

By reversing the two amplitudes of P (r,r") gives P (r’,r)

Reversing only ONE of the two amplitudes should also give a
contribution to the probability, but it 1s not anymore a Diffuson!

The Diffuson approx. does not take into account all contributions to
the probability.






I'y..
—Tr, —
I'2




Iy > Tyg = Ip " — Ty — Ty — I

ro > Iy, > Iy -+ —Tp — Ty — Iy



Iy > Tyg = Ip " — Ty — Ty — I

(@)

ro > Iy, > Iy -+ —Tp — Ty — Iy

incoherent interference term

classical term
The total average intensity 1s: \

| /
Ak, k)[? = Z f(r1,r2)|? [1 + ei(k+k’)~(r1—1‘2)}

Irp,ro



Generally, the interference term vanishes due to the
sum over ri and ro, except for two notable cases:



Generally, the interference term vanishes due to the
sum over ri and ro, except for two notable cases:

k + k' ~ 0 : Coherent backscattering

Coherent backscattering
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Generally, the interference term vanishes due to the
sum over ri and ro, except for two notable cases:

ry —ro =~ (: closed loops, weak localization and ¢ /2 periodicity
of the Sharvin effect.
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A Diffuson 1s the product of 2 complex amplitudes: it can be viewed as
a” diffusive trajectory with a phase”. Coherent effects result from the
Cooperon which can be viewed as a self-crossing
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Small phase shift <2 7 = crossing spatially
localized




A Diffuson 1s the product of 2 complex amplitudes: it can be viewed as
a” diffusive trajectory with a phase”. Coherent effects result from the
Cooperon which can be viewed as a self-crossing

Crossing mixes the amplitudes and pair
them differently = phase shift.

Small phase shift <2 7 = crossing spatially
localized

volume of a crossing
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A Diffuson 1s the product of 2 complex amplitudes: it can be viewed as
a” diffusive trajectory with a phase”. Coherent effects result from the
Cooperon which can be viewed as a self-crossing
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Crossing mixes the amplitudes and pair
them differently = phase shift.

Small phase shift <2 7 = crossing spatially
localized

Crossing probability of 2 diffusons:
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A Diffuson 1s the product of 2 complex amplitudes: it can be viewed as
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A Diffuson 1s the product of 2 complex amplitudes: it can be viewed as
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coherent effects over large distances.



Weak disorder physics

A< =g>1

Probability of a crossing (oc 1/ g) 1s small: phase coherent corrections
to the classical limit are small.

Quantum crossings modify the classical probability (i.e. the Diffuson)
but it remains normalized.

Due to its long range behavior, the Diffuson propagates (localized)
coherent effects over large distances.

Quantum crossings are independently distributed :
We can generate higher order corrections to the Diffuson
as an expansion in powers of 1/ g



How to calculate P (¢) ? R, ()=|R,(r,r,0dr

|

= EFE 5 P rr Bme—e o ff - p L
g
= rFr=7
Diffuson Cooperon
“lassical return probability Interference term
P(,](V,r,t) — I)mt(rarat)

Return probability is doubled ! If time reversal invariance
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Important difference :

])C 7 (]f', = ', [ ) —> paired trajectories follow the same direction

int (I” I" l ) = paired trajectories follow opposite directions

Diffuson

, Cooperon
! *
l

A, A A

have the same phase j p.dl

(l’ & t) P (}/‘ = l‘) If time reversal invariance

int

If phase coherence between the reversed trajectories Is preserved




In the presence of a dephasing mechanism that breaks time coherence,
only trajectories with ¢ < 7, contribute.
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In the presence of a dephasing mechanism that breaks time coherence,
only trajectories with ¢ < 7, contribute.

In the presence of an Aharonov-Bohm flux, paired amplitudes in the
Cooperon acquire opposite phases:

Cooperon
Pyt (1, 7', t)is obtained from the covariant diffusion equation

effective charge 2e

2
(1 L9 p lvr, + @@A(r’ﬂ ) Pint(r, 7' 1) = 6(r — )5 (t)
7'(/5 8?5 h
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To the classical probability corresponds
the Drude conductance G,

—_

First correction (e< 1/ g) 1nvolves one quantum
crossing and the probability p, (7,,) to have a

closed loop:

172 dt .
p,(T,)= J Z(1) : quantum correction decreas§s |
5% D the conductance: weak localization

™ )d/2

Return probability Z(t) = / dr Pipe(r,7,t) = (4—7Tt



Quantum mesoscopic physics :

the global scattering approach

(Landauer-Schwinger)



An Intermezzo !

global



A1m of the intermezzo:

to present in general terms, a global (i.e. non local) approach to
account for both the thermodynamic and the non equilibrium
behavior of quantum complex systems




Elastic di  ~der does not break phase coherence

and A Tuce irreversibility
D rep.: 1ess and
H]Inder
All symmetries ai are no good

guantum numbers.




Elastic disorder does not break phase coherence

and 1t does not introduce irreversibility
Disorder introduces randomness and
complexity:

All symmetries are lost, there are no good

guantum numbers.




Exemple: speckle patterns in optics

Diffraction -
through a circular
aperture: order in

interference

Transmission of
light through a
disordered
suspension:
complex system
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to present in general terms, a global (i.e. non local) approach to
account for both the thermodynamic and the non equilibrium
behavior of quantum complex systems

In complex systems (metals, dielectrics, ...), 1t 1s difficult to obtain
local quantities and sometimes 1t 1s even impossible. But in many
cases, it is also not necessary.



A1m of the intermezzo:

to present in general terms, a global (i.e. non local) approach to
account for both the thermodynamic and the non equilibrium
behavior of quantum complex systems

In complex systems (metals, dielectrics, ...), 1t 1s difficult to obtain
local quantities and sometimes 1t 1s even impossible. But in many
cases, it is also not necessary.

Use a global description : Landauer-Schwinger
approach



Basics: Usually we start from local differential equations and try to solve them

with appropriate boundary conditions.

Express local physical quantities, e.g. electrical conductivity, dielectric function in
terms of local Green’s functions for the quantum coherent matter field (electrons)



Basics: Usually we start from local differential equations and try to solve them

with appropriate boundary conditions.

Express local physical quantities, e.g. electrical conductivity, dielectric function in
terms of local Green’s functions for the quantum coherent matter field (electrons)

Oxx(w) = S—Q Tr [jx ImG ]x ImG ]

€ @
- F—

e2h3

Oaf r.r')y = —s [aaImGR(r r )dﬁImGR(r ) — Ime(r.r')Ba aéIme(r’.r)]

27 m2



This approach is often doomed to failure due to either :
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|. local divergences of the Green’s functions close to a boundary

PHYSICAL REVIEW D VOLUME 20, NUMBER 12 15 DECEMBER 1979

Boundary effects in quantum field theory

D. Deutsch and P. Candelas
Center for Theoretical Physics, Department of Physics, The University of Texas at Austin, Austin, Texas 78712
(Received 15 September 1978)

Electromagnetic and scalar fields are quantized in the region near an arbitrary smooth boundary, and the
renormalized expectation value of the stress-energy tensor is calculated. The energy density is found to
diverge as the boundary is approached. For nonconformally invariant fields it varies, to leading order, as the
inverse fourth power of the distance from the boundary. For conformally invariant fields the coefficient of
this leading term is zero, and the energy density varies as the inverse cube of the distance. An asymptotic
series for the renormalized stress-energy tensor is developed as far as the inverse-square term in powers of
the distance. Some criticisms are made of the usual approach to this problem, which is via the “renormalized
mode sum energy,” a quantity which is generically infinite. Green’s-function methods are used in explicit
calculations, and an iterative scheme is set up to generate asymptotic series for Green's functions near a
smooth boundary. Contact is made with the theory of the asymptotic distribution of eigenvalues of the
Laplacian operator. The method is extended to nonflat space-times and to an example with a nonsmooth
boundary.
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Electromagnetic and scalar fields are quantized in the region near an arbitrary smooth boundary, and the
renormalized expectation value of the stress-energy tensor is calculated. The energy density is found to
diverge as the boundary is approached. For nonconformally invariant fields it varies, to leading order, as the
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this leading term is zero, and the energy density varies as the inverse cube of the distance. An asymptotic
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the distance. Some criticisms are made of the usual approach to this problem, which is via the “renormalized
mode sum energy,” a quantity which is generically infinite. Green's-function methods are used in explicit
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2. average over existing intrinsic disorder : no analytic known solution of the

Anderson problem either for weak or strong disorder.



3. It can be also because we simply do not have local differential
egs., e.g. on fractals
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3. It can be also because we simply do not have local differential
egs., e.g. on fractals

4. Or because the physical quantity we wish to calculate does not
have a local description : for instance there exists a local wave eq.

but we do not have a (local) Kubo formula for the diffusion
coefficient.




Transport in a metal : Landauer approach

|. Electric transport:

| ocal Kubo formulation for the electric current:

/7 . . . . ’
where O(X,X")is the local conductivity (response) expressed in terms of local solutions (Green’s
functions).



Transport in a metal : Landauer approach

|. Electric transport:

| ocal Kubo formulation for the electric current:

where o (x,x”)is the local conductivity (response) expressed in terms of local solutions (Green’s

functions).

The Landauer formula proposes an equivalent global description based on scattering data.
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Transport in a metal : Landauer approach

|. Electric transport:

| ocal Kubo formulation for the electric current:

where o (x,x”)is the local conductivity (response) expressed in terms of local solutions (Green’s
functions).

The Landauer formula proposes an equivalent global description based on scattering data.
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2.Waves through complex disordered/chaotic media:

for instance there exists a local wave eq. but we do not have a
(local) Kubo formula for the diffusion coefficient.

But there is a well defined Landauer description based on the
Scattering matrix- [ransmission coefficient, etc.
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Spectral properties-Thermodynamics :
Krein-Schwinger formula

Waves in free space : Density of states p, (@) per unit volume.
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Waves in free space : Density of states p, (@) per unit volume.

Scatterer:
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The S-matrix accounts for all relevant changes : e.g. DOS p((t)c)f the waves in the presence of
the scatterer is:

| d
p(®)— p,(@)=——3m —InDet S(w) Krein formula
T dw



Spectral properties-Thermodynamics :
Krein-Schwinger formula

Waves in free space : Density of states p, (@) per unit volume.

Scatterer:

-
//\', \

p

The S-matrix accounts for all relevant changes : e.g. DOS p(a)c)f the waves in the presence of
the scatterer is:

1
p(@)— p,(@)=——Sm iln Det S(w) Krein formula
T dw

Thermodynamic changes can be deduced from this formula:

Variation of the partition function (Dashen,Ma,Bernstein):

Tre P —Tre PHo =—ijd(x)e—’3"’ Sm iln Det S(m) H=H, 6+V
T dw !



Thermodynamics : persistent current in a mesoscopic ring submitted to a
Aharonov-Bohm flux
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Aharonov-Bohm flux
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Energy spectrum of an electron in a Aharonov-Bohm magnetic flux




Thermodynamics : persistent current in a mesoscopic ring submitted to a
Aharonov-Bohm flux

/\ P=pp,

2

Disordered metal

Less easy !
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Thermodynamics : persistent current in a mesoscopic ring submitted to a
Aharonov-Bohm flux

/\ P=pp,

P
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Thermodynamics : persistent current in a mesoscopic ring submitted to a
Aharonov-Bohm flux

/\ =@

Y
Dt e

| %,
1$)=—— [dE ﬁln DetS(E,$)

Electrical conductance G (out of equilibrium)

Equivalent to the Landauer formula.
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From Kubo to Landauer

e2h3

Oap(r.r') = —s [80,1me r. )G ImGR () — mGR (1) 9 ImGE (r’,r)]

2 m2

N L A - R S

left 8Ln —= | scatterer GRn  right ,
reservoir brn <~ —> bRn reservoir

e N




From Kubo to Landauer
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QUANTUM CONDUCTANCE
AND SHOT NOISE

Slab geometry - two-terminal conductors
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Noise power 1s defined as the symmetric
current-current correlation function

S(w,V) = j dt ¢’ <5i(r)5i(0)+5i(0)5i(r)}

where §1(r)=I(tr)-(I) are electronic current operators

Equilibrium noise (V=0)

S(@.0)=2Gw coth(ﬂ)
)T

(Nyquist fluctuation-dissipation)



Non-equilibrium noise V # (0 at 7 = ()

Excess noise measures the second cumulant of charge
fluctuations :

5(0.V)=5(0.0)<(07)~(Q,)



THE FANO FACTOR
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(a) ab

F

I ,1S THE TRANSMISSION COEFFICIENT ALONG
THE CHANNEL ab

F TAKES A UNIVERSAL VALUE 1/3 FOR WEAKLY
DISORDERED ‘“ONE-DIMENSIONAL’” METALS
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correlations.
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To end this intermezzo :

Well known examples (Landauer-Schwinger approach).
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the S-matrix.

Physically relevant quantities of a system are expressed in terms of in-out signals, including
correlations.

This idea has been successfully used in Quantum mesoscopic physics, quantum optics,
quantum field theory,...

It is relatively new and promising in other fields:

1.Shannon information theory- MIMO (Multiple input-Multiple output)

2.Full counting statistics and shot noise (quantum mesoscopic physics)

3.0ut of equilibrium quantum systems- Wigner time delay

4.Casimir effects

5.Non-perturbative effects (Unruh effects, Hawking radiation, Schwinger pair production,...)
6.Waves and quantum mechanics on fractal structures.



Energy spectrum - Thermodynamics - Transport ?




Energy spectrum - Thermodynamics - Transport ?




Energy spectrum - Thermodynamics - Transport ?

and calculate the S-matrix : possible



How to connect the 2 previous approaches:
* Local quantum crossings

* Global Landauer scattering formalism



Coherent backscattering and Saturn rings

Cassini mission 2006




Beyond the conductance
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[Fluctuations and correlations}

SEEES
transmission coefficient
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“ M\ b correlations involve the product
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Speckle fluctuations vs conductance fluctuations Cl
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Landauer description : G= % Z T,
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Rayleigh law
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Speckle fluctuations vs conductance fluctuations L’Z

l/g
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Angular correlations of intermediate range
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Speckle fluctuations vs conductance fluctuations C3

=
l/g

7

61,01, = -;zTab L,y

-

Long-range anguyfar correlations, with very weak amplitude

Local quantum effects (crossings) are propagated
over long distances through classical diffusion



Fluctuations and correlations - Summary
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Universal conductance fluctuations



A direct consequence: quantum corrections to electrical

transport
62
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THE FANO FACTOR
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Shot noise and C E correlation - Is there a relation ?
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Shot noise and (- correlation - Is there a relation ?
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Summary ... and closed loops :

Weak localization corrections to the
electrical conductance

-
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Summary ... and closed loops :

Weak localization corrections to the
' R electrical conductance
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Conductance fluctuations
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An exercise
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Universal conductance fluctuations

There are 4 diagrams : 2
involve diffusons and 2
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sensitive to an applied
Aharonov-Bohm magnetic tlux
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Dephasing and decoherence

Universal conductance fluctuations

2 Cooperonsj

sensitive to an applied
Aharonov-Bohm magnetic tlux

¢




46 Si-doped GaAs samples at 45 mK
(Mailly-Sanquer)
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We expect the conductance
fluctuations to be reduced by a factor 2
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Beyond weak disorder - a
glimpse of Anderson

localization phase transition



Weak disorder physics

A< =g>1

Probability of a crossing (oc 1/ g) 1s small: phase coherent corrections
to the classical limit are small.

Quantum crossings modify the classical probability (i.e. the Diffuson)
but it remains normalized.

Due to its long range behavior, the Diffuson propagates (localized)
coherent effects over large distances.

Quantum crossings are independently distributed :
We can generate higher order corrections to the Diffuson
as an expansion in powers of 1/ g



A quantum phase transition: Anderson localization

Expansion in powers of quantum crossings 1/g allows to
calculate quantum corrections to physical quantities.
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and becomes size dependent :
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This singular perturbation expansion 1s not a simple coincidence
but an expression of scaling




A quantum phase transition: Anderson localization

Expansion in powers of quantum crossings 1/g allows to
calculate quantum corrections to physical quantities.

The diffusion coefficient D is reduced (weak localization)
and becomes size dependent :

DL - D(l__ln(L/) L )] @=2)

g 42

This singular perturbation expansion 1s not a simple coincidence
but an expression of scaling

A renormalization of D(L) changes also g(L):

D(L) a2

g(L)=

132
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Scaling and 1ts meaning :  (P.W. Anderson et al.,1979)

It we know g( L), we know 1t at any scale :

g(LA+8)=f(g(L).e)

Expanding, we have ¢ (L(1+¢€)) =g(L) (14 ¢B(g) + O(g~))

dln g

with  B(g) = Tln T Gell-Mann - Low function)

Scaling behavior :

gtb.W)=1 (%(W))

S(W) is the localization length

136



Numerical calculations on the (universal) Anderson
Hamiltonian

L v
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Anderson phase
transition
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FIG. 1, Scaling function Ay, /M vs AL/M for the localization length Ay, of a svstem of thickness M for (a) d =2 (M
“d) and () @ =3 (M= 3). Insets show the scaling parameter A, as a function of the disorder W.

Anderson localization phase transition occurs in d > 2

It has been observed experimentally with electromagnetic waves
(Aegarter, Maret et al., 2006)



INTERMEZZO : HEAT AND
WAVES



FROM CLASSICAL DIFFUSION TO WAVE
PROPAGATION

THERE IS A VERY IMPORTANT RELATION BETWEEN
CLASSICAL DIFFUSION AND WAVE PROPAGATION
ON A MANIFOLD.

IT EXPRESSES THIS PROFOUND IDEA THAT IT IS
POSSIBLE TO MEASURE AND CHARACTERIZE A
MANIFOLD USING WAVES, MORE PRECISELY
WITH THE EIGENVALUE SPECTRUM OF THE
LAPLACIAN OPERATOR.

CAN YOU HEAR THE SHAPE OF A DRUM ?
(KAC, 1966)
BLACKBODY RADIATION (LORENTZ,1910)



How does it work ?

2
2 _ )0
ot ox”

Diffusion (heat) equation in d=|

e )’
e 4 Dt

whose solutions are such that Z(x,y,f)=

1
(47Dt)”
Probability of diffusing from x to y in a time t.

(x—y)?
In d space dimensions: e ADr

Z,(x,y,t)=

(47Dt )%

We can characterize the “space geometry” by watching how the heat
flows. The heat kernel Z(t) is

Volume

Z,(t)= I d'xZ,(x,x,t)= 7 Find the vo!ume of the
Vol. (47 Dt)”> manifold



Boundary terms- Hearing the shape of a drum

Mark Kac (1966)
Dirichlet : 1 :(nn , n=1.2,...

0 ] ”

n

Neumann: A :(nn . n=0,1,2....

(nm

. _(m),
Zy()=Y e " =14+Z, (1)

n=_0

Poisson formula =—>  Z, (1) E o1,
oisson formula = F—+..
o Jame 2
Weyl expansion (2d) Z(t)~ Vol. L 1
' /47tt 4 Art 6\
/ integral of bound.

bulk

sensitive to boundary curvature



THE HEAT KERNEL IS RELATED TO THE
DENSITY OF STATES OF THE LAPLACIAN

T'here are Laplace transtorm of each other:

Z(1) = ]oda) p(w)e™"”

From the Weyl expansion, 1t 1s thus possible to obtain the density
of states.

And now the miracle !




We do not need to know the spectrum and/or the local
form of the Laplacian (difterential eq.) to calculate the

Heat Kernel

Very convenient on a fractal since both are not
available.

End of the Intermezzo !



