Physique mesoscopique des electrons et des photons -Structures fractales et quasi-periodiques

Photo Archive

ERIC AKKERMANS PHYSICS-TECHNION

Aux frontieres de la physique mesoscopique, Mont Orford Quebec, Canada, Septembre 2013

Thursday, September 19, 13

Part 3

Quantum mesoscopic physics : Fractals and quasi-periodic structures

FRACTALS OR THE SKILL OF PLAYING WITH DIMENSIONALITY

> WHY STUDYING FRACTALS IN PHYSICS ?

FRACTALS DEFINE A VERY USEFUL TESTING GROUND FOR <u>DIMENSIONALITY</u> <u>DEPENDENT PHYSICAL PROBLEMS</u> SINCE DISTINCT PHYSICAL PROPERTIES ARE CHARACTERIZED BY DIFFERENT (USUALLY NON INTEGER) DIMENSIONS.

SOME EXAMPLES

- ANDERSON LOCALIZATION PHASE TRANSITION : EXISTS FOR d > 2
- Bose-Einstein condensation ($d \ge 3$)
- MERMIN-WAGNER THEOREM (SUPERFLUIDITY $d \leq 2$)
- LEVY FLIGHTS-PERCOLATION (QUANTUM AND CLASSICAL)
- RECURRENCE PROPERTIES OF RANDOM WALKS
- **QUANTUM MESOSCOPIC PHYSICS**
- QUANTUM AND CLASSICAL PHASE TRANSITIONS-EXISTENCE OF TOPOLOGICAL DEFECTS...

FRACTALS ARE ALSO INTERESTING FROM A PRACTICAL POINT OF VIEW (IN ADDITION TO PROVIDING NICE PICTURES...)

1001 100	
H-H H-H	

RANDOM LASERS : PUMPING ON RANDOMLY LOCALIZED MODES (DIFFICULT TO LOCATE THEM).

ITERATIVE FRACTAL GRAPH STRUCTURE

n = 0

n = 1

SIERPINSKI GASKET

DIAMOND FRACTALS

SIERPINSKI CARPET

As opposed to Euclidean spaces characterized by <u>translation symmetry</u>, fractals possess a <u>dilatation symmetry</u> of their physical properties, each characterized by a specific fractal dimension. At each step n of the iteration, a fractal is characterized by its total length L_n and a number of sites N_n . Scaling of these dimensionless quantities allows to define fractal dimensions.

At each step n of the iteration, a fractal is characterized by its total length L_n and a number of sites N_n . Scaling of these dimensionless quantities allows to define fractal dimensions.

Example: Spatial Hausdorff dimension

 $d_h = \frac{\ln N_n}{\ln L_n}$

On a Sierpinski gasket N(2L) = 3N(L)

so that
$$d_h = \frac{\ln 3}{\ln 2} \sim 1.585$$

Classical diffusion

Consider on an Euclidean manifold, the mean square displacement

 $\left\langle r^2(t) \right\rangle = Dt$

Classical diffusion

Consider on an Euclidean manifold, the mean square displacement

$$\left\langle r^2(t) \right\rangle = Dt$$

while on a fractal,

 $\langle r^2(t) \rangle \sim t^{2/d_w}$

where d_w is the anomalous walk dimension.

Classical diffusion

Consider on an Euclidean manifold, the mean square displacement

$$\left\langle r^2(t) \right\rangle = Dt$$

while on a fractal,

 $\langle r^2(t) \rangle \sim t^{2/d_w}$

where d_w is the anomalous walk dimension.

Another fractal dimension distinct from $d_h = \frac{\ln N_n}{\ln L_n}$

Quantum mesoscopic physics on Fractals :

Quantum mesoscopic physics on Fractals :

Could repeat all we did before but on a fractal...

Summary ... and closed loops :

Weak localization corrections to the electrical conductance

$$\frac{\Delta G}{G_{cl}} \propto -\frac{1}{g} \int_{0}^{\tau_{D}} Z(t) \frac{dt}{\tau_{D}}$$

Conductance fluctuations

Summary ... and closed loops :

Quantum mesoscopic physics on Fractals :

Instead we consider another different problem...

Quantum mesoscopic physics on Fractals :

Instead we consider another different problem...

Spontaneous emission -Energy spectra and dynamics on fractals

Thursday, September 19, 13

SPONTANEOUS EMISSION FROM A FRACTAL QED SPECTRUM

A LARGE VARIETY OF PROBLEMS ARE CONVENIENTLY DESCRIBED IN TERMS OF SPECTRAL CLASSES

(absolutely continuous / singular-continuous / point spectrum):

- Anderson localization
- Quantum and classical wave diffusion
- Random magnetism

A LARGE VARIETY OF PROBLEMS ARE CONVENIENTLY DESCRIBED IN TERMS OF SPECTRAL CLASSES

What about a fractal QED vacuum and spontaneous emission ? trum): (absolutely continuous - JOION AA

Fractal spectrum : what is it ?

Fractal ↔ Self-similar

Fractal ↔ Self-similar

Fractal ↔ Self-similar

Discrete scaling symmetry

A quasi-periodic stack of dielectric layers of two types (n_A,n_B)

(Kohmoto et. al., '87)

A quasi-periodic stack of dielectric layers of two types (n_A,n_B)

Fibonacci sequence: $S_{j\geq 2} = \begin{bmatrix} S_{j-1}S_{j-2} \end{bmatrix}, S_0 = B, S_1 = A$ A \rightarrow AB \rightarrow ABA \rightarrow ABAAB \rightarrow ABAAB \rightarrow ABAABAABA \rightarrow ...

(Kohmoto et. al., '87)

A quasi-periodic stack of dielectric layers of two types (n_A,n_B)

Fibonacci sequence: $S_{j\geq 2} = \begin{bmatrix} S_{j-1}S_{j-2} \end{bmatrix}, S_0 = B, S_1 = A$ A \rightarrow AB \rightarrow ABA \rightarrow ABAAB \rightarrow ABAABA \rightarrow ABAABAABA \rightarrow ...

The density of modes $\rho(\omega)$:

(Kohmoto et. al., '87)

A quasi-periodic stack of dielectric layers of two types (n_A,n_B)

Fibonacci sequence: $S_{j\geq 2} = \begin{bmatrix} S_{j-1}S_{j-2} \end{bmatrix}, S_0 = B, S_1 = A$ A \rightarrow AB \rightarrow ABA \rightarrow ABAAB \rightarrow ABAABA \rightarrow ABAABAABA \rightarrow ...

The density of modes $\rho(\omega)$:

(Kohmoto et. al., '87)

A quasi-periodic stack of dielectric layers of two types (n_A,n_B)

Fibonacci sequence: $S_{j\geq 2} = [S_{j-1}S_{j-2}], S_0 = B, S_1 = A$ A \rightarrow AB \rightarrow ABA \rightarrow ABAAB \rightarrow ABAAB \rightarrow ABAABAABA \rightarrow ...

The density of modes $\rho(\omega)$:

The notion of Fibonacci structure is of broad interest in various fields...

Courtesy of Gerald Dunne for today's talk (from Adelaide, Australia)

$$N_{\omega}(b \Delta \omega) = a N_{\omega}(\Delta \omega)$$

b, a - fixed scaling factors

$$N_{\omega}(b^{2}\Delta\omega) = a^{2}N_{\omega}(\Delta\omega)$$

b, a - fixed scaling factors

$$N_{\omega}(b^{p}\Delta\omega) = a^{p}N_{\omega}(\Delta\omega), \quad p \in \mathbb{Z}$$

b, a - fixed scaling factors Discrete scaling symmetry

Scaling equation

$$N_{\omega}(b^{p}\Delta\omega) = a^{p}N_{\omega}(\Delta\omega), \qquad \qquad N_{\omega}(\Delta\omega) \equiv \int_{\omega}^{\omega+\Delta\omega} \rho(\omega')d\omega'$$

Scaling equation

$$N_{\omega}(b^{p}\Delta\omega) = a^{p}N_{\omega}(\Delta\omega), \qquad \qquad N_{\omega}(\Delta\omega) \equiv \int \rho(\omega')d\omega'$$

 $\omega + \Delta \omega$

ω

has the following general solution (dimensionless ω):

$$N_{\omega}(\Delta \omega) = (\Delta \omega)^{\alpha} \times (\cdots) , \qquad \alpha = \frac{\ln a}{\ln b}$$

 $0 \le \alpha \le 1$ - fractal exponent (absolutely continuous : $\alpha = 1$, pure-point : $\alpha = 0$)

Scaling equation

$$N_{\omega}(b^{p}\Delta\omega) = a^{p}N_{\omega}(\Delta\omega), \qquad \qquad N_{\omega}(\Delta\omega) \equiv \int^{\omega+\Delta\omega} \rho(\omega')d\omega'$$

ω

has the following general solution (dimensionless ω):

$$N_{\omega}(\Delta \omega) = (\Delta \omega)^{\alpha} \times F\left(\frac{\ln |\Delta \omega|}{\ln b}\right), \qquad \alpha = \frac{\ln a}{\ln b}, \quad F(x+1) = F(x)$$

- fractal exponent (absolutely continuous : $\alpha = 1$, pure-point : $\alpha = 0$)

Thursday, September 19, 13

Scaling equation

$$N_{\omega}(b^{p}\Delta\omega) = a^{p}N_{\omega}(\Delta\omega), \qquad \qquad N_{\omega}(\Delta\omega) \equiv \int^{\omega+\Delta\omega} \rho(\omega')d\omega'$$

ω

g(x)

has the following general solution (dimensionless ω):

$$N_{\omega}(\Delta \omega) = (\Delta \omega)^{\alpha} \times F\left(\frac{\ln |\Delta \omega|}{\ln b}\right), \qquad \alpha = \frac{\ln a}{\ln b}, \quad F(x+1) = F(x)$$

$$\leq 1 \quad \text{- fractal exponent (absolutely continuous } : \alpha = 1 \quad \text{, pure-point } : \alpha = 0)$$

Similarly for the convolution of $\rho(\omega)$ with a window function

$$N_{\omega}^{(g)}(\Delta\omega) \equiv \int g\left(\frac{\omega'-\omega}{\Delta\omega}\right) p(\omega')d\omega' = (\Delta\omega)^{\alpha} \times F_g\left(\frac{\ln|\Delta\omega|}{\ln b}\right),$$

Scaling equation

$$N_{\omega}(b^{p}\Delta\omega) = a^{p}N_{\omega}(\Delta\omega), \qquad \qquad N_{\omega}(\Delta\omega) \equiv \int^{\omega+\Delta\omega} \rho(\omega')d\omega'$$

ω

has the following general solution (dimensionless ω):

$$N_{\omega}(\Delta \omega) = (\Delta \omega)^{\alpha} \times F\left(\frac{\ln |\Delta \omega|}{\ln b}\right), \qquad \alpha = \frac{\ln a}{\ln b}, \quad F(x+1) = F(x)$$

$$I \leq 1 \quad \text{- fractal exponent (absolutely continuous :} \alpha = 1 \text{, pure-point : } \alpha = 0)$$

Similarly for the convolution of $\rho(\omega)$ with a window function g(x)

$$N_{\omega}^{(g)}(\Delta\omega) \equiv \int g\left(\frac{\omega'-\omega}{\Delta\omega}\right) p(\omega')d\omega' = (\Delta\omega)^{\alpha} \times F_g\left(\frac{\ln|\Delta\omega|}{\ln b}\right),$$

Scaling equation

$$N_{\omega}(b^{p}\Delta\omega) = a^{p}N_{\omega}(\Delta\omega), \qquad \qquad N_{\omega}(\Delta\omega) \equiv \int^{\omega+\Delta\omega} \rho(\omega')d\omega'$$

ω

has the following general solution (dimensionless ω):

$$N_{\omega}(\Delta \omega) = (\Delta \omega)^{\alpha} \times F\left(\frac{\ln |\Delta \omega|}{\ln b}\right), \qquad \alpha = \frac{\ln a}{\ln b}, \quad F(x+1) = F(x)$$

$$\leq 1 \quad \text{- fractal exponent (absolutely continuous } : \alpha = 1 \text{ , pure-point } : \alpha = 0)$$

Similarly for the convolution of $\rho(\omega)$ with a window function g(x)

$$N_{\omega}^{(g)}(\Delta\omega) \equiv \int g\left(\frac{\omega'-\omega}{\Delta\omega}\right) p(\omega')d\omega' = (\Delta\omega)^{\alpha} \times F_g\left(\frac{\ln|\Delta\omega|}{\ln b}\right),$$

Scaling equation

$$N_{\omega}(b^{p}\Delta\omega) = a^{p}N_{\omega}(\Delta\omega), \qquad \qquad N_{\omega}(\Delta\omega) \equiv \int^{\omega+\Delta\omega} \rho(\omega')d\omega'$$

has the following general solution (dimensionless ω):

$$N_{\omega}(\Delta \omega) = (\Delta \omega)^{\alpha} \times F\left(\frac{\ln |\Delta \omega|}{\ln b}\right), \qquad \alpha = \frac{\ln a}{\ln b}, \quad F(x+1) = F(x)$$

$$\leq 1 \quad \text{- fractal exponent (absolutely continuous } : \alpha = 1 \text{, pure-point } : \alpha = 0)$$

Similarly for the convolution of $\rho(\omega)$ with a window function g(x)

$$N_{\omega}^{(g)}(\Delta\omega) \equiv \int g\left(\frac{\omega'-\omega}{\Delta\omega}\right) p(\omega')d\omega' = (\Delta\omega)^{\alpha} \times F_g\left(\frac{\ln|\Delta\omega|}{\ln b}\right)$$

(Ghez and Vaienti, '89: the wavelet transform of fractal measures)

$$(\textcircled{0})_{0.45}^{10^{6}}$$
 $(\textcircled{0})_{0.55}^{10^{6}}$ $(\textcircled{0})_{0.45}^{10^{6}}$ $(\textcircled{0})_{0.55}^{10^{6}}$ $(\textcircled{0})_{0.55}^{10^{6}}$ $(\textcircled{0})_{10^{6}}$ $(\textcircled{0})_{0.55}^{10^{6}}$ $(\textcircled{0})_{10^{6}}$ $(\textcircled{0$

ω

A quasi-periodic dielectric stack

Thursday, September 19, 13

A quasi-periodic dielectric stack

$$N_{\omega}^{(g)}(\Delta\omega) \equiv \int g\left(\frac{\omega'-\omega}{\Delta\omega}\right) p(\omega')d\omega' = (\Delta\omega)^{\alpha} \times F_g\left(\frac{\ln|\Delta\omega|}{\ln b}\right),$$

A quasi-periodic dielectric stack

$$N_{\omega}^{(g)}(\Delta \omega) \equiv \int g \left(\frac{\omega' - \omega}{\Delta \omega} \right) p(\omega') d\omega' \stackrel{?}{=} (\Delta \omega)^{\alpha} \times F_g \left(\frac{\ln |\Delta \omega|}{\ln b} \right),$$

$$g(x) = \frac{\sin(x)}{\pi x}$$

Thursday, September 19, 13

p(0)

A quasi-periodic dielectric stack

$$N_{\omega}^{(g)}(\Delta \omega) \equiv \int g \left(\frac{\omega' - \omega}{\Delta \omega} \right) p(\omega') d\omega' \stackrel{?}{=} (\Delta \omega)^{\alpha} \times F_g \left(\frac{\ln |\Delta \omega|}{\ln b} \right),$$

$$g(x) = \frac{\sin(x)}{\pi x}$$

$$\int_{0^4}^{10^6} \int_{0.45}^{0.5} \int_{0.5}^{0.5} \int_{0.55}^{0.5} \int_{0.55}^{0.5} \int_{0.55}^{0.5} \int_{0.55}^{0.5} \int_{0.55}^{0.5} \int_{0.55}^{0.5} \int_{0.55}^{0.5} \int_{0.55}^{0.5} \int_{0.55}^{0.55} \int_{0.55}^{0$$

p(0)

A quasi-periodic dielectric stack

$$N_{\omega}^{(g)}(\Delta\omega) \equiv \int g \left(\underbrace{\omega' - \omega}{\Delta\omega} \right) (\omega') d\omega' \stackrel{?}{=} (\Delta\omega)^{\alpha} \times F_g \left(\frac{\ln |\Delta\omega|}{\ln b} \right),$$

$$g(x) = \frac{\sin(x)}{\pi x}$$

$$(\widehat{a}_{10^0} \underbrace{(\Delta\omega)^{0.78}}_{0.45} \underbrace{(\Delta\omega)^{0.78}}_{0.55} \underbrace{(\Delta\omega)^{0.78}}_{0.55} \underbrace{(\Delta\omega)^{0.78}}_{0.56} \underbrace{(\Delta\omega)^{0.78}}_{0.5$$

Thursday, September 19, 13

A quasi-periodic dielectric stack

$$N_{\omega}^{(g)}(\Delta\omega) \equiv \int g \left(\underbrace{\omega' - \omega}{\Delta\omega} \right) p(\omega') d\omega' \stackrel{?}{=} (\Delta\omega)^{\alpha} \times F_g \left(\frac{\ln |\Delta\omega|}{\ln b} \right),$$

$$g(x) = \frac{\sin(x)}{\pi x}$$

$$(\widehat{a})^{0} \int_{0}^{10^6} \underbrace{(\Delta\omega)^{0.78}}_{0.55} \int_{0}^{10^6} \underbrace{(\Delta\omega)^{0.78}}_{0.55} \int_{0}^{10^6} \underbrace{(\Delta\omega)^{0.78}}_{0.56} \int_{0}^{10^6} \underbrace{(\Delta\omega)^{0$$

Thursday, September 19, 13

Spontaneous emission and vacuum fractality

Spontaneous emission and vacuum fractality

We solve the time-dependent problem:

 $|\Psi(t=0)\rangle = |e,0_k\rangle$

We solve the time-dependent problem:

 $|\Psi(t=0)\rangle = |e,0_k\rangle$

$$\Psi(t)\rangle = \alpha(t)e^{-i\omega_a t} |e,0_k\rangle + \int dk \rho(k)\beta_k(t)|g,1_k\rangle$$

density of photonic modes

We solve the time-dependent problem:

 $|\Psi(t=0)\rangle = |e,0_k\rangle$

$$|\Psi(t)\rangle = \alpha(t)e^{-i\omega_a t}|e,0_k\rangle + \int dk\rho(k)\beta_k(t)|g,1_k\rangle$$

density of photonic modes

 $p_e(t) = |\alpha(t)|^2$ - the excited state probability

Short time limit – the Fermi golden rule revisited

Short-time limit

A standard perturbative treatment:

For short times, such that $\alpha(t) \approx \alpha(0) = 1$

the excited state probability is

$$p_e(t) \approx 1 - \int_0^t \Gamma_e(t') dt',$$

Short-time limit

A standard perturbative treatment:

For short times, such that $\alpha(t) \approx \alpha(0) = 1$

the excited state probability is

$$p_e(t) \approx 1 - \int_0^t \Gamma_e(t') dt',$$

where the differential decay rate $\Gamma_{e}(t)$ is given by the well known expression:

$$\Gamma_{e}(t) = \frac{2}{\hbar^{2}} \int dk \rho(k) |V_{k}|^{2} \frac{\sin(\omega_{k} - \omega_{a})t}{(\omega_{k} - \omega_{a})}$$

Short-time limit

A standard perturbative treatment:

For short times, such that $\alpha(t) \approx \alpha(0) = 1$

the excited state probability is

$$p_e(t) \approx 1 - \int_0^t \Gamma_e(t') dt',$$

where the differential decay rate $\Gamma_e(t)$ is given by the well known expression:

$$\Gamma_{e}(t) = \frac{2}{\hbar^{2}} \int dk \rho(k) |V_{k}|^{2} \underbrace{\frac{\sin(\omega_{k} - \omega_{a})t}{(\omega_{k} - \omega_{a})}}_{\Delta \omega = t^{-1}} \omega$$

Fermi golden rule

This Γ_{a} coincides with the exponential decay rate (Wigner-Weisskopf):

$$p_e(t) \approx 1 - \Gamma_e t \quad \longleftrightarrow \quad p_e(t) = e^{-\Gamma_e t}$$

We immediately conclude that the general form of $\Gamma_{c}(t)$ is:

$$\Gamma_e(t) = \tau^{-1} \times \left(\frac{t}{\tau}\right)^{1-\alpha} \times F\left(\frac{\ln(t/t_0)}{\ln b}\right), \qquad F(x+1) = F(x),$$

where

- $0 \le \alpha \le 1$, b fractal exponent and scaling factor of the spectrum
 - τ, t_0 time scales, specific to the considered problem.

BEYOND THE SHORT TIME REGIME-STRONG COUPLING AND INHIBITION OF SPONTANEOUS EMISSION

A toy model

STRONG COUPLING - NON PERTURBATIVE SOLUTION

Experimental study of a fractal energy spectrum : Coherent polaritons gas in a Fibonacci quasi-periodic potential

D. Tanese, J. Bloch, E. Gurevich, E.A. 2013.

The Fibonacci problem has a long and rich (theoretical and experimental) history.

(Kohmoto, Luck, Gellerman, Damanik, Bellissard, Simon,...)

Our purpose here is to propose a quantitative description of fractal properties in order to use fractals/singular continuous systems as useful simulating tools

Number of letters of a sequence S_j is the Fibonacci number F_j so that $F_j = F_{j-1} + F_{j-2}$

(193 letters)

Number of letters of a sequence S_j is the Fibonacci number F_j so that $F_j = F_{j-1} + F_{j-2}$

Measure of spectral function E(k) intensity maps

Measure of spectral function E(k) intensity maps

Quantitative description!

$$\left[-\frac{\hbar^2}{2M}\frac{d^2}{dx^2} + V(x)\right]\psi(x) = E\psi(x)$$

$V(x) = u_b(x) \times \left[\chi(\sigma x) \sum_n \delta(x - na) \right]$

where

$$\left[-\frac{\hbar^2}{2M}\frac{d^2}{dx^2} + V(x)\right]\psi(x) = E\psi(x)$$

 $V(x) = u_b(x) \times \left[\chi(\sigma x) \sum_n \delta(x - na) \right]$

Shape of each letter

where

$$\left[-\frac{\hbar^2}{2M}\frac{d^2}{dx^2} + V(x)\right]\psi(x) = E\psi(x)$$

where

$$V(x) = u_b(x) \times \left[\chi(\sigma x) \sum_n \delta(x - na) \right]$$

Shape of each letter

 $\sigma = \frac{(\sqrt{5}-1)}{2}$ is the inverse golden mean

$$\left[-\frac{\hbar^2}{2M}\frac{d^2}{dx^2} + V(x)\right]\psi(x) = E\psi(x)$$

No fitting parameter except for the smoothness of $u_{b}(x)$

Spectral function E(k) intensity maps (Numerics)

Spectral function E(k) intensity maps (Experimental)

Comparison

Comparison

Labeling the gaps...

Labeling the gaps...

Calculating the integrated density of states (IDOS)

Integrated density of states (IDOS)-Gap labeling

$$\left[-\frac{\hbar^2}{2M}\frac{d^2}{dx^2} + V(x)\right]\psi(x) = E\psi(x)$$

where

$$V(x) = u_b(x) \times \left[\chi(\sigma x) \sum_n \delta(x - na) \right]$$

Shape of each letter

 $\sigma = \frac{\sqrt{5}-1}{2}$ is the inverse golden mean

 $V(k) = \mathbf{u}_{b}(k) \times \sum \chi_{q} \,\delta\big(ka - 2\pi \big[p + \sigma q\big]\big)$ p,q

Each pair{p,q} of integers defines a unique Bragg peak (σ is irrational).

 $V(k) = \mathbf{u}_{b}(k) \times \sum \chi_{q} \,\delta\big(ka - 2\pi \big[p + \sigma q\big]\big)$

Each pair{p,q} of integers defines a unique Bragg peak (σ is irrational).

Bragg peaks are dense (Cantor set) \implies Must use periodic approximants, *i.e.* replacing irrational σ by

 $\sigma \approx \frac{F_j}{F_{j+1}}$

 $V(k) = \mathbf{u}_{b}(k) \times \sum \chi_{a} \,\delta\big(ka - 2\pi \big[p + \sigma q\big]\big)$

Each pair $\{p,q\}$ of integers defines a unique Bragg peak (σ is irrational).

Bragg peaks are dense (Cantor set) \implies Must use periodic approximants, *i.e.* replacing irrational σ by

Periodic crystal of length $a F_{i+1}$ and potential

 $\sigma \approx \frac{F_j}{F_{j+1}}$

$$V(k) = \mathbf{u}_{b}(k) \times \sum_{p,q} \chi_{q} \delta\left(ka - \frac{2\pi}{F_{j+1}}\left[F_{j+1} p + F_{j} q\right]\right)$$

 $V(k) = \mathbf{u}_{b}(k) \times \sum \chi_{q} \,\delta\big(ka - 2\pi \big[p + \sigma q\big]\big)$

Each pair{p,q} of integers defines a unique Bragg peak (σ is irrational).

Bragg peaks are dense (Cantor set) \implies Must use periodic approximants, *i.e.* replacing irrational σ by

 $\sigma \approx \frac{F_j}{F_{j+1}}$

Periodic crystal of length $a F_{i+1}$ and potential

$$V(k) = \frac{u_b(k)}{\sum_{p,q}} \chi_q \,\delta\left(ka - \frac{2\pi}{F_{j+1}}\left[F_{j+1} \,p + F_j \,q\right]\right)$$

Bragg peaks at values $k = Q \equiv \frac{1}{a} (F_{j+1} p + F_j q) \xrightarrow{j \to \infty} \frac{1}{a} (p + q\sigma)$

Perturbation theory (small V)

For the (quasi) crystal, a series of gaps open at each value of the (independent) Bragg peaks (Bloch thm.).

 $k = Q \equiv \frac{1}{a} \left(F_{j+1} p + F_j q \right) \xrightarrow{j \to \infty} \frac{1}{a} \left(p + q \sigma \right)$

Perturbation theory (small V)

For the (quasi) crystal, a series of gaps open at each value of the (independent) Bragg peaks (Bloch thm.).

$$k = Q \equiv \frac{1}{a} \left(F_{j+1} p + F_j q \right) \xrightarrow{j \to \infty} \frac{1}{a} \left(p + q \sigma \right)$$

To first order in V, each Bragg peak hybridizes degenerate Bloch waves $\pm \frac{Q}{2}$ and a gap opens at energies $\varepsilon = E_{\pm \frac{Q}{2}}$

Perturbation theory (small V)

For the (quasi) crystal, a series of gaps open at each value of the (independent) Bragg peaks (Bloch thm.).

$$k = Q \equiv \frac{1}{a} \left(F_{j+1} p + F_j q \right) \xrightarrow{j \to \infty} \frac{1}{a} \left(p + q \sigma \right)$$

To first order in V, each Bragg peak hybridizes degenerate Bloch waves $\pm \frac{Q}{2}$ and a gap opens at energies $\varepsilon = E_{\pm \frac{Q}{2}}$

The (normalized) IDOS inside a gap labeled by $\{p,q\}$ is

$$N(E) = p + q\sigma \pmod{1}$$

Integrated Density of States-Gap Labeling

Integrated Density of States-Gap Labeling

Integrated Density of States-Gap Labeling

Spatial distribution - Localization of modes

SUMMARY-FURTHER DIRECTIONS

• Coupling of a quantum emitter to a fractal quasi-continuum leads to an unusual decay dynamics.

SUMMARY-FURTHER DIRECTIONS

- Coupling of a quantum emitter to a fractal quasi-continuum leads to an unusual decay dynamics.
- The decay exhibits scaling properties related to the discrete scaling symmetry of the quasi-continuum.

SUMMARY-FURTHER DIRECTIONS

- Coupling of a quantum emitter to a fractal quasi-continuum leads to an unusual decay dynamics.
- The decay exhibits scaling properties related to the discrete scaling symmetry of the quasi-continuum.
- In the short time limit, this decay was demonstrated in general and for an idealized Fibonacci cavity.
SUMMARY-FURTHER DIRECTIONS

- Coupling of a quantum emitter to a fractal quasi-continuum leads to an unusual decay dynamics.
- The decay exhibits scaling properties related to the discrete scaling symmetry of the quasi-continuum.
- In the short time limit, this decay was demonstrated in general and for an idealized Fibonacci cavity.
- An exactly solvable toy model suggests that a similar scaling takes place also for long times.

SUMMARY-FURTHER DIRECTIONS

- Coupling of a quantum emitter to a fractal quasi-continuum leads to an unusual decay dynamics.
- The decay exhibits scaling properties related to the discrete scaling symmetry of the quasi-continuum.
- In the short time limit, this decay was demonstrated in general and for an idealized Fibonacci cavity.
- An exactly solvable toy model suggests that a similar scaling takes place also for long times.
- The experimental study of a macroscopic coherent polariton gas in a Fibonacci cavity allows for a quantitative study of a fractal singular continuous energy spectrum : spectral function, wave functions and gap labeling.

• Long time dynamics of wave packets with a quasicontinuum fractal spectrum. Log-periodic oscillations.

- Long time dynamics of wave packets with a quasicontinuum fractal spectrum. Log-periodic oscillations.
- Study of the emission lineshape.

- Long time dynamics of wave packets with a quasicontinuum fractal spectrum. Log-periodic oscillations.
- Study of the emission lineshape.
- Different experimental realizations : tunnel junction and / or squbit in a microwave fractal resonator (Julien Gabelli) : Notion of photons- counting statistics-zero point motion with fractal spectra.

- Long time dynamics of wave packets with a quasicontinuum fractal spectrum. Log-periodic oscillations.
- Study of the emission lineshape.
- Different experimental realizations : tunnel junction and / or squbit in a microwave fractal resonator (Julien Gabelli) : Notion of photons- counting statistics-zero point motion with fractal spectra.

 Generalization to other quantum fields : BEC, superfluidity and Off diagonal long range order (ODLRO) for massive bosons.