Topology and Physics

The 2016 Physics Nobel Prize : D. Thouless, D. Haldane

and J. Kosterlitz

Eric AKKERMANS
PHYSICS-TECHNION

Topological Phase Transitions - Topological Phases of Matter

In case you think that physicists are always very focused and serious...

A Nobel prize in action...

든

NATO Advanced Study Institute

Topological aspects
of low dimensional systems

Les Houches

Many? Session Lxix

Aspects topologiques de la physique en basse dimension
A. Comtet, T. Jolicœur,
S. Ouvry and F. David

Editors

INTRODUCTION TO TOPOLOGICAL QUANTUM NUMBERS
D.J. THOULESS

Dept. of Physics, Box 351560, University of Washington, Seattle, WA 98195, U.S.A

while others....

Topological Phase Transitions - Topological Phases of Matter

Topological Phase Transitions - Topological Phases of Matter

Topological(Phase Transitions- Topological Phases of Matter

Topological Phase Transitions Topological Phases of Matter

Phases of Matter?

What are Phases of Matter?

Different forms of solid state matter :

Crystal \Leftrightarrow Symmetry

What are Phases of Matter ?

Different forms of solid state matter :

Crystal \Leftrightarrow Symmetry
Amorphous

What are Phases of Matter ?

Different forms of solid state matter :

Crystal \Leftrightarrow Symmetry
Amorphous
Under the "microscope"

What are Phases of Matter?

Different forms of solid state matter :

Crystal \Leftrightarrow Symmetry
Amorphous
Under the "microscope"

A macroscopic symmetry reflects a microscopic one

A macroscopic symmetry reflects a microscopic one

Crystal

Amorphous

Building blocks : Atoms
A bit primitive but a good start.

Building blocks : Atoms
 A bit primitive but a good start.

What tights atoms together ?

Building blocks : Atoms
 A bit primitive but a good start.

What tights atoms together ?

Usual picture: Atoms are tight together by springs. Useful (melting, freezing,..), but limited and adhoc.

Freezing - Melting

Freezing - Melting

Very low temperature $\mathrm{T}=0 \quad\left(-273^{\circ}\right)$

Freezing - Melting

Atoms $=$ Kids
Springs = tight

Freezing

Freezing - Melting

Very low temperature $\mathrm{T}=0$

Large temperature $T \geq T_{M}$

Breaks down for large T

Melting - No crystal symmetry anymore

Freezing - Melting

Very low temperature $\mathrm{T}=0$

Breaking the crystal symmetry

Break down for large T

Melting - No crystal symmetry anymore

What determines the characteristics of the atoms springs?

Difficult! It is Quantum Physics

Atoms \neq billiard balls
Rich and complicated structure

Bringing atoms together leads to different types of , and different symmetries.

Bringing atoms together leads to different types of \ldots symmetries.

All possible symmetries have been listed and studied (X-Ray crystallography).

Allows to characterize the melting phase transition breaking the crystal symmetry (Landau)

Bringing atoms together leads to different types of
 symmetries.

All possible symmetries have been listed and studied (X-Ray crystallography).

Allows to characterize the melting phase transition breaking the crystal symmetry (Landau)

Still a bit primitive ! Essential properties are missing

Still a bit primitive ! Essential properties are missing

Magnetism Metal / Insulator

Generalise the atoms/kids model

Bosons (Bose-Einstein)
Fermions (Fermi-Dirac)

The Spin

Bosons (Bose-Einstein)
Fermions (Fermi-Dirac)

The Spin

Bosons (Bose-Einstein)
Fermions (Fermi-Dirac)

(Spin)

Not a simple arrow - A magic one !
Not 360° but $2 \times 360^{\circ}$!

Interaction between spins/feathers results from Quantum Mechanics

Ferromagnetic order : MAGNET

Interaction between spins/feathers results from Quantum Mechanics

Ferromagnetic order : MAGNET

Heating a magnet destroys the magnetic order

```
\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow
\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow
B = ferromagnetic
```

T \nearrow

Heating a magnet destroys the magnetic order

$T \geq T_{c}$
$B=$ ferromagnetic

$T \nearrow$

Heating a magnet destroys the magnetic order

$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	$T \geq T_{c}$	$\pi \times 1+1>k$
－ferromagetic		イスパーメ゙

T
＂c＂for Curie
（Pierre not Marie）

Heating a magnet destroys the magnetic order

T
"c" for Curie
(Pierre not Marie)

Breaking the symmetry of the spins

Heating a magnet destroys the magnetic order

Breaking the symmetry of the spins

Heating a magnet destroys the magnetic order

```
\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow
\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow
B = ferromagnetic
```


Breaking the symmetry of the spins

This Magnetic Phase Transition between a magnet and non magnet is analogous to Melting but the origin and mechanisms are very different.

But in both cases : breaking of a symmetry

$$
x^{2}+x+x^{3} \times x
$$

Melting $T \geq T_{M}$

$$
T_{c} \neq T_{M}
$$

Different mechanisms - Open problem until today!

Universality

Notion of Universality : Each solid state system is a collection of a huge amount of details: Atoms, interactions, Spin, Mass,...

Notion of Universality: Each solid state system is a collection of a huge amount of details : Atoms, interactions, Spin, Mass,...

Notion of Universality: Each solid state system is a collection of a huge amount of details: Atoms, interactions, Spin, Mass,...

Model : Identify a minimal (and small)

 number of relevant quantities and insert them into an energy function.
Model : Identify a minimal (and small)

 number of relevant quantities and insert them into an energy function.
E (i
 , 000000000008080800 J

Right combination of these quantities so that E is minimum.

Short list of relevant Models/Energies.

Short list of relevant Models/Energies.

Short list of relevant Models/Energies.

Short list of relevant Models/Energies.

Short list of relevant Models/Energies.

Short list of relevant Models/Energies.

(Heisenberg model)

Importance of the spatial dimension

One dimensional lattice

Two dimensional lattice

Three dimensional Lattice

Importance of the spatial dimension

$d=2$

$d=3$

Importance of the spatial dimension

Topological Phase Transitions Topological Phases of Matter

Phase transition :

Symmetry, Space Dimension, Topology,

New Paradigm?

What is the revolutionary idea?

New Paradigm?

What is the revolutionary idea?

Phase Transition = Breaking a symmetry in $D=3$

Heating a magnet destroys the magnetic order

```
\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow
\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow
B = ferromagnetic
```


Breaking the symmetry of the spins

This Magnetic Phase Transition between a magnet and non magnet is analogous to Melting but the origin and mechanisms are very different.

But in both cases : breaking of a symmetry

New Paradigm?

What is the revolutionary idea?

Phase Transition $=$ Breaking a symmetry in $D=3$
Phase Transition results from Topology in $\mathrm{D}=1,2$ without breaking a symmetry

New Paradigm?

What is the revolutionary idea?

Phase Transition $=$ Breaking a symmetry in $D=3$
Phase Transition_results from Topology in $D=1,2$ without breaking a symmetry

Topology.

It is a branch of Mathematics which formalises a way to say that :

Torus

Sphere

Topology.

It is a branch of Mathematics which formalises a way to say that :

Meaning? locally same symmetry

Topology.

It is a branch of Mathematics which formalises a way to say that :

Meaning? locally same symmetry

$$
\mathrm{E}=\sum_{i n} \dot{\pi}_{\text {independent of topology }}^{A_{j}} \dot{\boldsymbol{N}}+r^{\sigma_{j}}
$$

Euler-Poincare characteristics

Different ways to characterise the topology :

1. Count holes $\chi(S)=2(1-h)$

h : number of holes

Sphere $\quad \chi\left(S_{2}\right)=2$

$$
\chi\left(T_{2}\right)=0 \quad \text { Torus }
$$

Or

2. Triangulation

Euler : $\quad \chi(S)=V-E+F$
$V=\#$ of vertices $; E=\#$ of edges and $F=\#$ of faces

3. Triangulation of potatoes

$$
\chi\left(S_{2}\right)=2
$$

Euler : $\chi(S)=V-E+F$

$$
V=\# \text { of vertices } ; E=\# \text { of edges and } F=\# \text { of faces }
$$

Topological invariance

4. Torus

$$
\chi\left(T_{2}\right)=0
$$

Euler: $\chi(S)=V-E+F$

$$
\mathrm{V}=\# \text { of vertices } ; \mathrm{E}=\# \text { of edges and } \mathrm{F}=\# \text { of faces }
$$

4. Torus

$$
\chi\left(T_{2}\right)=0
$$

Topological invariance

Topology of more complicated shapes

$$
\chi(S)=2(1-h)
$$

Guggenheim Bilbao (F. Gehry)

Hairy manifolds (fiber bundles)

Define a field on a manifold

Hairy manifolds (fiber bundles)

Define a field on a manifold

You cannot comb a sphere

Always be a singularity - vortex

Hairy manifolds (fiber bundles)

You cannot comb a sphere

Cyclone + Anticyclone

Topological result!

You can comb a torus

$$
\chi\left(T_{2}\right)=0
$$

$$
\chi(S)=2(1-h)
$$

No vortex - No cyclone on a torus Earth !

Topological result!

Establishes a deep relation between two different branches of Mathematics : topology and analysis.

The Kosterlitz - Thouless transition A topological phase transition

(1972-73)

The Kosterlitz - Thouless transition A topological phase transition

Back to spins :

The Kosterlitz - Thouless transition A topological phase transition

Back to spins :

The Kosterlitz - Thouless transition A topological phase transition

Back to spins :

The Kosterlitz - Thouless transition A topological phase transition

Back to spins :

$d=2$ planar spin

The Kosterlitz - Thouless transition A topological phase transition

Back to spins :

$d=2$
planar spin

Topology : no possible order of the spins even at $\mathrm{T}=0$

There will be always local defects (vortex)

No magnet in $d=2$
No T_{c}

Ferromagnetic order : MAGNET

Topology : no symmetry of the spins

$$
\text { (even at } \mathrm{T}=0 \text {) }
$$

No breaking of the symmetry of the spins

Heating a magnet destroys the magnetic order

Go again the consensus...

At large temperature T : topological phase transition

This topological phase transition has been observed! \Rightarrow Nobel Prize

Quantum spin chains - The Haldane conjecture

Topology at its best

What did we learn about new states of matter Future?

Topological features \& phase transition plays now a very important role :

Superconductors - Superfluids - Liquid crystals - Magnets - Polymers - Gels, ...

Electronic conduction in conductors, insulators, semiconductors.

What did we learn about new states of matter

 Future?
Topological features \& phase transition plays now a very important role :

Some take-home messages

- Discoveries made already some time ago (1972) : It takes time to establish a new paradigm and to convince the community.

Some take-home messages

- Discoveries made already some time ago (1972) : It takes time to establish a new paradigm and to convince the community.
- The processes by which research progresses are largely unknown and unpredictable (planification of research is, at least, dubious).

Some take-home messages

- Discoveries made already some time ago (1972) : It takes time to establish a new paradigm and to convince the community.
- The processes by which research progresses are largely unknown and unpredictable (planification of research is, at least, dubious).
- Good research requires collaborations between excellent institutions for high education.

Thank you for your attention.

