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Towards a quantitative description :  
the tools of quantum mesoscopic physics

Part 2

1. More details on diffusion and quantum crossings 
!

2. The global scattering approach (Landauer-
Schwinger) 
!

3. How to relate local quantum crossings to the 
global scattering approach ?
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Towards a quantitative description :  
the tools of quantum mesoscopic physics

Part 2

1. More details on diffusion and quantum crossings 
!

2. The global scattering approach (Landauer-Schwinger) 
!

3. How to relate local quantum crossings to the global 
scattering approach ?

4. A brief overview on Anderson localization phase 
transition



 Multiple scattering of electrons  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2 characteristic lengths:	
Wavelength:	
Elastic mean free path:       (Disorder - Origin ?)	
!

Weak disorder                  : independent scattering events !

l

A reminder
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We shall be 
interested 
only by this 
limit



              Probability of quantum diffusion

Propagation of a wavepacket centered at energy    between any two points.     
It is obtained from the probability amplitude (Green’s function for the 
afficionados !) :

ϵ

Gϵ(r, r
′) =

∑

j

Aj(r, r
′)

Superposition of amplitudes associated to all multiple scattering 
trajectories that relate             . 	
The probability of quantum diffusion averaged over disorder is: 

r and r
′

P (r, r′) ∝ |Gϵ(r, r′)|2 =
∑

j

|Aj(r, r′)|2 +
∑

i ̸=j
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′)Aj(r, r′)
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(b)

Before averaging : speckle pattern  (full coherence)	
Configuration average: most of the contributions vanish because 
of large phase differences.

Diffuson Pcl(r, r
′) =

∑

j

|Aj(r, r′)|2

Ai

A
∗

j
Vanishes upon averaging

Ai

A
∗

j

A new design !
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The diffusion approximation:

How to calculate                 ? It may be obtained as an iteration equation Pcl(r, r
′)

(c)
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(d)

Summation over
scattering  sequences
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Iteration of the Drude-Boltzmann term  P0 (r, ′r ) = G(r, ′r )G∗( ′r ,r)∝
e−

R
l

R2

Pcl(r, r
′) = P0(r, r

′) +
1

τ

∫
dr′′Pcl(r, r

′′)P0(r
′′, r′)

[ ∂

∂t
− D∆

]

Pcl(r, r
′, t) = δ(r − r

′)δ(t) with  D =
vgl
3

In the limit of slow spatial and temporal 	
variations,                        and |r − r

′| ≫ l t ≫ τ

Diffuson

(diffusion equation)� 
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Mesoscopic limit: characteristic length scales

The diffusion motion is characterized by its elementary step, 
the elastic mean free path      related to the elastic collision 
time by  

le

le = vgτe

L

saa sb

sa' sb'

le
⟨R2⟩ = Dt

traversal time (Thouless time) : L
2

= DτD

t

τe τD

τφ

ballistic

diffusive ergodic

mesoscopic limit classical limit

≫ le

withD = vgle/3
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Did we miss something ?



Normalization of the probability
The probability of quantum diffusion must be normalized,

d ′r P(r, ′r ,t) = 1 ∀t ⇔ P(q = 0,ω ) = i
ω∫

At the approximation of the Diffuson, we have from the iteration 
eq.

since 

The Diffuson provides a normalized approx. to the probability of 	
Quantum diffusion !  Missing terms ?

Pcl(q, ω) =
P0(q, ω)

1 −

P0(q,ω)
τe

P0(q, ω) =
τe

1 − iωτe

→ Pcl(q = 0, ω) =
i

ω
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Reciprocity theorem

For time reversal invariant systems, Green’s functions have the property:

G(r, ′r ,t) = G( ′r ,r,t)
Reciprocity thm. states that the complex amplitude associated to a 	
multiple scattering sequence and its time reversed are equal. 	
!
By reversing the two amplitudes of                   gives  

Reversing only ONE of the two amplitudes should also give a 	
contribution to the probability, but it is not anymore a Diffuson! 

The Diffuson approx. does not take into account all contributions to 	
the probability.

Pcl(r, r
′) Pcl(r

′, r)
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|A(k,k′)|2 =
∑

r1,r2

|f(r1, r2)|2
[

1 + ei(k+k′).(r1−r2)
]

Generally, the interference term vanishes due to the 
sum over                  , except for two notable cases:r1 and r2

k + k
′
≃ 0 :  Coherent backscattering

r1 − r2 ≃ 0 : closed loops, weak localization and           periodicity 
of the Sharvin effect. 
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Quantum crossings
A Diffuson is the product of 2 complex amplitudes: it can be viewed as 	
a” diffusive trajectory with a phase”. Coherent effects result from the 
Cooperon which can be viewed as a self-crossing

Crossing probability of 2 diffusons:

Crossing mixes the amplitudes and pair 	
them differently         phase shift.⇒

τD = L
2 / D

Small phase shift ≤2π ⇒  crossing spatially   
localized

λ
d−1

le

volume of a crossing

g =
le

3λd−1
Ld−2

≫ 1

� 

p× =
λd −1vg dt

Ld0

τ D

∫ =
1
g
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Weak disorder limit: 

Probability of a crossing               is small: phase coherent corrections 	
to the classical limit are small.

Quantum crossings modify the classical probability (i.e. the Diffuson)	
but it remains normalized.     	
Due to its long range behavior, the Diffuson propagates (localized) 	
coherent effects over large distances.

 Weak disorder physics 

Quantum crossings are independently distributed : 	
          We can generate higher order corrections to the Diffuson 	
            as an expansion in powers of 1 / g

∝1 g( )

λ<< l  ⇒ g >> 1
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In the presence of a dephasing mechanism that breaks time coherence, 
only trajectories with                contribute.	
!
In the presence of an Aharonov-Bohm flux, paired amplitudes in the 
Cooperon acquire opposite phases:

φ
2πφ/φ0 −2πφ/φ0 the phase difference becomes: 4πφ/φ0

t < τφ

Cooperon

φ0/2           periodicity of the Sharvin effect 

is obtained from the covariant diffusion equationPint(r, r
′, t)

(

1

τφ
+

∂

∂t
− D

[

∇r′ + i
2e

h̄
A(r′)

]2
)

Pint(r, r
′, t) = δ(r − r′)δ(t)

effective charge 2e
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To the classical probability corresponds 	
the Drude conductance Gcl

First correction                 involves one quantum 	
crossing and the probability           to have a 
closed loop:

(∝1 / g)

Return probability 

quantum correction decreases  	
the conductance: weak localization

L

Weak localization- Electronic transport

τD = L2 D

Z(t) =

∫

drPint(r, r, t) =
( τD

4πt

)d/2
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ΔG
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=− po (τD )
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po (τD ) =
1
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Z(t) dt
τD0

τ D
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Quantum mesoscopic physics  :  
!

the global scattering approach 
  

(Landauer-Schwinger)



An Intermezzo ! 
!

global 



Aim of the intermezzo:  
!
to present in general terms, a global (i.e. non local) approach to 
account for both the thermodynamic and the non equilibrium 
behavior of quantum complex systems

In complex systems (metals, dielectrics, ...), it is difficult to obtain 
local quantities and sometimes it is even impossible. But in many 
cases, it is also not necessary.

Use a global description : Landauer-Schwinger 
approach



Elastic disorder does not break phase coherence 
and it does not introduce irreversibility	

Disorder introduces randomness and 
complexity:	

All symmetries are lost, there are no good 
quantum numbers.	

A reminder



Elastic disorder does not break phase coherence 
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Disorder introduces randomness and 
complexity:	
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quantum numbers.	



Exemple: speckle patterns in optics

Diffraction 
through a circular 
aperture: order in 

interference

Transmission of  
light through a 

disordered 
suspension: 

complex system
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Express local physical quantities, e.g. electrical conductivity, dielectric function in 
terms of local Green’s functions for the quantum coherent matter field (electrons)
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This approach is often doomed to failure due to either :
1. local divergences of the Green’s functions close to a boundary 	

!

!

!

!

!

!

!
!
!
!
2. average over existing intrinsic disorder : no analytic known solution of the 

Anderson problem either for weak or strong disorder.
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3. It can be also because we simply do not have local differential 
eqs., e.g. on fractals 	
!
!
!
!
!
!
!
!
4. or because the physical quantity we wish to calculate does not 
have a local description : for instance there exists a local wave eqs. 
but we do not have a (local) Kubo formula for the diffusion 
coefficient. 	
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Transport in a metal : Landauer approach

1. Electric transport: 

Local Kubo formulation for the electric current: 

where                is the local conductivity (response) expressed in terms of local solutions (Green’s 
functions). 	
The Landauer formula proposes an equivalent global description based on scattering data.

(a)

a
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b

(b)
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(c) (d)
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2. Waves through complex disordered/chaotic media:	
!
for instance there exists a local wave eq. but we do not have a 
(local) Kubo formula for the diffusion coefficient. 	
!
But there is a well defined Landauer description based on the	
     Scattering matrix-Transmission coefficient, etc.

(a)

a
b a

a
b

(b)

a' b'

(c) (d)



Spectral properties-Thermodynamics : 	
Krein-Schwinger formula

Waves in free space : Density of states             per unit volume.	
!
Scatterer: 

The S-matrix accounts for all relevant changes : e.g. DOS            of the waves in the presence of 
the scatterer is:  

Thermodynamic changes can be deduced from this formula: 	
!
Variation of the partition function (Dashen,Ma,Bernstein):

Krein formula
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Thermodynamics : persistent current in a mesoscopic ring submitted to a 
Aharonov-Bohm flux 

Electrical conductance G (out of equilibrium)  

Equivalent to the Landauer formula.

Energy spectrum of an electron in a Aharonov-Bohm magnetic flux

Easy !
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Disordered metal

Less easy !
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From Kubo to Landauer



From Kubo to Landauer

Landauer formula

(a)

a
b a

a
b

(b)

a' b'

(c) (d)

Tab = tab
2



Quantum conductance  
and shot noise

Slab geometry - two-terminal conductors

Landauer formula

(a)

a
b a

a
b

(b)

a' b'

(c) (d)

Tab = tab
2



Noise power is defined as the symmetric 
current-current correlation function 

where                        are electronic current operators

(Nyquist fluctuation-dissipation)

Equilibrium noise (V=0)



Non-equilibrium noise            at             

Excess noise measures the second cumulant of  charge 
fluctuations :



The Fano factor

F takes a universal value 1/3 for weakly 
disordered “one-dimensional” metals 

is the transmission coefficient along 
the channel 

Tab
ab

(a)

a
b a

a
b

(b)

a' b'

(c) (d)

F = S(0,V )− S(0,0)
e I

=
Tab (1−

ab
∑ Tab )

Tab
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Well known examples (Landauer-Schwinger approach). 	
For didactic purposes, we shall review some of them and then present 
new limits and results.

Basic idea of Landauer-Schwinger is to provide a non local approach by means of tools like 
the S-matrix. !
!
Physically relevant quantities of a system are expressed in terms of in-out signals, including 
correlations. !
!
This idea has been successfully used in Quantum mesoscopic physics, quantum optics, 
quantum field theory,...!
!
It is relatively new and promising in other fields:!
!
1.Shannon information theory- MIMO (Multiple input-Multiple output)!
2.Full counting statistics and shot noise (quantum mesoscopic physics)!
3.Out of equilibrium quantum systems- Wigner time delay!
4.Casimir effects!
5.Non-perturbative  effects (Unruh effects, Hawking radiation, Schwinger pair production,...)!
6.Waves and quantum mechanics on fractal structures.

To end this intermezzo :
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Energy spectrum - Thermodynamics - Transport ?



Energy spectrum - Thermodynamics - Transport ?

Add leads !



Energy spectrum - Thermodynamics - Transport ?

and calculate the S-matrix : possible



How to connect the 2 previous approaches:	

* Local quantum crossings	

* Global Landauer scattering formalism



Coherent backscattering and Saturn rings

Cassini mission 2006



Beyond the conductance



!
 	
!
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Slab geometry

transmission coefficient

Correlation function of the 	
transmission coefficient :

 correlations involve the product 	
of 4 complex amplitudes with or 	
without quantum crossings	
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G=
e2

h
Tab

ab
∑Landauer description :





Local quantum effects (crossings) are propagated 
over long distances through classical diffusion



Fluctuations and correlations - Summary

(a)

a
b a

a
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Fluctuations and correlations - Summary



Classical transport : Gcl = g ×
e2

h
with g ≫ 1

Quantum corrections:  ∆G = Gcl ×
1

g

A direct consequence:  quantum corrections to electrical 	
transport

so that                   is universal#

 Not that simple !
numbers... Need to sum up Feynman diagrams.



The Fano factor

F takes a universal value 1/3 for weakly 
disordered “one-dimensional” metals 

is the transmission coefficient along 
the channel 
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Since we know how to get 
numbers, what about that one ? 



Shot noise and      - correlation - Is there a relation ? 
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Weak localization corrections to the 
electrical conductance

Z(t)= dr Pcl (r,r,t)=∫
τD
4πt

⎛
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Conductance fluctuations
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An exercise



Universal conductance fluctuations

Dephasing and decoherence

a
a

b
b

a'
a' b'

b'

(K  )1

a
a

b
b

b'
b'a'

a'

 (K  )2

a
a

a'
a'

b
b

b'
b'

(K  )d
3

a
a

a'
a'

b
b

b'
b'

(K  )c
3

cd

There are 4 diagrams : 2 
involve diffusons and 2 
cooperons. 	
!
How to differentiate 
them ?
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We expect the conductance 
fluctuations to be reduced by a factor 2

δG2 δG2

2

φ

1.5

vanishing of the weak localization 
correction for the same magnetic field

In the presence of incoherent 
processes               : L > Lφ

δG2
→ 0

 46 Si-doped GaAs samples at 45 mK 

δG2

� 

G

(Mailly-Sanquer)



Beyond weak disorder - a 
glimpse of Anderson 

localization phase transition   



Weak disorder limit: 

Probability of a crossing               is small: phase coherent corrections 	
to the classical limit are small.

Quantum crossings modify the classical probability (i.e. the Diffuson)	
but it remains normalized.     	
Due to its long range behavior, the Diffuson propagates (localized) 	
coherent effects over large distances.

 Weak disorder physics 

Quantum crossings are independently distributed : 	
          We can generate higher order corrections to the Diffuson 	
            as an expansion in powers of 1 / g

∝1 g( )

λ<< l  ⇒ g >> 1



130

Expansion in powers of quantum crossings         allows to 
calculate quantum corrections to physical quantities.

This singular perturbation expansion is not a simple coincidence 
but an expression of scaling

A renormalization of D(L) changes also g(L):

1 g

The diffusion coefficient D is reduced (weak localization)  
and becomes size dependent :

g(L) = D(L)
cλd−1 L

d−2 ≈
N⊥
2 (L)
N

A quantum phase transition: Anderson localization

D(L) = D 1− 1
πg
ln L

l( ) + 1
πg
ln L

l( )⎛
⎝⎜

⎞
⎠⎟

2

+ ....
⎛

⎝
⎜

⎞

⎠
⎟ (d = 2)
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calculate quantum corrections to physical quantities.
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1 g

The diffusion coefficient D is reduced (weak localization)  
and becomes size dependent :

g(L) = D(L)
cλd−1 L

d−2 ≈
N⊥
2 (L)
N

A quantum phase transition: Anderson localization

D(L) = D 1− 1
πg
ln L

l( ) + 1
πg
ln L

l( )⎛
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⎜
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⎠
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Expansion in powers of quantum crossings         allows to 
calculate quantum corrections to physical quantities.

This singular perturbation expansion is not a simple coincidence 
but an expression of scaling

A renormalization of D(L) changes also g(L):

1 g

The diffusion coefficient D is reduced (weak localization)  
and becomes size dependent :

g(L) = D(L)
cλd−1 L

d−2 ≈
N⊥
2 (L)
N

A quantum phase transition: Anderson localization

D(L) = D 1− 1
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Scaling and its meaning : 
!
If we know          , we know it at any scale :  	
!
!
!
!

g (L(1 + ϵ)) = g(L)
(

1 + ϵβ(g) + O(g−5)
)

β(g) =
d ln g

d lnL

Expanding, we have	

with                                              (Gell-Mann - Low function) 

Scaling behavior :                   

(P.W. Anderson et al.,1979)

g(L)

g L(1+ ε)( )= f g(L),ε( )

ξ(W ) is the localization length

g(L,W ) = f L
ξ(W )( )
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Scaling and its meaning : 
!
If we know          , we know it at any scale :  	
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g(L,W )

L
ξ(W )

d = 3

Anderson phase 
transition

d = 2

B.Kramer, A. McKinnon, 1981

  Anderson localization phase transition occurs in d > 2
It has been observed experimentally with electromagnetic waves 

(Aegarter, Maret et al., 2006)

Numerical calculations on the (universal) Anderson 
Hamiltonian 



Intermezzo : heat and 
waves



From classical diffusion to wave 
propagation

There is a very important relation between 
classical diffusion and wave propagation 

on a manifold.

It expresses this profound idea that it is 
possible to measure  and characterize a 
manifold using waves, more precisely 
with the eigenvalue spectrum of the 

Laplacian operator. 

Can you hear the shape of a drum ?  
(Kac, 1966) 

Blackbody radiation (Lorentz,1910)



How does it work ?

Diffusion (heat) equation in d=1

whose solutions are such that

Probability of diffusing from x to y in a time t.	
!
In d space dimensions:

We can characterize the “space geometry” by watching how the heat 
flows. The heat kernel Z(t) is

Find the volume of the 
manifold



0 L

Poisson formula

sensitive to boundary

Weyl expansion (2d) 
:

bulk
integral of bound. 

curvature

Boundary terms- Hearing the shape of a drum
Mark Kac (1966)



The heat kernel is related to the 
density of states of the Laplacian

There are Laplace transform of  each other:

From the Weyl expansion, it is thus possible to obtain the density 
of  states. 
!
                            And now the miracle !



We do not need to know the spectrum and/or the local 
form of  the Laplacian (differential eq.) to calculate the 

Heat Kernel 

End of  the Intermezzo !

Very convenient on a fractal since both are not 
available.


