
Large deviations in the Symmetric Simple 
Exclusion Process (SSEP) on graphs

Eric Akkermans 
Physics-Technion 

 

  

I
S

R
A

E
L

 

S
C

I E N C E  F O
U

N

D
A

T
I
O

N
 

 

In collaboration with: Ohad Sphielberg, Technion 
Bernard Derrida, ENS, Physics, Paris 
Thierry Bodineau, ENS, Maths, Paris 

Alex Leibenzon, Technion,Physics 
!

The 6th KIAS conference on statistical physics  !

Seoul, July 08-11, 2014



MOTIVATION OF THIS WORK: 
!

SHOT NOISE IN QUANTUM 

MESOSCOPIC SYSTEMS 



Charge fluctuations in quantum 
mesoscopic conductors 

Current that flows in an electric conductor fluctuates 
due to the stochastic nature of  electron transport  



Charge fluctuations in quantum 
mesoscopic conductors 

Current that flows in an electric conductor fluctuates 
due to the stochastic nature of  electron transport  

Study of  Transport and Noise allows to characterize 
basic physical mechanisms at work.



Transport  and shot noise

Two-terminal conductors
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Noise power is a current-current correlation 

where                        are electronic current operators

(Nyquist fluctuation-dissipation)

Equilibrium noise (V=0)



Non-equilibrium noise            at             

Excess noise measures the second cumulant of  charge 
fluctuations :



Fano factor
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Fano factor

F has a universal value 1/3 for weakly 
disordered “one-dimensional” 

conductors 
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Is this result universal ? 
nature of disorder, geometry, space 

dimensionality, extends to higher order 
cumulants,... 



Classical description of a 
 quantum conductor

Same physical content : particles 
cannot pile up on the same site 

(exclusion principle) 

Defines the Symmetric Simple exclusion 
process (SSEP)



The SSEP 



The SSEP 

For           , 



The SSEP 

For large enough time, the system is in a steady state.  
!

Define the probability          of observing       particles flowing 
through the system during a time interval    and for 2 reservoirs at 
densities     and 

For           , 



All the cumulants are known for 
arbitrary densities     and  

The generating function  

!

!

!

depends on a single scaling variable 



The Fano factor is



The Fano factor is

All cumulants are identical to those calculated in 
the quantum mesoscopic case. 



How these results generalize to higher space 
dimensions ? 

Numerical results on a 
Sierpinski gasket fractal 
network suggests a Fano 
factor  

(Groth et al. PRL 2008)



Our Results:  
(T. Bodineau, B. Derrida, O. Shpielberg, E.A, 2013)

1. Large classes of graphs (including fractals) are characterized by 
an effective length 
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2. For large values of     , the generating function of the  
cumulants of the SSEP is the same as for a linear chain, up 
to a multiplicative function  
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2. For large values of     , the generating function of the  
cumulants of the current of the SSEP is the same as for a 
linear chain, up to a multiplicative function  



2. For large values of     , the generating function of the  
cumulants of the current of the SSEP is the same as for a 
linear chain, up to a multiplicative function  

Thus, the ratio between any pair of cumulants of       is the 
same as for the linear chain. Then,



Elements of the proof

• Use the macroscopic fluctuation theory of Bertini et 
al. and the additivity principle.!

• Alternative description based on Energy/Dirichlet 
forms: allows to characterize the SSEP and to provide 
a derivation of the additivity principle.
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The macroscopic fluctuation theory
!

Basic definitions and results

(Bertini, De Sole, Gabrielli, Jona-Lasinio,  
and Landim)



      The SSEP 

For large enough time, the system is in a steady state.  
!

For           , 
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for large t

The large deviation function      is defined from the probability       



= 

for large t

The large deviation function      is defined from the probability       

It is the Legendre transform of 



Scaling - Electrical conductance

The large deviation is a scaling function :

      scales like an electrical conductance.



General diffusive system (e.g. SSEP) s.t.,

Additivity principle and large deviation function
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General diffusive system (e.g. SSEP) s.t.,

Weak current through the system : use Fick’s law

+ fluctuations : 

For SSEP, 

         has its maximum for              . Close to equilibrium : 
Gaussian distribution for the probability,

Additivity principle and large deviation function



Additivity principle + scaling

L + L’
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so that,



Additivity principle + scaling

L + L’

so that,

and



Macroscopic fluctuation theory for SSEP on a    
-dimensional domain 
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Define the number     of particles flowing 
between the 2 reservoirs : 

where         is the number of particles transferred 
from    to   during   and    is an arbitrary function 
on site   except for 
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Define the number     of particles flowing 
between the 2 reservoirs : 

where         is the number of particles transferred 
from    to   during   and    is an arbitrary function 
on site   except for 

Nothing depends on the choice of the    ‘s. We take it a 

solution of the Laplace eq.  



Continuous version: 

where



The minimization in the generating function 
!
!
!
!
  



The minimization in the generating function 
!
!
!
!
leads to  

where           is a Lagrange multiplier field associated to current 
conservation.



The link between         and higher dimensions:



If one knows the solution of 

The link between         and higher dimensions:

in         (chain of length L), then we know the 
solution in any dimension and for any domain !



If one knows the solution of 

This results from 

The link between         and higher dimensions:

in         (chain of length L), then we know the 
solution in any dimension and for any domain !

so that

solve 



the generating function in     dimensions is



where           is such that 

the generating function in     dimensions is
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the generating function in     dimensions is

We have the following remarkable identity:
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We have the following remarkable identity:

so that 





Since



Since

Then,

with



The generating function        for an arbitrary 

domain in     -dimensions is the same as the   

generating function             for the effective 

length      up to a multiplicative function 

independent of   



The generating function        for an arbitrary 

domain in     -dimensions is the same as the   

generating function             for the effective 

length      up to a multiplicative function 

independent of   

Therefore, for any     -dimensional domain, the 
ratio of any pair of cumulants is the same as in         

.



Analogies between SSEP on a graph and 
resistor networks



Scaling - Electrical conductance

The large deviation is a scaling function :

      scales like an electrical conductance.



Kirchhoff’s rules - Addition in series and in parallel 

(Derrida, Bodineau  PRL 2004)



More generally, using the  Δ-Y  transform
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Star – mesh transform

• A two-terminal resistor network always has an 
equivalent resistor 

• The equivalent resistor is obtained through 
repeated use of the star-mesh transform.

The same applies to any SSEP graph



The SSEP resistor theorem 

• For any graph G, 


•      can be obtained by Kirchhoff's resistor rules


• The theorem applies for any non-eq. process given 
that 


1.The additivity principle applies 


2.The scaling assumption applies 


3.There is a steady state
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Energy/Dirichlet  forms



Energy forms 

A graph with sites and bonds

Each bonds carries a weight



Energy forms 

A graph with sites and bonds 

Each bonds carries a weight

We define the energy function 



Energy forms 

A graph with sites and bonds 

Each bonds carries a weight

We define the energy function 

Connect the network of resistors  
to a battery



Well known exact mapping between electric 
networks of resistances and random walk on 

a lattice

(Doyle & Snell)



A theorem by Beurling and Deny extends 
this mapping to the equivalence between 

energy forms and symmetric Markov 
processes.



This theorem allows to describe the 
an effective conductance network

electric energy is the large deviation function.	
!
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This theorem allows to describe the 
an effective conductance network

electric energy is the large deviation function.	
!

Moreover, 
principle

the minimum energy

A theorem by Beurling and Deny extends 
this mapping to the equivalence between 

energy forms and symmetric Markov 
processes.



Summary - further issues

Full counting statistics of quantum mesoscopic conductors is well 
described by the classical 1D SSEP model: 

!



For large system sizes, the generating function of the  cumulants 
of the current of the d-dim. SSEP is the same as for a linear 
chain, up to a multiplicative function  
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SSEP - resistor theorem : analogy between electric 
networks and non-equilibrium stochastic 
processes. 

Energy forms : useful framework to derive the 
large deviation function of symmetric Markov 
processes. 

The additivity principle results from the energy 
form description. 

Extension to stochastic processes (ASEP) with 
phase transitions. 

More than 2 reservoirs ? 

Random graphs


