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[ tried hard to convince Yosi to look at
diagrammatic methods in quantum
transport.

[ had to give up (not only me...)
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[ tried hard to convince Yosi to look at
diagrammatic methods in quantum
transport.

[ had to give up but...
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PHYSICAL MOTIVATION OF
THIS WORK




CHARGE FLUCTUATIONS IN QUANTUM
MESOSCOPIC CONDUCTORS

Current that flows 1n an electric conductor fluctuates
due to the stochastic nature of electron emission and

transport
* r
N L o B 7
left OLn — | gcatterer | < ORm  right ,
reservoir bLn - — bRn reservoir

-

N

Study of lransport, Noise and Full Counting Statistics
allow to characterize basic physical mechanisms at
work.
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QUANTUM CONDUCTANCE
AND SHOT NOISE

"Two-terminal conductors

\LQ

b a b
T =l 2 4 N % @ /é Q\
ab — |Yab a \b' \T 7/

(@) b) © / @

ELECTRIC CONDUCTANCE (LANDAUER)
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Noise power 1s given by the current-current
correlation function

S(w.,V) = j dt ' <5i(z)5i(0)+5i(0)52(z)>

where 81(r)=1(r)-(I) are electronic current operators

Equilibrium noise (V=0)

S(@.0)=2G coth(ﬂ)
T

(Nyquust fluctuation-dissipation)
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Non-equilibrium noise V # 0 at 7 = ()

Excess noise measures the second cumulant of charge
fluctuations :

5(0,v)-5(0,0) (0?)—(Q, )’
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FANO FACTOR

- S(O,V)_S(0,0) _ %Tab(l _Tab)

el ZTab
ab

B
N

(@)

I ,1S THE TRANSMISSION COEFFICIENT ALONG
THE CHANNEL ab
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FANO FACTOR

b
: T, (1-T
—> /! F_ S(O,V)_S(0,0) 5 % ab( ab)
el ZTab
“ ab :
e .
T,1s THE TRANSMISSION COEFFICIE G = ;T’ 2

THE CHANNEL ab
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FANO FACTOR

Irtt' (1 - z‘t"')
b
. T (1-T
i F_S(O,V)—S(O,O)_% o (1 ap)
el YT,
(a) ab "
e
G=—I1Irtt
h

', 1S THE TRANSMISSION COEFFICIENT ALONG
THE CHANNEL ab

Saturday, July 6, 13



FANO FACTOR

_5(0.V)-5(0.0) _ 4

el ZTab

F

F HAS A UNIVERSAL VALUE 1/3 FOR WEAKLY
DISORDERED ‘“ONE-DIMENSIONAL” METALS
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FANO FACTOR

ab

el ZTab
ab

o 50.V)=5(0.0) _ 2T, (1-T,)

F HAS A UNIVERSAL VALUE 1/3 FOR WEAKLY
DISORDERED ‘“ONE-DIMENSIONAL” METALS
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CLASSICAL VERSION OF THE QUANTUM

Z

N L d RS

eft.  3Im —= | geatterer
reservolr bLﬂ - —

/ j . Oy

CONDUCTOR

7 —>

GRn right @ . Py e .. : System .. Ph i

Reservoir Reservoir

SAME PHYSICAL CONTENT : PARTICLES

CANNOT PILE
PRINCIPLE

UP ON THE SAME SITE (PAULI
OR QUANTUM CROSSINGS IN

QUANTUM MESOSCOPIC PHYSICS)

DEFINES TH]

= CLASSICAL SYMMETRIC SIMPLE

EXCLUSION PROCESS (SSEP)
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THE SSEP MODEL

7 —>
1 1 11 p —
o A~ ~~ AN ~~ o o o 2
B R : ; @ R L
QN U SN S IS S S [ O S S [ S_— o . b - : .
~ ] N ~ R;se:vo:r Res;rvoir
N»l, p=—2—.p==2
FOR P> = 9ijes =
’ “a+y 7 B+0

For large enough time, the system 1s in a steady state.

Define the probability P(Q, ) of observing (), particles flowing

through the system during a time interval [ and for 2 reservoirs at

densities P,and P,
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ALL THE CUMULANTS ARE KNOWN FOR
ARBITRARY DENSITIES P, AND pP,

THE GENERATING FUNCTION

lim Iim 4 log <eAQ’ > =(sinh_l (\/5))

N—oo t—oo

2

DEPENDS ON A SINGLE SCALING VARIABLE

w=p, (el - ])+p,, (e"'l ~ 1)—pa (e/1 — l)p,, (e”1 - 1)
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And the Fano factor 1s
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And the Fano factor 1s

lim Iim

N—o0 f—o0




And the Fano factor 1s

(07)-(0,)

lim lim —

1
N—o0 f—o0 < Q, > 3

The Fano factor and all other cumulants are
identical to those calculated in the quantum
Mes0SCopIC case.




How these results generalize to higher space
dimensions ?

NUMERICAL RESULTS ON A
SIERPINSKI GASKET FRACTAL
NETWORK SUGGESTS A FANO

FACTOR . _ 1
3

(GROTH ET AL. PRL 2008)
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How these results generalize to higher space
dimensions ?

NUMERICAL RESULTS ON A
SIERPINSKI GASKET FRACTAL
NETWORK SUGGESTS A FANO

FACTOR . _ 1
3

(GROTH ET AL. PRL 2008)
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Our Result:

(T. Bodineau, B. Derrida, O. Shpielberg, E.A, 2013)

1. Large class of graphs (including fractals) can be characterized
by an effective length L
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2. For large values of L , the generating function of the

cumulants of the current of the SSEP 1s the same as for a
linear chain, up to a multiplicative function

|

lim l10g<ew' > = (sinh_' (\6))

t—oo f

2
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2. For large values of L, the generating function of the

cumulants of the current of the SSEP 1s the same as for a
linear chain, up to a multiplicative function

|

K(L,) (sinh" (\@))

g

lim llog<ew’ )

t—oo ¢

lim llog(ew’ )

[—oo t

i (43

Saturday, July 6, 13



2. For large values of L, the generating function of the

cumulants of the current of the SSEP 1s the same as for a
linear chain, up to a multiplicative function

|

lim 110g<ew' )=k(L,) (sinh“ (\/5 ))

{—co

9

c(L)=L [aF (W(F) et

Av(7)=0, v(0A)=1,v(dB)=0
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2. For large values of L, the generating function of the

cumulants of the current of the SSEP 1s the same as for a
linear chain, up to a multiplicative function

|

lim llog<ew' )=k(L,) (sinh—‘ (\/5 ))

t—oo f

9

Thus, the ratio between any pair of cumulants of (), is the
same as for the linear chain. Then,

F=-
3
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ELEMENTS OF THE PROOF

» Use the macroscopic fluctuation theory of Bertini et al. and
the addrtivity principle.

» Alternative description based on Energy/Dirichlet forms:

allows to characterize the SSEP and to provide a derivation
of the addrtivity principle.
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The macroscopic fluctuation theory

Basic definitions and results

(Bertini, De Sole, Gabrielli, Jona-Lasinio,
and Landim)
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THE SSEP MODEL

7 —>
1 ] 1 1 B .
o ~ ~~ AN ~~~ X i « °*
N . e @ %8 0 . .
Y ............. " ® - ° :
T ] N g . * 9 -
Reservoir Reservoir

o )

FORN>>19 pa:a+y’pb:ﬁ+6

For large enough time, the system 1s 1n a steady state.

Saturday, July 6, 13



QO = Number ot particles tlowing through the system during t

<€?LQ, > = e“(l)’ for large t
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QO = Number ot particles tlowing through the system during t

<€’1Qr > — e“(l)’ for large t

The large deviation function F 7 is defined from the probability

’Fl,(j s Pa ’pb)

P.(Q =jt.p..p,)=¢
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Qr = Number of particles flowing through the system during t

<e’1Qr > — e“(l)’ for large t

The large deviation function F 7 is defined from the probability

tFL(/ s Pq ’pb)

P.(Q =jt.p,.p,)=e

[t 1s the Legendre transtorm of ‘Ll(/l)

u(A)=max () +F, (j(2))
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Scaling - Electrical conductance

The large deviation function 1s a scaling function :

1
L?_—d

so that F = scales like an electrical conductance.

F,(D=—5G(L™)

(Bodineau,Derrida,Lebowitz - Thouless - Montambaux, E.A.)
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Additivity principle and large deviation function

General diffusive system (e.g. SSEP) s.t.,p.=p .p,=p+Ap, Ap<Kp
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Additivity principle and large deviation function

General diffusive system (e.g. SSEP) s.t.,p.=p .p,=p+Ap, Ap<Kp

Weak current through the system : use Fick’s law Q) Ap

+ fluctuations : <Q’->: G(Lp )
t

For SSEP, D(p)=1, o(p)=2p(1-p)
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Additivity principle and large deviation function

General diffusive system (e.g. SSEP) s.t.,p.=p .p,=p+Ap, Ap<p

Weak current through the system : use Fick’s law Q) Ap

+ fluctuations : <Q’->: G(Lp )
t

For SSEP, D(p)=1, o(p)

2p(1-p)
Q) ¢

F, (j) has its maximum for j=-=*. Close to equilibrium :

=
Gaussian distribution for the probability,

(./—<Q'%] (./'—p'_[p”'D(P,))z o ;L’ ——————+—

F[(/):— = —

2<Q'2>/ 20(""%
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Additivity principle + scaling

Reservoir = Reservoir




Additivity principle + scaling

Reservoir

Reservoir




Additivity principle + scaling

) - At
. .o. . L + L : x E L IR p’ < - - :
. Pa v ——— My % . .Pa : I ph.
Reservoir doaeciial fictitious reservoir Reservoir

Reservoir

Fr (oPoop,) = maxiF, (j.p,-p)+ . (.p.p, )|

2\

| B (jL+D(p(x))P'(x))
-y i e e




Additivity principle + scaling

L+L C

=

Reservoir = Reservoir

F, (j,pa,pb)zmax<—jdx

p(x) 4

(JL+D(p(x))p(x))

PP = m3X{FL (.po-P)+F, (j.psp,)]

2\

20 (p(x))

= H(A):mjax(l].*'FL (J(/l)))




Macroscopic fluctuation theory for SSEP on a
d-dimensional domain
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TFFHF—

A

DEFINE THE NUMBER Q, OF PARTICLES FLOWING
BETWEEN THE 2 RESERVOIRS :

Qt ) _;'Z(V, 1) Vj)qi,j(t)

WHERE ¢, ;(f)Is THE NUMBER OF PARTICLES TRANSFERRED
FROM [ TO /| DURING [ AND V. 1S AN ARBITRARY FUNCTION
ON SITE {EXCEPTFOR V, =1,V, =0
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TFFHF—

A

DEFINE THE NUMBER Q, OF PARTICLES FLOWING
BETWEEN THE 2 RESERVOIRS :

Qt ) _;:Z(V, 1) Vj)qi,j(t)

WHERE ¢, ;(f)Is THE NUMBER OF PARTICLES TRANSFERRED
FROM [ TO /| DURING [ AND V. 1S AN ARBITRARY FUNCTION
ON SITE {EXCEPTFOR V, =1,V, =0

Nothing depends on the choice of the Vs. We take it a

solution of the Laplace eq. AV, =)V, -V, =0

j~i
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v,
Continuous version: Q, = —L' J dt jd? vv(f’) - j(F)

0

where  Ay(7)=0, v(dA)=1,v(dB)=0




The minimization in the generating function

(

u(A)=-L"" min [d7| AVv(F)-j(F)+
1P

E

(7 (7)+D(p) VpH) |
20(p(7))

leads to

— —

V(D(p(¥) Vo)) =V (o (p()) VH (7))

o’ (p(7))
2

)

(?H(F))“

D(p(7))AH (7) =

where / (7 )is a Lagrange multiplier field associated to current
conservation.
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THE LINK BETWEEN d =1 AND HIGHER DIMENSIONS:
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THE LINK BETWEEN d =1 AND HIGHER DIMENSIONS:

IF ONE KNOWS THE SOLUTION OF

—— —

V(D(p(¥) Vo)) =V (o (p()) VH (7))

/(Y (1)
- (ﬁ;(' ))(VH(F))“

R i

D(p(F))AH (¥) =

IN d =1 (CHAIN OF LENGTH L), THEN WE KNOW THE
SOLUTION IN ANY DIMENSION AND FOR ANY DOMAIN !
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THE LINK BETWEEN d =1 AND HIGHER DIMENSIONS:

IF ONE KNOWS THE SOLUTION OF

—— —

V.(D(p(f‘)) ?p(f')) = V-(G(/XF)WH(F))

ol - (1)
- (f(' ))(VH(F))"

K il

D(p(F))AH (¥) =

IN d =1 (CHAIN OF LENGTH L), THEN WE KNOW THE
SOLUTION IN ANY DIMENSION AND FOR ANY DOMAIN !

iflls RESULTS FROM Av(l—:): 0, v(aA) =30 It V(aB) 0

so THAT | H(r)=H (V(F)) , P(F)=p,, (V(?))

SOI_VE(I)

Saturday, July 6, 13



THE GENERATING FUNCTION IN d DIMENSIONS IS

u(a)=r1" | d;:((vv(;:))z CI)(V(?)))




THE GENERATING FUNCTION IN d DIMENSIONS IS

p(2)=1 [a7((Vv(7)) o((7))

WHERE (I)(v(F)) iU Sp e Sar

[ @ (v(x)) =L, (1)




THE GENERATING FUNCTION IN d DIMENSIONS IS

p(2)=1 [a7((Vv(7)) o((7))

WHERE cI)(v(F)) iU Sp e Sar

[ @ (v(x)) =L, (1)

WE HAVE THE FOLLOWING REMARKABLE IDENTITY:

—

|7 ®(v(7)) (Vv(?))z =jd.xq>(v(x))xjd7 (%(f))2




THE GENERATING FUNCTION IN d DIMENSIONS IS

p(2)=1 [a7((Vv(7)) o((7))

WHERE cI)(v(F)) iU Sp e Sar

[ @ (v(x)) =L, (1)

WE HAVE THE FOLLOWING REMARKABLE IDENTITY:










THEN,

WITH




THE GENERATING FUNCTION u(/l) FOR AN ARBITRARY
DOMAIN IN (/-DIMENSIONS IS THE SAME As THE ¢ = |
GENERATING FUNCTION U, (A) FOR THE EFFECTIVE
LENGTH L, UP TO A MULTIPLICATIVE FUNCTION

INDEPENDENT OF (/l,pa ,pb)

THEREFORE, FOR ANY d-DlMENSlONAL DOMAIN, THE
RATIO OF ANY PAIR OF CUMULANTS IS THE SAME AS

NS fa=—
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Analogies between SSEP on a graph and
resistor networks




Scaling - Electrical conductance

The large deviation function 1s a scaling function :

1
L?_—d

so that F = scales like an electrical conductance.

F,(D=—5G(L™)

(Bodineau,Derrida,Lebowitz - Thouless - Montambaux, E.A.)
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Kirchhoff’s rules - Addition in series and in parallel

. A
7 —>
N
2
N, N, Pa Py
Pa _@ Py
N f =
] = [ar=1ar=1)
3 N* N,+N,+N,"1+N, |

(Derrida, Bodineau PRL 2004)
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Kirchhoff’s rules - Addition in series and in parallel

’ 7' é
7 —>
N,
N, - N, Pa Py
N AR,
3 N"=N1+N4+I‘N2 +N3

(Derrida, Bodineau PRL 2004)

More generally, using the A-Y transform

N N/3YN/3
N\/N N/3
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Kirchhoff’s rules - Addition in series and in parallel

’ 7' é
7 —>
N,
N, - N, Pa Py
N AR,
3 N"=N1+N4+I‘N2 +N3

(Derrida, Bodineau PRL 2004)

More generally, using the A-Y transform

N N/3YN/3
N\/N N/3

Saturday, July 6, 13



Star - mesh transform

“star” “mesh”

A Two-terminal resistor network always has an
equivalent resistor (Helmholtz, Thevenin).

* The equivalent resistor can be obtained through
repeated use of the star-mesh transform.
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Star - mesh transform

“star” “mesh”

A Two-terminal resistor network always has an

equivalent resistor (Helmholtz, Thevenin).

* The equivalent resistor can be obtained through

repeated use of the star-mesh transform.

The same applies to any SSEP graph
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The SSEP resistor theorem

» For any graph G, F;(/,p,.p,)=F (J:P.:P,)
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The SSEP resistor theorem

» For any graph G, F;(/.p,.p;)=F, (j:P.-P)

« N~ can be obtained by Kirchhoff's resistor rules
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The SSEP resistor theorem

» For any graph G, F;(/.p,.p;)=F, (j:P.-P)

« N~ can be obtained by Kirchhoff's resistor rules

 The theorem applies for any non-eq. process given
that

1. The additivity principle applies
2.The scaling assumption applies

3. There is a steady state
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Energy/Dirichlet forms
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Energy forms

A graph with sites and bonds
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Energy forms

A graph with sites and bonds

Each bonds carries a weight — ry,
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Energy forms

A graph with sites and bonds

Each bonds carries a weight — ry,

We define the energy function E_ (u)= ZL[“ (x)-u (y)}2
r

X~y " xy
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Energy forms

A graph with sites and bonds

Each bonds carries a weight — ry,

We define the energy function E_ (u)= ZL[” (x)-u (y)}2
r

X~y " xy

Connect the network of resistors
to a battery

E,(=infE ) &

h - harmonic function
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Well known exact mapping between electric
networks of resistances and random walk on
a lattice

(Doyle & Snell)
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Usetul theorem by Beurling and Deny which
extends these results to the equivalence
between energy forms and symmetric
Markov processes.
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Usetul theorem by Beurling and Deny which
extends these results to the equivalence
between energy forms and symmetric
Markov processes.

This theorem allows to describe the SSEP as

an effective conductance network whose

electric energy 1s the large deviation tunction.
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Usetul theorem by Beurling and Deny which
extends these results to the equivalence
between energy forms and symmetric
Markov processes.

This theorem allows to describe the SSEP as

an effective conductance network whose

electric energy 1s the large deviation function.

Moreover, it guarantees the additivaty

principle (through the concavity property of

the minimum energy)
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Energy forms and SSEP
—u(y)]

Consider the energy form E, (u,u) :Z [u(x)

r

il K (x)r+ D(p(x))p(x)

= [26 ,O(x))]l/2

with




Energy forms and SSEP
—u(y)]

Consider the energy form E, (u,u) :2 [u(x)

r

M(X)ZK(X)HD(/?(X))p(X)

[26(p(x))]"

with

Boundary conditions
p(0)=p,

p()=p,

K (X, )-k(x)=7j
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Energy forms and SSEP

~u(y)]

Consider the energy form  E, (u,u) :2 [u X

¥
. (x)r+D(p(x))p(x)
th M(X)ZK 1/2
- 20 (p(x))]
Boundary conditions
p(0)=p, I:]n Ap:lz
— Ps E h .9 9 l
0, Bl TS




Energy forms and SSEP

2
]n+D Apl.]

E, (h(j.p.-p,))= ma"z[ 2n6(,0)

The Large Deviation Function is the
minimum of an energy form - it is a
conductance

EL (h(japa ’pb)) — FL (j’pa ’pb)




Summary - further issues

® Full counting statistics of quantum mesoscopic conductors 1s well
described by means of the classical 1D SSEP model:

7 —>

5 >
u _5—/ 3 \ B = © .

b ® o o ° ) °
left Qrn —> anattosns | *— GRn it _ @ ‘ Pa o | « _ System , Ph
reservoir Ot «— —> DRrn reservoir s 2 2 B .

Z °

F ol U

Reservoir Reservoir
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® For large system sizes, the generating function of the cumulants

of the current of the d-dim. SSEP 1s the same as for a linear
chain, up to a multiplicative function

Py Py
FFFE
A £ /
i %log@w’ )=x(L,) (sinh" (\@))7

K(Le) =L jd? (?v(?))2

Av(7)=0, v(0A)=1,v(0B)=0
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@ SSEP - resistor theorem : ANALOGY BETWEEN ELECTRIC
NETWORKS AND NON-EQUILIBRIUM STOCHASTIC
PROCESSES.

® ENERGY FORMS PROVIDE A USEFUL FRAMEWORK TO DERIVE
THE LARGE DEVIATION FUNCTION OF SYMMETRIC MARKOV
PROCESSES.

@ THE ADDITIVITY PRINCIPLE RESULTS FROM THE ENERGY
FORM DESCRIPTION.

@ EXTENSION TO MORE COMPLICATED STOCHASTIC PROCESSES
(ASEP) - WITH PHASE TRANSITIONS.

® MORE THAN 2 RESERVOIRS ?

@ RANDOM GRAPHS

® BACK TO THE QUANTUM CASE : SEMI-CLASSICAL
DESCRIPTION (A. PILGRAM, SUKHORUKOYV).
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