Quantum symmetry
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Observation of a scale
anomaly in graphene
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Today’s program

Continuous vs. Discrete Scale Symmetry - a
geometric tale.

The %2— potential and Schrodinger : spectrum,
universality and RG 1deas.

Dirac + Coulomb : do we know everything ? The
graphene approach.

An experimental surprise and a detour by Efimov
physics.
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Continuous vs. discrete scale symmetry



Homogeneous string (uniform mass per unit length)

m(L) Expect : m(L)o<L
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m(L) Expect : m(L)o<L

2 m(L)e< L’

spatial dimension
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Homogeneous string (uniform mass per unit length)

d=1 m(L) Expect : m(L)o<L

How to obtain this result ?

! m(2L)=2 m(L)
L L

or more generally, m(aL)=bm(L) VaeR



Continuous scale invariance (CSI)

Scaling relation: f(a x) =b f(x)

If this relation is satisfied for all I and b(a) , the system
has a continuous scale invariance (CSI).



Continuous scale invariance (CSI)

Scaling relation: f(a x) =b f(x)

If this relation is satisfied for all I and b(a) , the system
has a continuous scale invariance (CSI).

Discrete scale invariance (DSI)

discrete scale invariance 1s a weaker version of scale
Invariance, i.e.,

f(ax)zbf(x),

with fixed

(a,b



[terative lattice structures (fractals)

Sierpinski gasket
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[terative lattice structures (fractals)

Sierpinski gasket

Fractals are self-similar objects



Fractal < Self-similar
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Discrete scaling symmetry




The Cantor set

L M =2"M
A L =3"L
InM g _In2

InL " " In3

Alternatively, define the mass density 71 (L)of the Cantor set

2m(L):m(3L)
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Relation between the different cases :
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Cantor set Euclidean lattice



Relation between the two cases : discrete vs. continuous

[

- — — — d=1

m(2L)=2 m(L). Vb(a)eR

m(2L)=3m(L) (a.b)=(2.3)

Both satisty f(a x) = bf(x) but with fixed (a,b)

for the fractals. 8



Continuous vs. discrete scale invariance (CSI vs. DSI)

Flax)=bf(x)
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Continuous vs. discrete scale invariance (CSI vs. DSI)

Flax)=bf(x)
S

If satisfied Vb (a)eR (CSD),
General solution :
f(x)=Cx*"

, Inb
with o =——
Ina
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Continuous vs. discrete scale invariance (CSI vs. DSI)

Flax)=b f(x)

/ N\

If satisfied V b( a)ER (CSD), If satisfied with fixed (a,b) (DSI),

General solution : General solution:

f(.X) — C x* f(x):xa G(hl_xj
Ina
. _Inb
with 0‘—@ where G(u+1)=G(u)iS a

periodic function of period unity

21



Continuous vs. discrete scale invariance (CSI vs. DSI)

Flax)=b f(x)

/ N\

If satisfied V b(a)€R (CS). If satisfied with fixed (a,b) (DS]),

General solution : General solution :

flr)=Cx* — f(x)ﬂ“G(m_x)

. Ina
Break CSI into DSI ?

, Inb
with o =—
Ina

where G(u+1)=G(u)is a
periodic function of period unity
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Continuous vs. discrete scale invariance (CSI vs. DSI)

Flax)=b (2
If satisfied V b(a)€R (CS). If satisfied with fixed (a,b) (DS]),
General solutiop (yseHreertt T “enesal.sglution is N
Cfx)=Cxt — f(x)=x“GGn_x) |
N, na)
N — Break CSI into DSI ? e

Claim : breaking of CSI into DSI occurs at the quantum level :
quantum phase transition (scale anomaly)

23



Part 2

A simple example of continuous
scale invariance 1n quantum physics



An illustration of continuous scale invariance in
(simple) quantum mechanics

Schrodinger equation for a particle of mass 4 in d-dimensions
in an attractive potential :



An illustration of continuous scale invariance in
(simple) quantum mechanics

Schrodinger equation for a particle of mass 4 in d-dimensions

in an attractive potential :

Vir)=—5
2
i S
21U r
Redefining k? = —2uF
” d—1 ’ g 2
v ()t ==y )+ Sy (r)=ky(r)

C=2uE—1(1+d—-2)

\

orbital angular
momentum



The only parameter ¢ in the problem is dimensionless : no characteristic
length (energy) scale, e.g. Bohr radius a, = %ez for the Coulomb potential.
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Consequence: Schrodinger eq. displays continuous scale invariance :
it 1s invariant under the transformation: o

< i VAelR




The only parameter ¢ in the problem is dimensionless : no characteristic
length (energy) scale, e.g. Bohr radius a, = %ez for the Coulomb potential.

Consequence: Schrodinger eq. displays continuous scale invariance :
1t 1s invariant under the transformation: o

< i VAelR

\

- To every normalisable wave function w(r,k)
corresponds a family of wave functions w(Ar, k/4) of energy (ﬂ.k)2




C
The only parameter ¢ in the problem A 5"95' \OO\)‘G& stic
length (energy) scale, e.g. Bok 6\0000 \a’gea \ 1al.
D < :
Og O Og' \O\g'(o

- Toe .urmalisable wave function y(r,k)
corresponds a family of wave functions w(Ar, k/4) of energy (ﬂ.k)2




It 1s a problem, but a well known (textbook) one.

It results essentially from :

» the ill-defined behaviour of the potential V (r) = —5
for r—0

» the absence of characteristic length/energy.

Technically : non hermitian (self-adjoint) Hamiltonian.
To cure 1t : need to properly define boundary conditions
(somewhere)



Outline of the main results

A h° : . : ~ 1 A
H = _EA_% 1s scale mvariant (CSI) : r—Ar = H —>—5H
r

Any type of boundary conditions needed to find a
well defined hermitian Hamiltonian break CSI.




Outline of the main results

No characteristic scale



Outline of the main results

No characteristic scale

short-range
regularisation

V(r)

0

Some potential V_(r) : accounts
for “real” short-range physics.



Outline of the main results

V(r) V(r)

0 lfo > I

short-range
regularisation

No characteristic scale Some potential V._(r) : accounts

Or “real” short-range physics.

Exact expression 1s not important .



Outline of the main results

V() V(r)

0

Problem becomes well-defined :

- characteristic length L,

+continuity of W and W at L, (boundary condition)

—> energy spectrum



How the energy spectrum looks like ?

At low enough energies (E = O) ,the spectrum has a “universal”
behaviour.

- It depends on the parameter ¢=2ué-1(l+d-2)

It exists a singular value [gc,, _d _42) J




Universal part of the energy spectrum

It depends on the parameter ¢ =2ué-1(I+d-2)

[t exists a singular value (gcr _d _42) J




Universal part of the energy spectrum

It depends on the parameter ¢ =2ué-1(I+d-2)

[t exists a singular value [;W _d _42) J

-

universal Efimov spectrum




Universal part of the energy spectrum

It depends on the parameter ¢ =2ué-1(I+d-2)

[t exists a singular value [;W _d _42) J

E=——f(g) Just a name for the moment




Universal part of the energy spectrum

It depends on the parameter ¢ =2ué-1(I+d-2)

[t exists a singular value (gcr _d _42) J

A universal Efimov spectrum

L
- > F

of W— V(/):_é | o

//////// ; ///////)\[E s ce z:—ccrj

Single bound state non universal part
V.(r) 1 V.(r)  Depends on the choice of V_(r)
E=-—f(g)
L,




A quantum phase transition

It exists a singular value [ o= (d- Z)ZJ Take the limit L, — o
-4 with EL? fixed




A quantum phase transition

It exists a singular value [ o= (d- Z)ZJ Take the limit L, — o
-4 with EL? fixed
Cer

V(r)
0 - > I
Ep— E(L,—)=0

E=——f(g)

LO
V(r)




A quantum phase transition

It exists a singular value [ ¢

cr

(d—2)

4

J Take the limit L, — oo

universal Efimov spectrum

r
=

_ n
[En — 80 e C_gcr]




A quantum phase transition

cr 4

It exists a singular value [ ¢ (d- 2)2J Take the limit L, — oo

continuous scale invariance (CSI)
but trivial : AE=0 VA



A quantum phase transition

cr 4

It exists a singular value [ ¢ (d- 2)2J Take the limit L, — oo

lE,; neZ}—>{AE,; neZ}={E,, ; neZ}={E,; neZ}

continuous scale invariance (CSI) A=¢ Vo lo IS fixed :
but trivial : AE=0 VA discrete scale invariance (DSI)



Universal Efimov energy spectrum

n

C_Cc

E =—-¢g,e

n

" =—g A"

/

Non universal energy parameter




Universal Efimov energy spectrum

mn

g_gc

E =—-¢g,e

n

" =—g, A"

» The Efimov spectrum 1s invariant under a discrete scaling w.r.t. the
parameter : i

A=e 6 ~ber where ¢=2ué-1(l+d-2)

_(a-2)
)




Universal Efimov energy spectrum

n

— A — L
E =—¢gje » =—¢, 4

n

» The Efimov spectrum 1s invariant under a discrete scaling w.r.z. the
parameter : i

A=e 6=6ar where ¢=2ué-1(l+d-2)

» Density of states p(E)=) 6(E-E,)

p(AVE)=2u) 6(A K —k})==17p(E)

nez,

so that p(E):_G(ln_E) where G(u+1)=G(u)



Universal Efim PLBNRLIN. SDLCLEUI e

» The Efimov spectrum is invarig

parameter : B
A= Vo0 f(ax)
» Density of states p(E)=),86(E v If satisfied with fixed (a,b) (DSI)
h ;,; General solution 1s l
P(AZE)=2u§Z,5(12k2—kj):.. ) “G(Ez)

 (E . whereG(u+1)=G(u) is a
so that p(E)= —G(n—) |  periodic function of period unity



The same problem
from another point of view



Renormalisation group (RG) and limit cycles

It 1s interesting to re-phrase the previous problem using the
language of RG transformations.

Why ?
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Renormalisation group (RG) and limit cycles

It 1s interesting to re-phrase the previous problem using the
language of RG transformations.

Why ?

* Provides another (more physical ?) point of view
onthe V (r) = —% problem.

* Insert that problem in a broader perspective.

* Connects to other physical problems.



As we saw, the problem of the potential V (r) = —% results from
» its behaviour for r — 0

« absence of characteristic length.



As we saw, the problem of the potential V (r) = —% results from
» its behaviour for r — 0

« absence of characteristic length.

V(rz Problem becomes well-defined :

» characteristic length L

+continuity of Wand Wat L

— energy spectrum




Is it possible to consistently change (L, &, g) so that the energy
spectrum remains unchanged ?

Problem becomes well-detfined :

» characteristic length L

+ continuity of Wand W at [

— energy spectrum



5 is a dimensionless number. To make it change with L we
take

V>(r)=—% forr>L

V.(r) for r<L

<

eventually, s — 2

so that now, (L,&(L),g(L))



Perform a RG transtformation : change the cutoff distance L — L+dL
V(r)

A

L_eL+dL

0 > 7 leaves the energy spectrum unchanged

provided :




Perform a RG transtformation : change the cutoff distance L — L+dL
V(r)

; 1 L— L+dL

> T leaves the energy spectrum unchanged
provided :

coupling strength changes as

& _
d—L—(2 )&




Perform a RG transtformation : change the cutoff distance L — L+dL

V(r)

0

A

L_eL+dL

leaves the energy spectrum unchanged
provided :

coupling strength changes as

dg
< —(2-5)8

- boundary condition parameter g(L) changes according to

dg
dL

=(2-d)g-¢"-¢

(for low enough energies, 1.¢.
for L — )




Those are the renormalisation group (RG) equations.

. coup\xg strength changes as
dg
2—
% ~(2-5);
- boundary conditio parameter g(L) changes according to

d . .
ag =(2-d)g-g ¢ (for low enough energies, 1.¢.
dL for L 5 o)




Scale invariant coupling &

We define the § -function:  B(&)= B?ngL =(2-s)¢



Scale invariant coupling &

We define the [ -function:  f3 (f)

% —(2-5)¢

Take s=2ie., V>(I’)=—%



Scale invariant coupling &

We define the IB -function :

Take = 2ic. vy (;)=_¢/ - V(r)=-Y/,

The coupling ¢ is scale (L) independent

= C 1s also scale independent



Evolution of the coupling g(L) - quantum phase transition

dg

= =(2-d)g—-g* -
o =(2-d)g—g =

B(g)




Evolution of the coupling g(L) - quantum phase transition

dg :(z_d)g—gz—§=—(g_g+)(g_g—)

— dln L //

B(g)




Evolution of the coupling g(L) - quantum phase transition

dg :(z_d)g_gz—§=—(g—8+)(8_g—)

— dln L //

B(g)




Evolution of the coupling g(L) - quantum phase transition

_ 9dg
~ dlnlL

=—(g-g,)(g—¢)

B(g)

p(g)




Evolution of the coupling g(L) - quantum phase transition

two fixed points (g s g_)

For §

ﬁ(gi) =0
B(g) U

g, are [ -independent




Evolution of the coupling g(L) - quantum phase transition

two real fixed points (8+ ; 8_)
/N
unstable

stable

For §

p(g) I oo




Evolution of the coupling g(L) - quantum phase transition

two real fixed points (8+ ; g_)
/N
unstable

stable

For ¢

p(g)

L — oo

Universal behaviour of the energy spectrum



Evolution of the coupling g(L) - quantum phase transition

two real fixed points (g+ ; g_)

For §
\ N\
,B(g) table unstable
L—
V(rﬁ)\
0)
E(L—)=0

continuous scale invariance (CSI)
Universal behaviour of the e buttrivial : AE=0 VA4




Evolution of the coupling g(L) - quantum phase transition

dg

For { _
dln L

B(g) =—(g-2,.)(g-5.)

p(g)

/ Two complex valued
solutions

No fixed point

The solution for g(L) 1s a limit cycle.



Evolution of the coupling g(L) - quantum phase transition

dg

Blg)=5 " =—(g-2,)(g—¢)

For {

The solution for g(L)is a limit cycle.

—7T
The cycle completes a period for every [, — ¢ Ve~ber I

g(L)

_ In(L/Lo)

| | | |
| | |
~371/2 —7t/2 \ )2 3712
| | i
| | |




Evolution of the coupling g(L) - quantum phase transition

ﬁ(g)=a?%=—(g—g+)(g—g)

The solution for g(L) 1s a limit cycle.

For {

V(r)
0\ universal Efimov spectrum

_3%,2 ‘ffif"l \ n,ir'z s lE,; neZ} —>{AE,; neZ}=1{E,, ; neZ}={E,; neZ}

| | )
\ 2= V6% isfixed:

discrete scale invariance (DSI)




Breaking of CSI into DSI 1s now interpreted as
a transition of the RG flow from a stable fixed point
into the emergence of limit cycle solutions.

p(g)
stable

I /
&

unstable

&> 6

\limit cycle solutions )

78



Part 4

Dirac equation + Coulomb :
| Do we know everything ?

The graphene approach




Dirac equation + Coulomb potential

Continuous scale invariance (CSI) of the Hamiltonian :

A 1mmediate question : What about the Dirac eq. with a Coulomb potential ?




Dirac equation + Coulomb potential

Continuous scale invariance (CSI) of the Hamiltonian :

A 1mmediate question : What about the Dirac eq. with a Coulomb potential ?

1
Diraceq. |° Ov“ (0 +iedy)¥(2") =0 g linear with momentum and
J=
fine
5 structure
Coulomb potentlal eA) = V(” ) =-2, {=Za constant

r
A =0, i=1,....d

These two problems share the same continuous scale invariance
(CS)).



Dirac equation + Coulomb potential

Continuous scale invariance (CSI) of the Hamiltonian :

A 1mmediate question : What about the Dirac eq. with a Coulomb potential ?

R s R '
Diraceq. |° Ov“ (O +1e4,) ¥ (2") =0 | is linear with momentum and
M:
Coulomb potential |e4,=V(r)= —g, E=Zo

These two problems share the same continuous scale invariance
(CS)).



Dirac equation + Coulomb potential

Continuous scale invariance (CSI) of the Hamiltonian :

2
H= —i’— —éz \
u o r s oo !
£y dros”
A 1mmediate question : What abe . x‘o@D i\ _a10mb potential ?
oV
IS
Dirac - \noW eN =Y is linear with momentum and
&Y W<
o fine
structure
Coulomb potential eA) = V(” ) = —é , ¢=Zu constant

These two problems share the same continuous scale invariance
(CS)).



Old problem (Pomeranchuk, 1945) of a relativistic electron
in a super critical Coulomb potential.

Success of QED lies 1n the domain of weak fields and
perturbation theory in the small dimensionless parameter :

(fine structure constant)
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Calculations involving bound states of a nucleus of charge Ze
involve the dimensionless combination Z ¢¢



Old problem (Pomeranchuk, 1945) of a relativistic electron
in a super critical Coulomb potential.

Success of QED lies 1n the domain of weak fields and
perturbation theory in the small dimensionless parameter :

i (fine structure constant)
137 |

Calculations involving bound states of a nucleus of charge Ze
involve the dimensionless combination Z ¢¢

Perturbation theory fails for Zo 21

In that case, we expect instability of the vacuum (ground state) against
creation of electron-positron pairs.



How to understand this instability ?

(fine structure constant)

Calculations involving bound states of a nucleus of charge Ze
involve the dimensionless combination Z ¢

Perturbation theory fails for Zo 21

In that case, we exped 1nstab111ty of the vacuum (ground state against
creation Of €1eCtrON-POSIITOTT IAHES s



The Dirac-Kepler problem

Heuristic argument : classical expression for the energy of an electron
of mass 71 , momentum P in the field of a charge Ze




The Dirac-Kepler problem

Heuristic argument : classical expression for the energy of an electron
of mass 71 , momentum P in the field of a charge Ze

Estimate of the ground state energy :

electron position cannot be determined to better than %

S(p) >C (\/p2 +m’c’ — ZO{p)



The Dirac-Kepler problem

Heuristic argument : classical expression for the energy of an electron
of mass 71 , momentum P in the field of a charge Ze

Estimate of the ground state energy :

electron position cannot be determined to better than %

e(p)=c (\/p2 +m’c? —

Minimising w.r.t p: =mc’ \/1—(205) _

which reproduces well known features of the Hydrogen ground state
in the non relativistic (Za < 1)and relativistic limits.



The Dirac-Kepler problem

Heuristic argument : classical expression for the energy of an electron
of mass 71 , momentum P in the field of a charge Ze

Estimate of the ground state energy :

electron position cannot be determined to better than %

2(p)ze (Vo +mic’ - -

Minimising w.rt p: ' =m 2 \/1_ ( Zoc)

For Zo¢>1 the ground state energy becomes imaginary.



Problem : to observe this instability, we need Z 2%(:137

No such stable nucle1 have been created.
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“much larger effective fine structure constant”.
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velocity v, =10 ”% so that g |
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No such stable nucle1 have been created.

Idea: consider analogous condensed matter systems with a
“much larger effective fine structure constant”.
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velocity v, =10 ”% so that g |




Graphene : Effective massless Dlrac exmtatlons with a Fermi
velocity v, = 106”’y so that ( |

» Charged impurities in graphene (Coulomb potential)

This 1nstability 1in the Dirac + Coulomb

problem 1s an example of the
breaking of CSI into DSI.

Is there an Efimov like spectrum for the massless Dirac problem ?



Graphene : Effective massless Dlrac exmtatlons with a Fermi
velocity v, = 106”’y so that ( |

» Charged impurities in graphene (Coulomb potential)

This 1nstability 1in the Dirac + Coulomb

problem 1s an example of the
breaking of CSI into DSI.

The RG picture 1s rather simple here and it gives the
expected Efimov spectrum




A quantum phase transition

cr 4

It exists a singular value [ ¢ (d- 2)2J Take the limit L, — oo

CSI to DSI quantum phase transition for the
V (r) = —% potential

r2



Juantum phase transition

Dimensionless coupling = Z d—1 1
Singular value [ o = = —J

Continuous scale invariance (CSI) Discrete scale invariance (DSI)



Building an artificial atom in
ographene

Jinhai Mao, Eva Andrei et al. (2016)

Local vacancy. Local charge 1s
changed by applying voltage pulses
with the tip of an STM



1 Increasing the charge, quasi-bound states are
p<p.,= 5 trapped.
Experiment V(r)
v | A
B=0.03 8 0 l{o
56 5
‘\/ iz.4
12 L 4>
B =0.12 | & i/
T
a‘°.. : g dr
PP o T4 av
..O.WJ:-“Z
B=0.26 i S
........ 16 Measure the local density of states from
'z\ the tunnelling conductance of the STM
-02  -0.l 0 Dirac point



dl/dVv

Increasing the charge, quasi-bound states are

Experiment :
" trapped. For a large enough coupling, a

e - discrete set of Efimov states shows up.
r . #0000, 0®%e0. . 00° ° If.o 11

o’ '
- 105
By LT V(r)

i 15 ;
7 a‘"”v'.. : |1
M!0-5 r
BULISS | 15 ——
L :0 ov.' : 1
M.. e : | :0.5
B 1.195 . o
o e g

.
T R S BC
B1 1205 R

S oo : |5
...... ....oo.o ‘ ‘ : 3
ooy
. I
o SR L) : 1

Bias (V) : :
Dirac point
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The Efimov universal spectrum
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E(eV)

ODOj ‘
oss,
—OJO}
—OJS}

-0.20-

The Efimov universal spectrum

1.0 1.1 1.2 1.3

Observation of the universal spectrum
and of the quantum phase transition is
not obvious :

Quasi-bound states are the response of
delocalised conduction electrons in
graphene to the local charge.

Not a Dirac hydrogen atom !




What 1s Efimov physics ?



Universality in cold atomic gases : Efimov physics
DSI in the non relativistic quantum 3-body problem




Universality in cold atomic gases : Efimov physics
non relativistic quantum 3-body problem

Efimov (1970) analysed the 3-nucleon system interacting through

zero-range interactions (7, ). He pointed out the existence of universal
. . 2

physics at low energies, E« A/l .




Universality in cold atomic gases : Efimov physics
non relativistic quantum 3-body problem

Efimov (1970) analysed the 3-nucleon system interacting through

zero-range interactions (7, ). He pointed out the existence of universal
. . .

physics at low energies, E« A/l .

When the scattering length @ of the 2-body interaction becomes a > r,
there 1s a sequence of 3-body bound states whose binding energies are
spaced geometrically 1n the interval between %az and % 2




As ‘Cl‘ increases, new bound states appear according to
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where s, =1.00624 1s a universal number

Efimov showed that the corresponding 3-body problem
reduces to an effective Schrodinger equation with the
attractive potential :




Efimov physics 1s always super-critical :

Schrodinger equation with an effective attractive potential (d = 3) :
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| Co=si+ Y =1260515 0,

(. is fixed in Efimov physics. It cannot be changed !
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Universality
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| points obtained for
. Caesium atoms 4

Not obvious at all ! Two very different physical phenomena
share the same universal energy spectrum.



Summary-Further directions

Breaking of continuous scale invariance (CSI) into discrete scale
invariance (DSI) on two examples.

Observed this quantum phase transition on graphene. It raises more
questions than it solved.

Efimov physics belongs to this universality class. It does not allow
observing the transition.

Breaking of the CSI 1s interpreted using the Renormalisation Group
picture : stable fixed points evolve into limit cycles. Proposal of
K.G. Wilson: RG and strong interactions, 1971.



e Other problems can be described similarly as “conformality
lost” (Kaplan et al., 2009) and emergence of limit cycles:
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Line-depinning transition (Fisher, Lipowsky), roughening
transition, wetting transition (Brezin, Halperin, Leibler).

> Breitenlohner-Freedman bound for free massive scalar field
on AdS,, space.



Thank you tor your attention.
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