Quantum symmetry breaking : Observation of a scale anomaly in graphene

Eric Akkermans

UBC, Vancouver, August 2017

Today's program

- Continuous vs. Discrete Scale Symmetry a geometric tale.
- The $\frac{1}{r^2}$ potential and Schrödinger : spectrum, universality and RG ideas.
- Dirac + Coulomb : do we know everything ? The graphene approach.
- An experimental surprise and a detour by Efimov physics.

Benefitted from discussions and collaborations with:

Technion:

Evgeni Gurevich (KLA-Tencor) Dor Gittelman Eli Levy (+ Rafael) Ariane Soret (ENS Cachan) Or Raz (HUJI, Maths) Omrie Ovdat Ohad Shpielberg

NRCN: Ehoud Pazy

Elsewhere:

Gerald Dunne (UConn.) Alexander Teplyaev (UConn.) Jacqueline Bloch (LPN, Marcoussis) Dimitri Tanese (LPN, Marcoussis) Florent Baboux (LPN, Marcoussis) Alberto Amo (LPN, Marcoussis) Eva Andrei (Rutgers) Jinhai Mao (Rutgers)

Benefitted from discussions and collaborations with:

Technion:

```
Evgeni Gurevich (KLA-Tencor)
Dor Gittelman
Eli Levy (+ Rafael)
Ariane Soret (ENS Cachan)
Or Raz (HUJI, Maths)
Omrie Ovdat
Ohad Shpielberg
```

NRCN: Ehoud Pazy

Elsewhere:

Gerald Dunne (UConn.) Alexander Teplyaev (UConn.) Jacqueline Bloch (LPN, Marcoussis) Dimitri Tanese (LPN, Marcoussis) Florent Baboux (LPN, Marcoussis) Alberto Amo (LPN, Marcoussis) Eva Andrei (Rutgers) Jinhai Mao (Rutgers)

arXiv:1701.04121 (in press)

Continuous vs. discrete scale symmetry

$$d=1$$
 — $m(L)$ Expect: $m(L) \propto L$

$$d=1$$
 — $m(L)$ Expect: $m(L) \propto L$

How to obtain this result ?

$$d=1$$
 — $m(L)$ Expect: $m(L) \propto L$

How to obtain this result ?

$$\begin{array}{c|c} & & \\ \hline L & L \end{array} \end{array} \qquad m(2L) = 2 m(L)$$

or more generally,
$$m(aL) = bm(L)$$
 $\forall a \in \mathbb{R}$

Continuous scale invariance (CSI)

Scaling relation: f(ax) = bf(x)

If this relation is satisfied for all a and b(a), the system has a continuous scale invariance (CSI).

Continuous scale invariance (CSI)

Scaling relation: f(ax) = bf(x)

If this relation is <u>satisfied for all</u> a and b(a), the system has a continuous scale invariance (CSI).

Discrete scale invariance (DSI)

<u>discrete scale invariance</u> is a <u>weaker version</u> of scale invariance, *i.e.*,

Iterative lattice structures (fractals)

Sierpinski gasket

Iterative lattice structures (fractals)

Sierpinski gasket

Iterative lattice structures (fractals)

Sierpinski gasket

Fractals are self-similar objects

Fractal ↔ Self-similar

Discrete scaling symmetry

The Cantor set

Alternatively, define the mass density m(L) of the Cantor set

$$2m(L)=m(3L)$$

Relation between the different cases :

Cantor set

Euclidean lattice

Relation between the two cases : discrete vs. continuous

Both satisfy f(ax) = b f(x) but with fixed (a,b) for the fractals.

$$f(ax) = bf(x)$$

$$f(ax) = bf(x)$$

If satisfied $\forall b(a) \in \mathbb{R}$ (CSI),

General solution :

$$f(x) = C x^{\alpha}$$

with
$$\alpha = \frac{\ln b}{\ln a}$$

$$f(ax) = bf(x)$$

If satisfied $\forall b(a) \in \mathbb{R}$ (CSI),

General solution :

$$f(x) = C x^{\alpha}$$

with
$$\alpha = \frac{\ln b}{\ln a}$$

If satisfied with fixed (a,b) (DSI),

General solution:

$$f(x) = x^{\alpha} G\left(\frac{\ln x}{\ln a}\right)$$

where G(u+1) = G(u) is a periodic function of period unity

$$f(ax) = bf(x)$$

If satisfied $\forall b(a) \in \mathbb{R}$ (CSI),

If satisfied with fixed (a,b) (DSI),

General solution :

General solution :

where G(u+1) = G(u) is a periodic function of period unity

Claim : breaking of CSI into DSI occurs at the quantum level : quantum phase transition (scale anomaly)

Part 2

A simple example of continuous scale invariance in quantum physics

An illustration of continuous scale invariance in (simple) quantum mechanics

Schrödinger equation for a particle of mass μ in d-dimensions in an attractive potential :

$$V\left(r\right) = -\frac{\xi}{r^2}$$

An illustration of continuous scale invariance in (simple) quantum mechanics

Schrödinger equation for a particle of mass μ in d-dimensions in an attractive potential :

$$V\left(r\right) = -\frac{\xi}{r^2}$$

$$\hat{H} = -\frac{\hbar^2}{2\mu}\Delta - \frac{\xi}{r^2}$$

Redefining $k^2 = -2\mu E$

$$\psi''(r) + \frac{d-1}{r} \psi'(r) + \frac{\zeta}{r^2} \psi(r) = k^2 \psi(r)$$

 $\zeta = 2\mu\xi - l(l+d-2)$ orbital angular momentum

$$\psi''(r) + \frac{d-1}{r} \psi'(r) + \frac{\zeta}{r^2} \psi(r) = k^2 \psi(r)$$

The only parameter ζ in the problem is dimensionless : no characteristic length (energy) scale, *e.g.* Bohr radius $a_0 = \frac{\hbar^2}{\mu e^2}$ for the Coulomb potential.

$$\psi''(r) + \frac{d-1}{r} \psi'(r) + \frac{\zeta}{r^2} \psi(r) = k^2 \psi(r)$$

The only parameter ζ in the problem is dimensionless : no characteristic length (energy) scale, *e.g.* Bohr radius $a_0 = \frac{\hbar^2}{\mu e^2}$ for the Coulomb potential.

<u>Consequence</u>: Schrödinger eq. displays <u>continuous scale invariance</u> : it is invariant under the transformation: $r \rightarrow \lambda r$

$$\begin{array}{l} r \to \lambda r \\ k \to \frac{1}{\lambda} k \end{array} \qquad \qquad \forall \lambda \in \mathbb{R} \end{array}$$

$$\psi''(r) + \frac{d-1}{r} \psi'(r) + \frac{\zeta}{r^2} \psi(r) = k^2 \psi(r)$$

The only parameter ζ in the problem is dimensionless : no characteristic length (energy) scale, *e.g.* Bohr radius $a_0 = \frac{\hbar^2}{\mu e^2}$ for the Coulomb potential.

<u>Consequence</u>: Schrödinger eq. displays <u>continuous scale invariance</u>: it is invariant under the transformation: $\begin{cases} r \to \lambda r \\ k \to \frac{1}{2}k \end{cases} \quad \forall \lambda \in \mathbb{R} \end{cases}$

To every normalisable wave function
$$\psi(r,k)$$

corresponds a family of wave functions $\psi(\lambda r, k/\lambda)$ of energy $(\lambda k)^2$

 $\psi''(r) + \frac{d-1}{r} \psi'(r) + \frac{\zeta}{r^2} \psi(r) = k^2 \psi(r)$

To every normalisable wave function $\psi(r,k)$ corresponds a family of wave functions $\psi(\lambda r, k/\lambda)$ of energy $(\lambda k)^2$ It is a problem, but a well known (textbook) one.

It results essentially from :

- the ill-defined behaviour of the potential $V(r) = -\frac{\xi}{r^2}$ for $r \to 0$
- the absence of characteristic length/energy.

Technically : non hermitian (self-adjoint) Hamiltonian. To cure it : need to properly define boundary conditions (somewhere)

$$\hat{H} = -\frac{\hbar^2}{2\mu}\Delta - \frac{\xi}{r^2}$$
 is scale invariant (CSI): $r \to \lambda r \Rightarrow \hat{H} \to \frac{1}{\lambda^2}\hat{H}$

Any type of boundary conditions needed to find a well defined hermitian Hamiltonian break CSI.

No characteristic scale

No characteristic scale

Some potential $V_{<}(r)$: accounts for "real" short-range physics.

Problem becomes well-defined :

- characteristic length L_0
- continuity of ψ and ψ' at L_0 (boundary condition)

How the energy spectrum looks like?

At low enough energies $(E \simeq 0)$, the spectrum has a <u>"universal"</u> behaviour.

- It depends on the parameter $\zeta = 2\mu\xi l(l+d-2)$
- It exists a singular value

$$\zeta_{cr} = \frac{\left(d-2\right)^2}{4}$$

It depends on the parameter $\zeta = 2\mu\xi - l(l+d-2)$

It exists a singular value

$$\zeta_{cr} = \frac{\left(d-2\right)^2}{4}$$

It depends on the parameter $\zeta = 2\mu\xi - l(l+d-2)$

It exists a singular value

$$\zeta_{cr} = \frac{\left(d-2\right)^2}{4}$$

It depends on the parameter $\zeta = 2\mu\xi - l(l+d-2)$

It exists a singular value

$$\zeta_{cr} = \frac{\left(d-2\right)^2}{4}$$

Just a name for the moment

0

It depends on the parameter $\zeta = 2\mu\xi - l(l+d-2)$

It exists a singular value

$$\zeta_{cr} = \frac{\left(d-2\right)^2}{4}$$

A quantum phase transition

A quantum phase transition

A quantum phase transition $\zeta_{cr} = \frac{\left(d-2\right)^2}{c}$ It exists a singular value Take the limit $L_0 \rightarrow \infty$ $\zeta < \zeta_{cr}$ $\zeta > \zeta_{cr}$ ζ_{cr} V(r)V(r)universal Efimov spectrum r 0 $E(L_0 \to \infty) = 0$ πn $E_n = -\varepsilon_0 e^{-\sqrt{\zeta - \zeta_{cr}}}$

A quantum phase transition $\zeta_{cr} = \frac{\left(d-2\right)^2}{2}$ It exists a singular value Take the limit $L_0 \rightarrow \infty$ $\zeta < \zeta_{cr}$ $\zeta > \zeta_{cr}$ ζ_{cr} V(r)V(r)universal Efimov spectrum r 0 $E(L_0 \to \infty) = 0$ πn $E_n = -\varepsilon_0 e^{\sqrt{\zeta - \zeta_{cr}}}$

continuous scale invariance (CSI) but trivial : $\lambda E = 0 \quad \forall \lambda$

A quantum phase transition $\zeta_{cr} = \frac{\left(d-2\right)^2}{4}$ It exists a singular value Take the limit $L_0 \rightarrow \infty$ $\zeta < \zeta_{cr}$ $\zeta > \zeta_{cr}$ ζ_{cr} V(r)V(r)universal Efimov spectrum 0 $E(L_0 \to \infty) = 0$ $E_n = - \mathcal{E}_0 e^{\sqrt{\zeta - \zeta_{cr}}}$ $\{E_n; n \in \mathbb{Z}\} \rightarrow \{\lambda E_n; n \in \mathbb{Z}\} = \{E_{n+1}; n \in \mathbb{Z}\} = \{E_n; n \in \mathbb{Z}\}$ $\lambda \equiv e^{-\frac{\pi}{\sqrt{\zeta-\zeta_{cr}}}}$ is fixed : continuous scale invariance (CSI) but trivial : $\lambda E = 0 \quad \forall \lambda$

discrete scale invariance (DSI)

$$E_n = -\varepsilon_0 e^{-\frac{\pi n}{\sqrt{\zeta - \zeta_{cr}}}} \equiv -\varepsilon_0 \lambda^n$$
Non universal energy parameter

$$E_n = -\varepsilon_0 e^{-\frac{\pi n}{\sqrt{\zeta - \zeta_{cr}}}} \equiv -\varepsilon_0 \lambda^n$$

• The Efimov spectrum is invariant under a discrete scaling *w.r.t*. the parameter : $\frac{\pi}{\sqrt{\xi - \xi}}$

$$\lambda \equiv e^{\sqrt{\zeta - \zeta_{cr}}}$$

where
$$\zeta = 2\mu\xi - l(l+d-2)$$

$$\zeta_{cr} = \frac{\left(d-2\right)^2}{4}$$

$$E_n = -\varepsilon_0 e^{-\frac{\pi n}{\Lambda}} \equiv -\varepsilon_0 \lambda^n$$

- The Efimov spectrum is invariant under a discrete scaling *w.r.t*. the parameter : $\lambda \equiv e^{\frac{\pi}{\sqrt{\zeta-\zeta_{cr}}}} \quad \text{where} \quad \zeta = 2\mu\xi - l(l+d-2)$
- Density of states $\rho(E) = \sum_{n \in \mathbb{Z}} \delta(E E_n)$

$$\rho(\lambda^2 E) = 2\mu \sum_{n \in \mathbb{Z}} \delta(\lambda^2 k^2 - k_n^2) = \cdots = \lambda^{-2} \rho(E)$$

so that
$$\rho(E) = \frac{1}{E} G\left(\frac{\ln E}{\ln \lambda}\right)$$
 where $G(u+1) = G(u)$

$$E_n = -\varepsilon_0 e^{-1}$$

- The Efimov spectrum is invariant parameter : $\frac{\pi}{\lambda} = \rho^{-\frac{\pi}{\sqrt{\zeta} - \zeta_{cr}}}$
- Density of states $\rho(E) = \sum_{n \in \mathbb{Z}} \delta(E \sum_{n \in \mathbb{Z}} \delta(E))$

$$\rho(\lambda^2 E) = 2\mu \sum_{n \in \mathbb{Z}} \delta(\lambda^2 k^2 - k_n^2) = \cdots$$

so that

$$\rho(E) = \frac{1}{E} G\left(\frac{\ln E}{\ln \lambda}\right)$$

W

General solution is

$$f(x) = x^{\alpha} G\left(\frac{\ln x}{\ln a}\right)$$

where G(u+1) = G(u) is a periodic function of period unity

f(ax) = bf(x)

The same problem from another point of view

It is interesting to re-phrase the previous problem using the language of RG transformations.

Why?

It is interesting to re-phrase the previous problem using the language of RG transformations.

Why?

• Provides another (more physical ?) point of view on the $V(r) = -\frac{\xi}{r^2}$ problem.

It is interesting to re-phrase the previous problem using the language of RG transformations.

Why?

- Provides another (more physical ?) point of view on the $V(r) = -\frac{\xi}{r^2}$ problem.
- Insert that problem in a broader perspective.

It is interesting to re-phrase the previous problem using the language of RG transformations.

Why?

- Provides another (more physical ?) point of view on the $V(r) = -\frac{\xi}{r^2}$ problem.
- Insert that problem in a broader perspective.
- Connects to other physical problems.

As we saw, the problem of the potential $V(r) = -\frac{\xi}{r^2}$ results from

- its behaviour for $r \rightarrow 0$
- absence of characteristic length.

As we saw, the problem of the potential $V(r) = -\frac{\xi}{r^2}$ results from

- its behaviour for $r \rightarrow 0$
- absence of characteristic length.

Problem becomes well-defined :

- characteristic length L
- continuity of ψ and ψ 'at L

 \Rightarrow energy spectrum

Is it possible to consistently change (L, ξ, g) so that the energy spectrum remains unchanged ?

Problem becomes well-defined :

- characteristic length L
- continuity of ψ and ψ' at L

 \Rightarrow energy spectrum

 ξ is a dimensionless number. To make it change with L we take

$$\begin{cases} V_{>}(r) = -\frac{\xi}{r^{s}} \quad \text{for } r > L \\ V_{<}(r) \quad \text{for } r < L \end{cases}$$

eventually, $s \rightarrow 2$

so that now,
$$(L, \xi(L), g(L))$$

Perform a RG transformation : change the cutoff distance $L \rightarrow L + dL$

leaves the energy spectrum unchanged provided :

Perform a RG transformation : change the cutoff distance $L \rightarrow L + dL$

leaves the energy spectrum unchanged provided :

• coupling strength changes as

$$L\frac{d\xi}{dL} = (2-s)\xi$$

Perform a RG transformation : change the cutoff distance $L \rightarrow L + dL$

leaves the energy spectrum unchanged provided :

• coupling strength changes as

$$L\frac{d\xi}{dL} = (2-s)\xi$$

• boundary condition parameter g(L) changes according to

$$L\frac{dg}{dL} = (2-d)g - g^2 - \zeta$$

(for low enough energies, i.e. for $L \rightarrow \infty$)

• boundary condition parameter g(L) changes according to

$$L\frac{dg}{dL} = (2-d)g - g^2 - \zeta$$

(for low enough energies, i.e. for $L \rightarrow \infty$)

Scale invariant coupling ξ

We define the
$$\beta$$
-function : $\beta(\xi) \equiv \frac{\partial \xi}{\partial \ln L} = (2-s)\xi$

Scale invariant coupling ξ

We define the
$$\beta$$
-function : $\beta(\xi) \equiv \frac{\partial \xi}{\partial \ln L} = (2-s)\xi$

Take
$$s = 2$$
 i.e., $V_{>}(r) = -\frac{\xi}{r^{s}} \longrightarrow V(r) = -\frac{\xi}{r^{2}}$

Scale invariant coupling ξ

We define the
$$\beta$$
-function : $\beta(\xi) \equiv \frac{\partial \xi}{\partial \ln L} = (2-s)\xi = 0$

Take
$$s = 2$$
 i.e., $V_{>}(r) = -\frac{\xi}{r^{s}} \longrightarrow V(r) = -\frac{\xi}{r^{2}}$

The coupling ξ is scale (L) independent

 $\Rightarrow \zeta$ is also scale independent

$$\beta(g) = \frac{\partial g}{\partial \ln L} = (2 - d)g - g^2 - \zeta$$

$$\beta(g) = \frac{\partial g}{\partial \ln L} = (2-d)g - g^2 - \zeta = -(g - g_+)(g - g_-)$$
$$g_{\pm} = \frac{2-d}{2} \pm \sqrt{\zeta_{cr} - \zeta}$$

$$\beta(g) = \frac{\partial g}{\partial \ln L} = (2 - d)g - g^2 - \zeta = -(g - g_+)(g - g_-)$$
$$g_{\pm} = \frac{2 - d}{2} \pm \sqrt{\zeta_{cr} - \zeta}$$
$$\zeta_{cr} = \frac{(d - 2)^2}{4}$$

$$\beta(g) = \frac{\partial g}{\partial \ln L} = -(g - g_+)(g - g_-)$$

two fixed points
$$(g_+, g_-)$$

$$\beta(g_{\pm}) = 0$$

$$\Downarrow$$

 g_{\pm} are L-independent

Universal behaviour of the energy spectrum

Evolution of the coupling g(L) - quantum phase transition two real fixed points (g_+, g_-) $<\zeta_{cr}$ For unstable stable $\beta(g)$ $\rightarrow \infty$ V(r)(). $E(L \to \infty) = 0$ continuous scale invariance (CSI) Universal behaviour of the e but trivial : $\lambda E = 0$ $\forall \lambda$

Evolution of the coupling g(L) - quantum phase transition

The solution for g(L) is a limit cycle.

Evolution of the coupling g(L) - quantum phase transition $\beta(g) = \frac{\partial g}{\partial \ln L} = -(g - g_+)(g - g_-)$ $\zeta > \zeta_{cr}$ For The solution for g(L) is a limit cycle. The cycle completes a period for every $L \rightarrow e^{\sqrt{\zeta - \zeta_{cr}}} L$ g(L) $\ln(L/L_0)$ $3\pi/2$ $-\pi/2$ $\pi/2$ $-3\pi/2$

Evolution of the coupling g(L) - quantum phase transition $\beta(g) = \frac{\partial g}{\partial \ln L} = -(g - g_+)(g - g_-)$ $\zeta > \zeta_{cr}$ For The solution for g(L) is a limit cycle. V(r)universal Efimov spectrum g(L) $E_n = -\varepsilon_0 e^{-\frac{\pi n}{\sqrt{\zeta - \zeta_{cr}}}}$ $\frac{1}{3\pi} \left\{ E_n; \ n \in \mathbb{Z} \right\} \rightarrow \left\{ \lambda E_n; \ n \in \mathbb{Z} \right\} = \left\{ E_{n+1}; \ n \in \mathbb{Z} \right\} = \left\{ E_n; \ n \in \mathbb{Z} \right\}$ $-3\pi/2$ $-\pi/2$ $\pi/2$ $\lambda \equiv e^{-\frac{\pi}{\sqrt{\zeta-\zeta_{cr}}}}$ is fixed : discrete scale invariance (DSI)

Breaking of CSI into DSI is now interpreted as a transition of the RG flow from a stable fixed point into the emergence of limit cycle solutions.

Part 4

Dirac equation + Coulomb : Do we know everything ? The graphene approach

Continuous scale invariance (CSI) of the Hamiltonian :

$$\hat{H} = -\frac{\hbar^2}{2\mu}\Delta - \frac{\xi}{r^2}$$

A immediate question : What about the Dirac eq. with a Coulomb potential ?

Continuous scale invariance (CSI) of the Hamiltonian :

$$\hat{H} = -\frac{\hbar^2}{2\mu}\Delta - \frac{\xi}{r^2}$$

A immediate question : What about the Dirac eq. with a Coulomb potential ?

Dirac eq.
$$i \sum_{\mu=0}^{d} \gamma^{\mu} (\partial_{\mu} + ieA_{\mu}) \Psi (x^{\nu}) = 0$$
 is linear with momentum and fine structure constant $eA_{0} = V(r) = -\frac{\xi}{r}, \quad \xi \equiv Z\alpha$ for a constant $A_{i} = 0, \quad i = 1, ..., d$

These two problems share the same continuous scale invariance (CSI).

Continuous scale invariance (CSI) of the Hamiltonian :

$$\hat{H} = -\frac{\hbar^2}{2\mu}\Delta - \frac{\xi}{r^2}$$

A immediate question : What about the Dirac eq. with a Coulomb potential ?

Dirac eq.
$$i\sum_{\mu=0}^{d} \gamma^{\mu} (\partial_{\mu} + ieA_{\mu}) \Psi (x^{\nu}) = 0$$
 is linear with momentum and
Coulomb potential
$$eA_{0} = V(r) = -\frac{\xi}{r}, \quad \xi \equiv Z\alpha$$
$$A_{i} = 0, \quad i = 1, ..., d$$

These two problems share the same continuous scale invariance (CSI).

Continuous scale invariance (CSI) of the Hamiltonian :

These two problems share the same continuous scale invariance (CSI).

Old problem (Pomeranchuk, 1945) of a relativistic electron in a super critical Coulomb potential.

Success of QED lies in the domain of weak fields and perturbation theory in the small <u>dimensionless</u> parameter :

$$\alpha = \frac{e^2}{\hbar c} \approx \frac{1}{137} \ll 1$$

(fine structure constant)

Old problem (Pomeranchuk, 1945) of a relativistic electron in a super critical Coulomb potential.

Success of QED lies in the domain of weak fields and perturbation theory in the small <u>dimensionless</u> parameter :

$$\alpha = \frac{e^2}{\hbar c} \approx \frac{1}{137} \ll 1$$

(fine structure constant)

Calculations involving bound states of a nucleus of charge Ze involve the dimensionless combination $Z\alpha$

Old problem (Pomeranchuk, 1945) of a relativistic electron in a super critical Coulomb potential.

Success of QED lies in the domain of weak fields and perturbation theory in the small <u>dimensionless</u> parameter :

$$\alpha = \frac{e^2}{\hbar c} \approx \frac{1}{137} \ll 1$$

(fine structure constant)

Calculations involving bound states of a nucleus of charge Ze involve the dimensionless combination $Z\alpha$

Perturbation theory fails for $Z\alpha \ge 1$

In that case, we expect instability of the vacuum (ground state) against creation of electron-positron pairs.

How to understand this instability?

$$\alpha = \frac{e^2}{\hbar c} \approx \frac{1}{137} \ll 1$$

(fine structure constant)

Calculations involving bound states of a nucleus of charge Ze involve the dimensionless combination $Z\alpha$

Perturbation theory fails for $Z\alpha \ge 1$

In that case, we expect instability of the vacuum (ground state) against creation of electron-positron pairs.

Heuristic argument : classical expression for the energy of an electron of mass M, momentum p in the field of a charge Ze

$$\varepsilon = c\sqrt{p^2 + m^2c^2} - \frac{Ze^2}{r}$$

Heuristic argument : classical expression for the energy of an electron of mass \mathcal{M} , momentum p in the field of a charge Ze

$$\varepsilon = c\sqrt{p^2 + m^2c^2} - \frac{Ze^2}{r}$$

Estimate of the ground state energy :

electron position cannot be determined to better than \hbar/p

$$\varepsilon(p) \ge c \left(\sqrt{p^2 + m^2 c^2} - Z \alpha \, p \right)$$

Heuristic argument : classical expression for the energy of an electron of mass M, momentum p in the field of a charge Ze

$$\varepsilon = c\sqrt{p^2 + m^2 c^2} - \frac{Ze^2}{r}$$

Estimate of the ground state energy :

electron position cannot be determined to better than \hbar/p

$$\varepsilon(p) \ge c \left(\sqrt{p^2 + m^2 c^2} - Z\alpha p \right)$$

Minimising w.r.t $p:$ $\varepsilon_0 = mc^2 \sqrt{1 - (Z\alpha)^2}$

which reproduces well known features of the Hydrogen ground state in the non relativistic ($Z\alpha \ll 1$) and relativistic limits.

Heuristic argument : classical expression for the energy of an electron of mass \mathcal{M} , momentum p in the field of a charge Ze

$$\varepsilon = c\sqrt{p^2 + m^2c^2} - \frac{Ze^2}{r}$$

Estimate of the ground state energy :

electron position cannot be determined to better than \hbar/D

$$\varepsilon(p) \ge c \left(\sqrt{p^2 + m^2 c^2} - Z\alpha p \right)$$

Minimising w.r.t $p:$ $\varepsilon_0 = mc^2 \sqrt{1 - (Z\alpha)^2}$

For $Z\alpha > 1$ the ground state energy becomes imaginary.

<u>Problem</u>: to observe this instability, we need $Z \ge \frac{1}{\alpha} \approx 137$

No such stable nuclei have been created.

<u>Problem</u>: to observe this instability, we need $Z \ge \frac{1}{\alpha} \approx 137$

No such stable nuclei have been created.

<u>Idea</u>: consider analogous condensed matter systems with a "much larger effective fine structure constant".

Graphene : Effective massless Dirac excitations with a Fermi velocity $v_F \simeq 10^6 m/s$ so that $\alpha_G = \frac{e^2}{\hbar v_F} \approx 2.5$

and
$$Z_c \ge \frac{1}{\alpha_G} \simeq 0.4$$

<u>Problem</u>: to observe this instability, we need $Z \ge \frac{1}{\gamma} \approx 137$

No such stable nuclei have been created.

<u>Idea</u>: consider analogous condensed matter systems with a "much larger effective fine structure constant".

Graphene : Effective massless Dirac excitations with a Fermi velocity $v_F \approx 10^6 \frac{m}{s}$ so that $\alpha = e^2/z \approx 2.5$

$$\alpha_G = \frac{e^2}{\hbar v_F} \approx 2.5$$

and
$$Z_c \ge \frac{1}{\alpha_G} \simeq 0.4$$

$$\alpha = \frac{e^2}{\hbar c} \approx \frac{1}{137} \ll 1$$

Graphene : Effective massless Dirac excitations with a Fermi velocity $v_F \simeq 10^6 \frac{m}{s}$ so that $\alpha_G = \frac{e^2}{\hbar v_F} \approx 2.5$ and $Z_c \ge \frac{1}{\alpha_G} \approx 0.4$

• Charged impurities in graphene (Coulomb potential)

This instability in the Dirac + Coulomb problem is an example of the breaking of CSI into DSI.

Is there an Efimov like spectrum for the massless Dirac problem ?

Graphene : Effective massless Dirac excitations with a Fermi velocity $v_F \simeq 10^6 \frac{m}{s}$ so that $\alpha_G = \frac{e^2}{\hbar v_F} \approx 2.5$ and $Z_c \ge \frac{1}{\alpha_G} \simeq 0.4$

• Charged impurities in graphene (Coulomb potential)

This instability in the Dirac + Coulomb problem is an example of the breaking of CSI into DSI.

The RG picture is rather simple here and it gives the expected Efimov spectrum

A quantum phase transition $\zeta_{cr} = \frac{\left(d-2\right)^2}{4}$ It exists a singular value Take the limit $L_0 \rightarrow \infty$ $\zeta < \zeta_{cr}$ $\zeta > \zeta_{cr}$ ζ_{cr} V(r)V(r)universal Efimov spectrum 0 r $E(L_0 \to \infty) = 0$ $E_n = -\varepsilon_0 e^{-\sqrt{\zeta - \zeta_{cr}}}$ $n \in \mathbb{Z}$ CSI to DSI quantum phase transition for the $V(r) = -\frac{\xi}{r^2}$ potential

Dirac quantum phase transition

Continuous scale invariance (CSI)

Discrete scale invariance (DSI)

Building an artificial atom in graphene

Jinhai Mao, Eva Andrei et al. (2016)

Local vacancy. Local charge is changed by applying voltage pulses with the tip of an STM

√b/lb

The Efimov universal spectrum

The Efimov universal spectrum

What is Efimov physics ?

Universality in cold atomic gases : <u>Efimov physics</u> DSI in the non relativistic quantum 3-body problem Universality in cold atomic gases : <u>Efimov physics</u> non relativistic quantum 3-body problem

Efimov (1970) analysed the 3-nucleon system interacting through zero-range interactions (r_0). He pointed out the existence of <u>universal</u> physics at low energies, $E \ll \frac{\hbar^2}{mr_0^2}$

Universality in cold atomic gases : <u>Efimov physics</u> non relativistic quantum 3-body problem

Efimov (1970) analysed the 3-nucleon system interacting through zero-range interactions (r_0). He pointed out the existence of <u>universal</u> physics at low energies, $E \ll \frac{\hbar^2}{mr_0^2}$

When the scattering length *a* of the 2-body interaction becomes $a \gg r_0$ there is a sequence of <u>3-body bound states</u> whose binding energies are spaced geometrically in the interval between $\frac{\hbar^2}{ma^2}$ and $\frac{\hbar^2}{mr_0^2}$

As a increases, new bound states appear according to

$$E_n = -\mathcal{E}_0 e^{-\frac{2\pi n}{s_0}}$$
 Efimov spectrum

where $s_0 \approx 1.00624$ is a universal number

Efimov showed that the corresponding 3-body problem reduces to an <u>effective</u> Schrödinger equation with the attractive potential :

Efimov physics is always super-critical :

Schrodinger equation with an effective attractive potential (d = 3):

 ζ_E is <u>fixed</u> in Efimov physics. It cannot be changed !

LETTERS

Evidence for Efimov quantum states in an ultracold gas of caesium atoms

T. Kraemer¹, M. Mark¹, P. Waldburger¹, J. G. Danzl¹, C. Chin^{1,2}, B. Engeser¹, A. D. Lange¹, K. Pilch¹, A. Jaakkola¹, H.-C. Nägerl¹ & R. Grimm^{1,3}

Measurement of a single Efimov state : n=1

LETTERS

Evidence for Efimov quantum states in an ultracold gas of caesium atoms

T. Kraemer¹, M. Mark¹, P. Waldburger¹, J. G. Danzl¹, C. Chin^{1,2}, B. Engeser¹, A. D. Lange¹, K. Pilch¹, A. Jaakkola¹, H.-C. Nägerl¹ & R. Grimm^{1,3}

Measurement of a single Efimov state : n=1

Measurement of a second Efimov state : n=2

Universality

Not obvious at all ! Two very different physical phenomena share the same universal energy spectrum.

Summary-Further directions

- Breaking of continuous scale invariance (CSI) into discrete scale invariance (DSI) on two examples.
- Observed this quantum phase transition on graphene. It raises more questions than it solved.
- Efimov physics belongs to this universality class. It does not allow observing the transition.
- Breaking of the CSI is interpreted using the Renormalisation Group picture : stable fixed points evolve into limit cycles. Proposal of K.G. Wilson: RG and strong interactions, 1971.

• Other problems can be described similarly as "conformality lost" (Kaplan et al., 2009) and emergence of limit cycles:

- Other problems can be described similarly as "conformality lost" (Kaplan et al., 2009) and emergence of limit cycles:
 - Kosterlitz-Thouless transition (deconfinement of vortices in the XY-model at a critical temp. above which the theory is conformal): mapping between the XY-model and the T=0 sine-Gordon in 1+1 dim.

$$L = \frac{T}{2} \left(\partial_{\mu} \phi \right)^2 - 2z \cos \phi$$

- Other problems can be described similarly as "conformality lost" (Kaplan et al., 2009) and emergence of limit cycles:
 - Kosterlitz-Thouless transition (deconfinement of vortices in the XY-model at a critical temp. above which the theory is conformal): mapping between the XY-model and the T=0 sine-Gordon in 1+1 dim.

$$L = \frac{T}{2} \left(\partial_{\mu} \phi \right)^2 - 2z \cos \phi$$

• Line-depinning transition (Fisher, Lipowsky), roughening transition, wetting transition (Brezin, Halperin, Leibler).

- Other problems can be described similarly as "conformality lost" (Kaplan et al., 2009) and emergence of limit cycles:
 - Kosterlitz-Thouless transition (deconfinement of vortices in the XY-model at a critical temp. above which the theory is conformal): mapping between the XY-model and the T=0 sine-Gordon in 1+1 dim.

$$L = \frac{T}{2} \left(\partial_{\mu} \phi \right)^2 - 2z \cos \phi$$

- Line-depinning transition (Fisher, Lipowsky), roughening transition, wetting transition (Brezin, Halperin, Leibler).
- Breitenlohner-Freedman bound for free massive scalar field on AdS_{d+1} space.

Thank you for your attention.

arXiv:1701.04121 (in press)