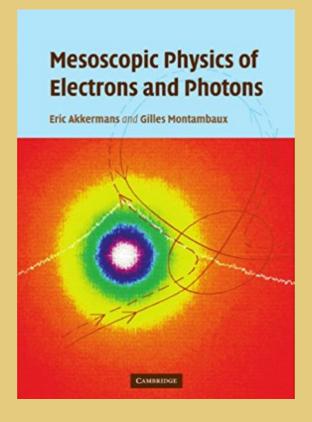
Mesoscopic Physics of Electrons and Photons

Based on Mesoscopic physics of electrons and photons,

by Eric Akkermans and Gilles Montambaux, Cambridge University

Press, 2007

Photo Archive Eric Akkermans

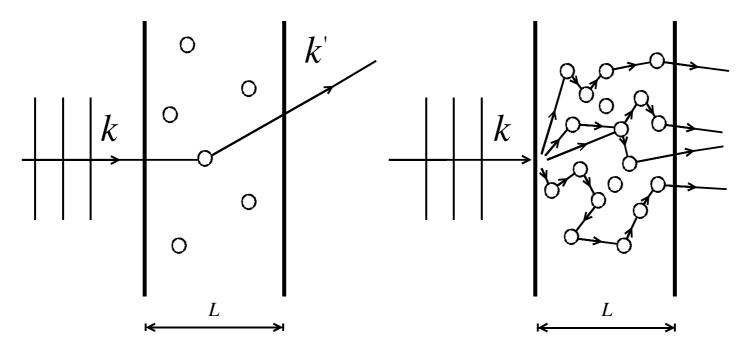

2017 AMO Summer School, IAMS, Academia Sinica, National Taiwan University

Mesoscopic Physics of Electrons and Photons

Based on Mesoscopic physics of electrons and photons,

by Eric Akkermans and Gilles Montambaux, Cambridge University

Press, 2007


2017 AMO Summer School, IAMS, Academia Sinica, National Taiwan University

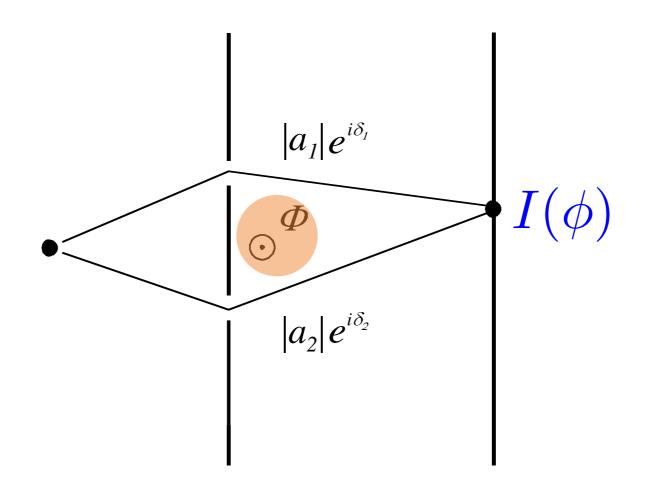
Part 1

Introduction to mesoscopic physics

- The Aharonov-Bohm effect in disordered conductors.
- Phase coherence and effect of disorder.
- Average coherence: Sharvin² effect and coherent backscattering.
- Phase coherence and self-averaging: universal fluctuations.
- Classical probability and quantum crossings.

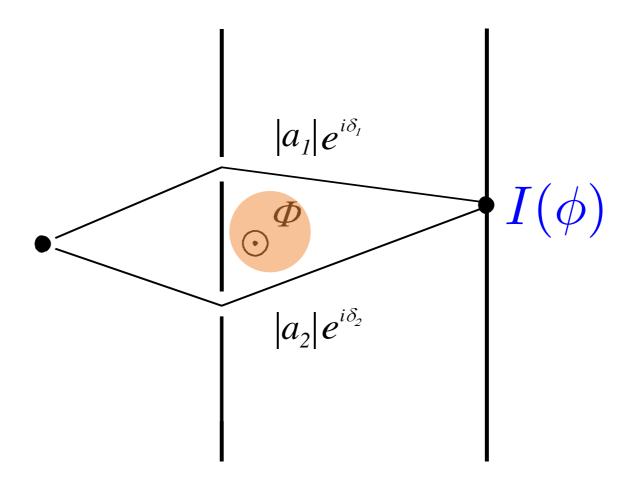
Multiple scattering of waves

2 characteristic lengths:


Wavelength: $\lambda_F = k_F^{-1}$

Elastic mean free path: *l*

Weak disorder $\lambda_F \ll l$: independent scattering events


Aharonov-Bohm effect in disordered metals

No magnetic field on the electrons: no Lorentz force and no orbital motion.

Aharonov-Bohm effect in disordered metals

No magnetic field on the electrons: no Lorentz force and no orbital motion.

The quantum amplitudes $a_{1,2} = |a_{1,2}|e^{i\delta_{1,2}}$ have phases:

$$\delta_1 = \delta_1^{(0)} - \frac{e}{\hbar} \int_1 \mathbf{A} \cdot d\mathbf{l}$$
 and $\delta_2 = \delta_2^{(0)} - \frac{e}{\hbar} \int_2 \mathbf{A} \cdot d\mathbf{l}$

The intensity $I(\phi)$ is given by

$$I(\phi) = |a_1 + a_2|^2 = |a_1|^2 + |a_2|^2 + 2|a_1a_2|\cos(\delta_1 - \delta_2)$$
$$= I_1 + I_2 + 2\sqrt{I_1I_2}\cos(\delta_1 - \delta_2)$$

The intensity $I(\phi)$ is given by

$$I(\phi) = |a_1 + a_2|^2 = |a_1|^2 + |a_2|^2 + 2|a_1a_2|\cos(\delta_1 - \delta_2)$$
$$= I_1 + I_2 + 2\sqrt{I_1I_2}\cos(\delta_1 - \delta_2)$$

The phase difference $\Delta\delta(\phi) = \delta_1 - \delta_2$ is modulated by the magnetic flux ϕ :

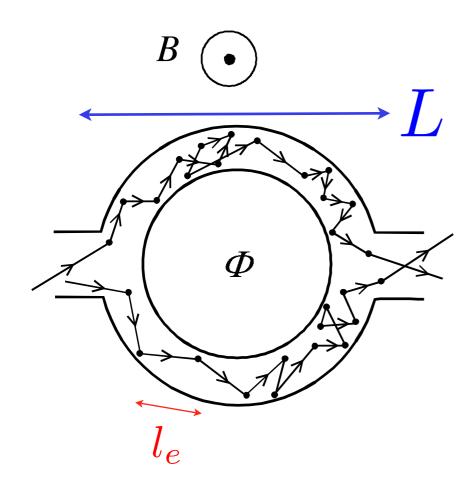
$$\Delta \delta(\phi) = \delta_1^{(0)} - \delta_2^{(0)} + \frac{e}{\hbar} \oint \mathbf{A} \cdot d\mathbf{l} = \Delta \delta^{(0)} + 2\pi \frac{\phi}{\phi_0}$$

where $\phi_0 = h/e$ is the quantum of magnetic flux.

The intensity $I(\phi)$ is given by

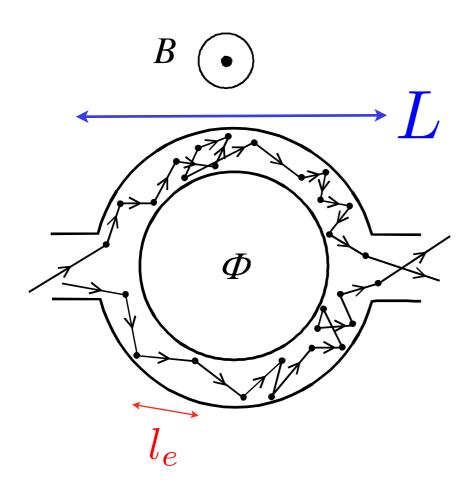
$$I(\phi) = |a_1 + a_2|^2 = |a_1|^2 + |a_2|^2 + 2|a_1a_2|\cos(\delta_1 - \delta_2)$$
$$= I_1 + I_2 + 2\sqrt{I_1I_2}\cos(\delta_1 - \delta_2)$$

The phase difference $\Delta\delta(\phi) = \delta_1 - \delta_2$ is modulated by the magnetic flux ϕ :

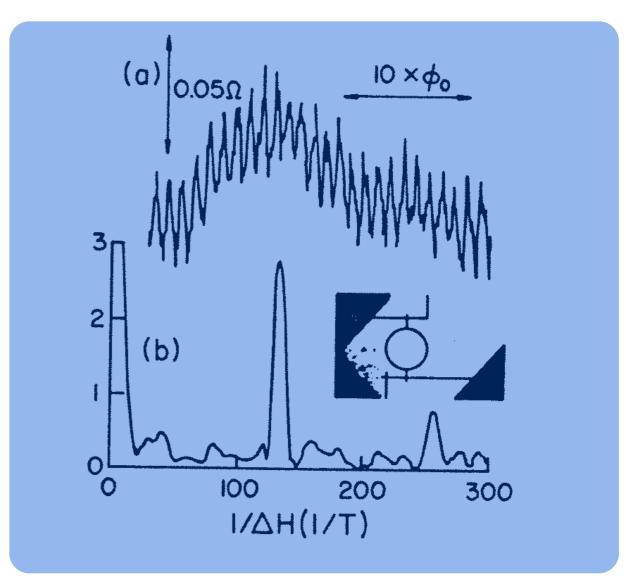

$$\Delta \delta(\phi) = \delta_1^{(0)} - \delta_2^{(0)} + \frac{e}{\hbar} \oint \mathbf{A} \cdot d\mathbf{l} = \Delta \delta^{(0)} + 2\pi \frac{\phi}{\phi_0}$$

where $\phi_0 = h/e$ is the quantum of magnetic flux.

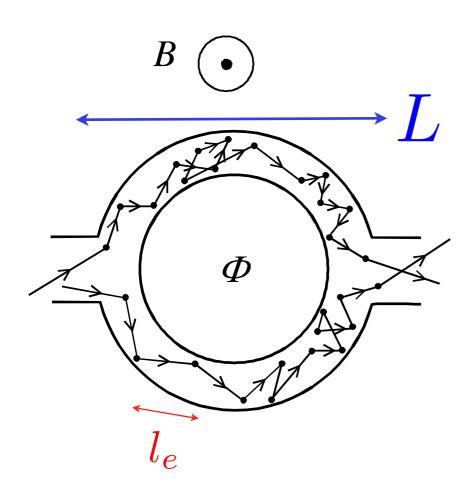
There is a continuous change of the state of interference:

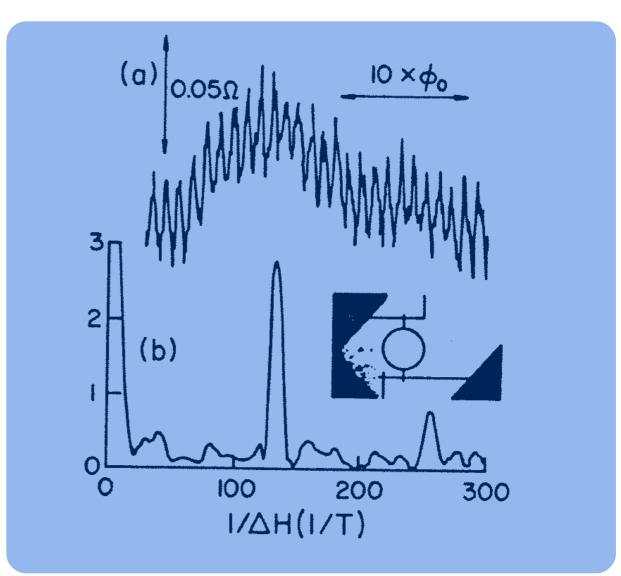

Aharonov-Bohm effect (1959).

Implementation in metals : the conductance $G(\phi)$ is the analog of the intensity.



elastic mean free path


Implementation in metals : the conductance $G(\phi)$ is the analog of the intensity.


elastic mean free path

Implementation in metals: the conductance $G(\phi)$ is the analog of the intensity.

elastic mean free path

$$G(\phi) = G_0 + \delta G \cos(\Delta \delta^{(0)}) + 2\pi \frac{\phi}{\phi_0}$$
 Webb et al. 1985

Phase coherent effects subsist in disordered metals.

Reconsider the Drude theory.

Phase coherence and effect of disorder

The Webb experiment has been realized on a ring of size $1 \mu m$

Phase coherence and effect of disorder

The Webb experiment has been realized on a ring of size $1 \, \mu m$. For a macroscopic normal metal, coherent effects are washed out.

It must exist a characteristic length L_ϕ called phase coherence length beyond which all coherent effects disappear.

Vanishing of quantum coherence results from the existence of incoherent and irreversible processes associated to the coupling of electrons to their surrounding (additional degrees of freedom):

Coupling to a bath of excitations: thermal excitations of the lattice (phonons)
Chaotic dynamical systems (large recurrence times, Feynman chain)
Impurities with internal degrees of freedom (magnetic impurities)
Electron-electron interactions,....

Vanishing of quantum coherence results from the existence of incoherent and irreversible processes associated to the coupling of electrons to their surrounding (additional degrees of freedom):

Coupling to a bath of excitations: thermal excitations of the lattice (phonons)

Chaotic dynamical systems (large recurrence times, Feynman chain)

Impurities with internal degrees of freedom (magnetic impurities)

Electron-electron interactions,....

The understanding of decoherence is difficult. It is a great challenge in quantum mesoscopic physics. The phase coherence length L_ϕ accounts in a generic way for decoherence processes.

The observation of coherent effects requires

Average coherence and multiple scattering

What is the role of elastic disorder? Does it erase coherent effects?

Phase coherence leads to interference effects for a *given realization of disorder*.

Average coherence and multiple scattering

What is the role of elastic disorder? Does it erase coherent effects?

Phase coherence leads to interference effects for a *given realization of disorder*.

The Webb experiment corresponds to a <u>fixed configuration of disorder</u>.

Averaging over disorder —>vanishing of the Aharonov-Bohm effect

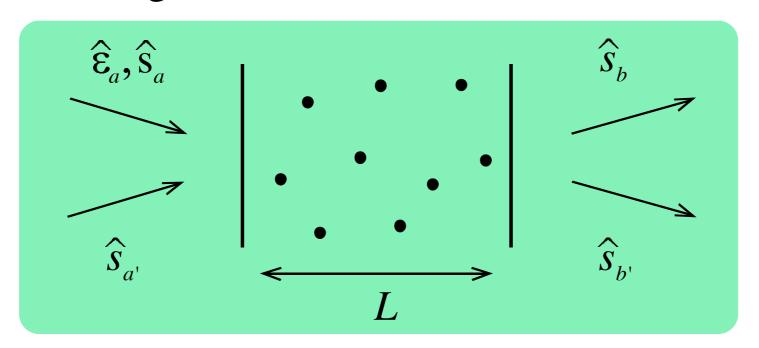
Average coherence and multiple scattering

What is the role of elastic disorder? Does it erase coherent effects?

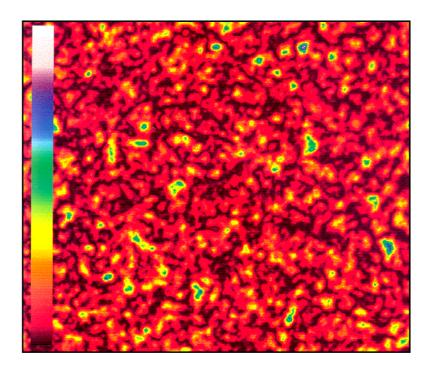
Phase coherence leads to interference effects for a *given realization of disorder*.

The Webb experiment corresponds to a fixed configuration of disorder.

Averaging over disorder vanishing of the Aharonov-Bohm effect

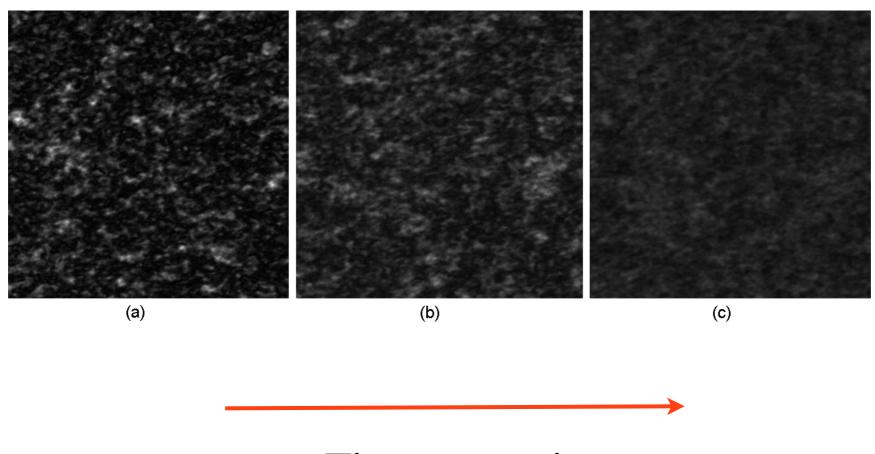

$$G(\phi) = G_0 + \delta G \cos(\Delta \delta^{(0)}) + 2\pi \frac{\phi}{\phi_0}$$

$$\langle G(\phi) \rangle = G_0$$

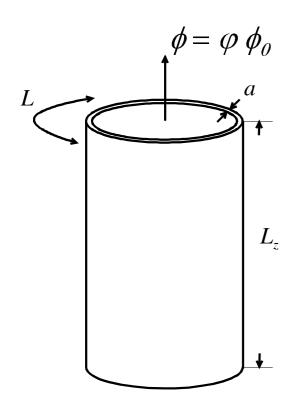

Disorder seems to erase coherent effects....

An analogous problem: Speckle patterns in optics

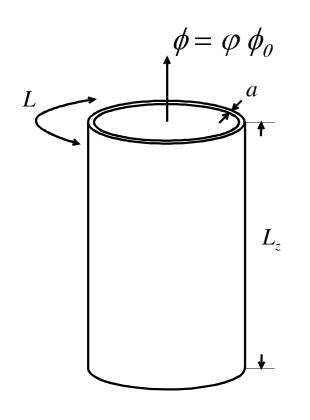
Consider the elastic multiple scattering of light transmitted through a fixed disorder configuration.



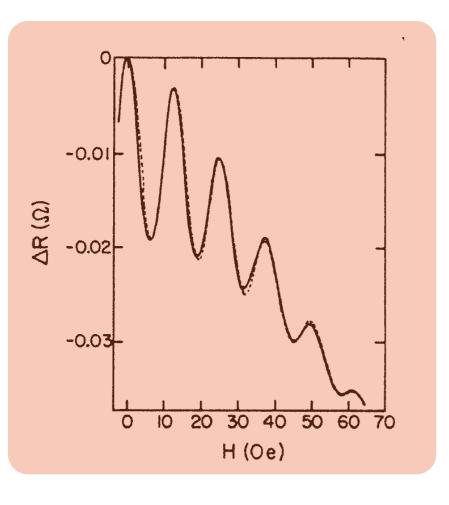
Outgoing light builds a speckle pattern i.e., an interference picture:


Averaging over disorder erases the speckle pattern:

Integration over the motion of the scatterers leads to self-averaging

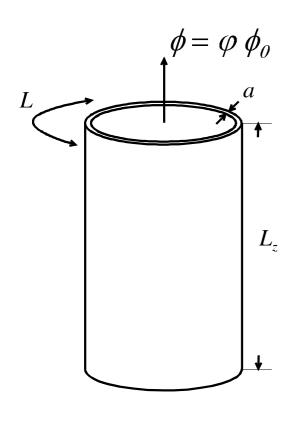

Time averaging

The Sharvin² experiment

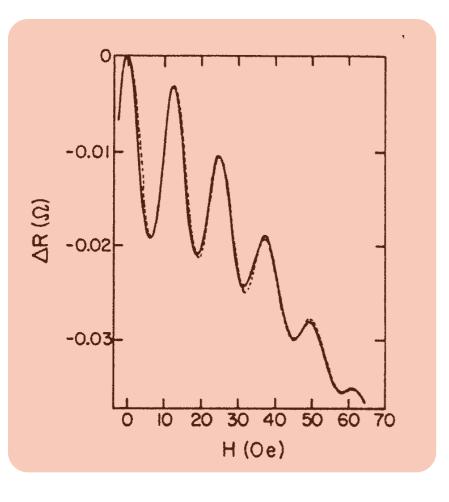


Experiment analogous to that of *Webb* but performed on a hollow cylinder of height larger than L_{ϕ} pierced by a Aharonov-Bohm flux. Ensemble of rings identical to those of *Webb* but incoherent between themselves.

The Sharvin² experiment

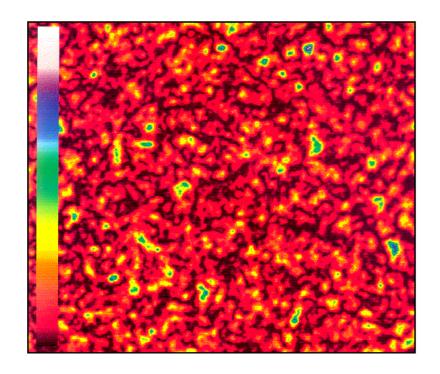


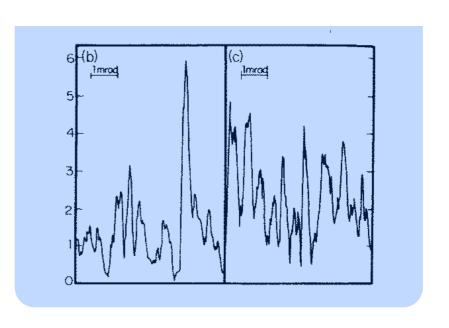
Experiment analogous to that of Webb but performed on a hollow cylinder of height larger than L_{ϕ} pierced by a Aharonov-Bohm flux. Ensemble of rings identical to those of Webb but incoherent between themselves.



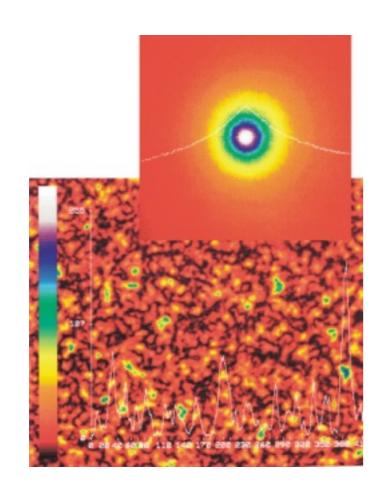
The signal modulated at ϕ_0 disappears but, instead, it appears a new contribution modulated at $\phi_0/2$

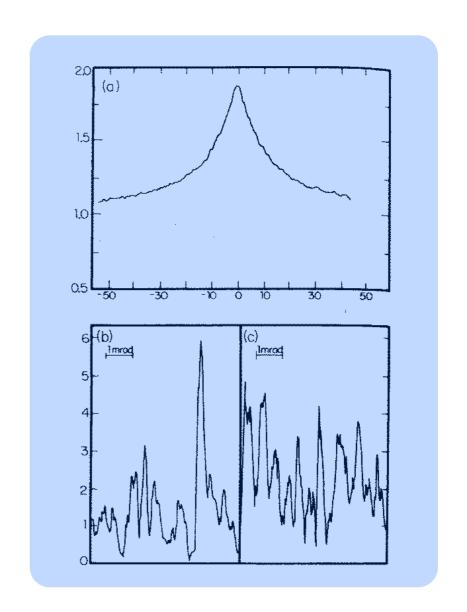
The Sharvin² experiment

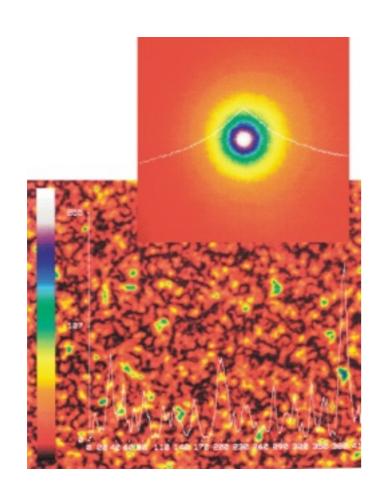

Experiment analogous to that of *Webb* but performed on a hollow cylinder of height larger than L_{ϕ} pierced by a Aharonov-Bohm flux. Ensemble of rings identical to those of *Webb* but incoherent between themselves.

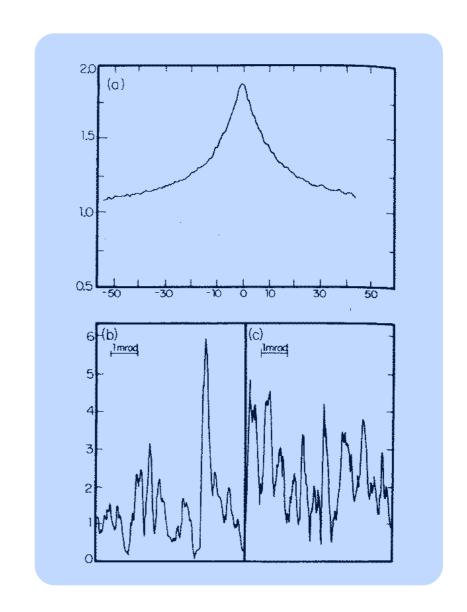


The signal modulated at ϕ_0 disappears but, instead, it appears a new contribution modulated at $\phi_0/2$


After all, disorder does not seem to erase coherent effects, but to modify them....

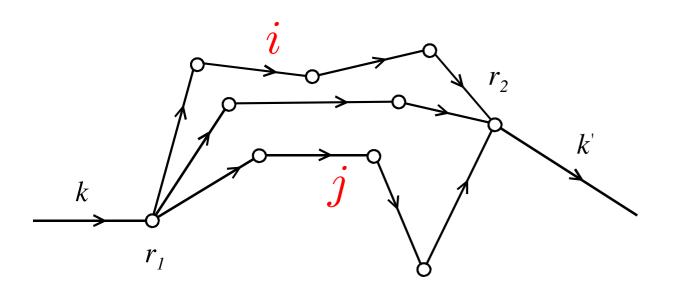

What about speckle patterns?


What about speckle patterns?



Averaging over disorder does not produce incoherent intensity only, but also an angular dependent part, the <u>coherent backscattering</u>, which is a coherence effect. We may conclude:

What about speckle patterns?



Averaging over disorder does not produce incoherent intensity only, but also an angular dependent part, the <u>coherent backscattering</u>, which is a coherence effect. We may conclude:

Elastic disorder is not related to decoherence: disorder does not destroy phase coherence and does not introduce irreversibility.

How to understand average coherent effects?

Complex amplitude $A(\mathbf{k}, \mathbf{k}')$ associated to the multiple scattering of a wave (electron or photon) incident with a wave vector \mathbf{k} and outgoing with \mathbf{k}'

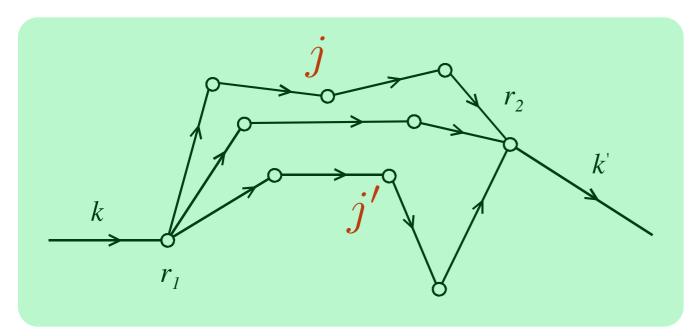
$$A(\mathbf{k}, \mathbf{k}') = \sum_{\mathbf{r_1}, \mathbf{r_2}} f(\mathbf{r_1}, \mathbf{r_2}) e^{i(\mathbf{k}.\mathbf{r_1} - \mathbf{k}'.\mathbf{r_2})}$$

the complex amplitude $f(\mathbf{r_1}, \mathbf{r_2}) = \sum_j |a_j| e^{i\delta_j}$ describes the propagation of the wave between $\mathbf{r_1}$ and $\mathbf{r_2}$.

The corresponding intensity is

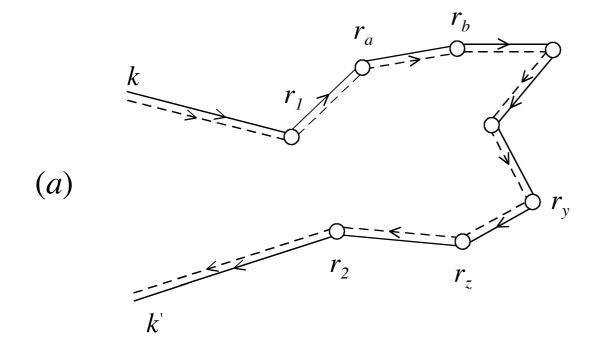
$$|A(\mathbf{k}, \mathbf{k}')|^2 = \sum_{\mathbf{r_1}, \mathbf{r_2}} \sum_{\mathbf{r_3}, \mathbf{r_4}} f(\mathbf{r_1}, \mathbf{r_2}) f^*(\mathbf{r_3}, \mathbf{r_4}) e^{i(\mathbf{k}.\mathbf{r_1} - \mathbf{k}'.\mathbf{r_2})} e^{-i(\mathbf{k}.\mathbf{r_3} - \mathbf{k}'.\mathbf{r_4})}$$

with

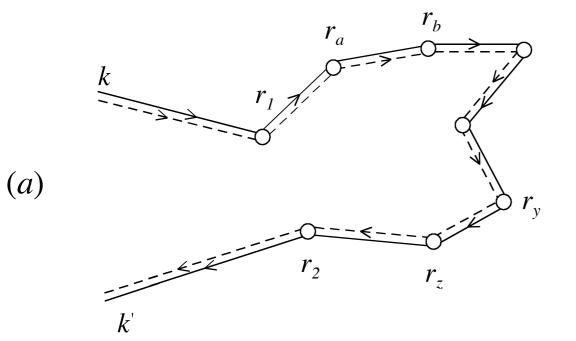

$$f(\mathbf{r_1}, \mathbf{r_2}) f^*(\mathbf{r_3}, \mathbf{r_4}) = \sum_{j,j'} a_j(\mathbf{r_1}, \mathbf{r_2}) a_{j'}^*(\mathbf{r_3}, \mathbf{r_4}) = \sum_{j,j'} |a_j| |a_{j'}| e^{i(\delta_j - \delta_{j'})}$$

The corresponding intensity is

$$|A(\mathbf{k}, \mathbf{k}')|^2 = \sum_{\mathbf{r_1}, \mathbf{r_2}} \sum_{\mathbf{r_3}, \mathbf{r_4}} f(\mathbf{r_1}, \mathbf{r_2}) f^*(\mathbf{r_3}, \mathbf{r_4}) e^{i(\mathbf{k}.\mathbf{r_1} - \mathbf{k}'.\mathbf{r_2})} e^{-i(\mathbf{k}.\mathbf{r_3} - \mathbf{k}'.\mathbf{r_4})}$$

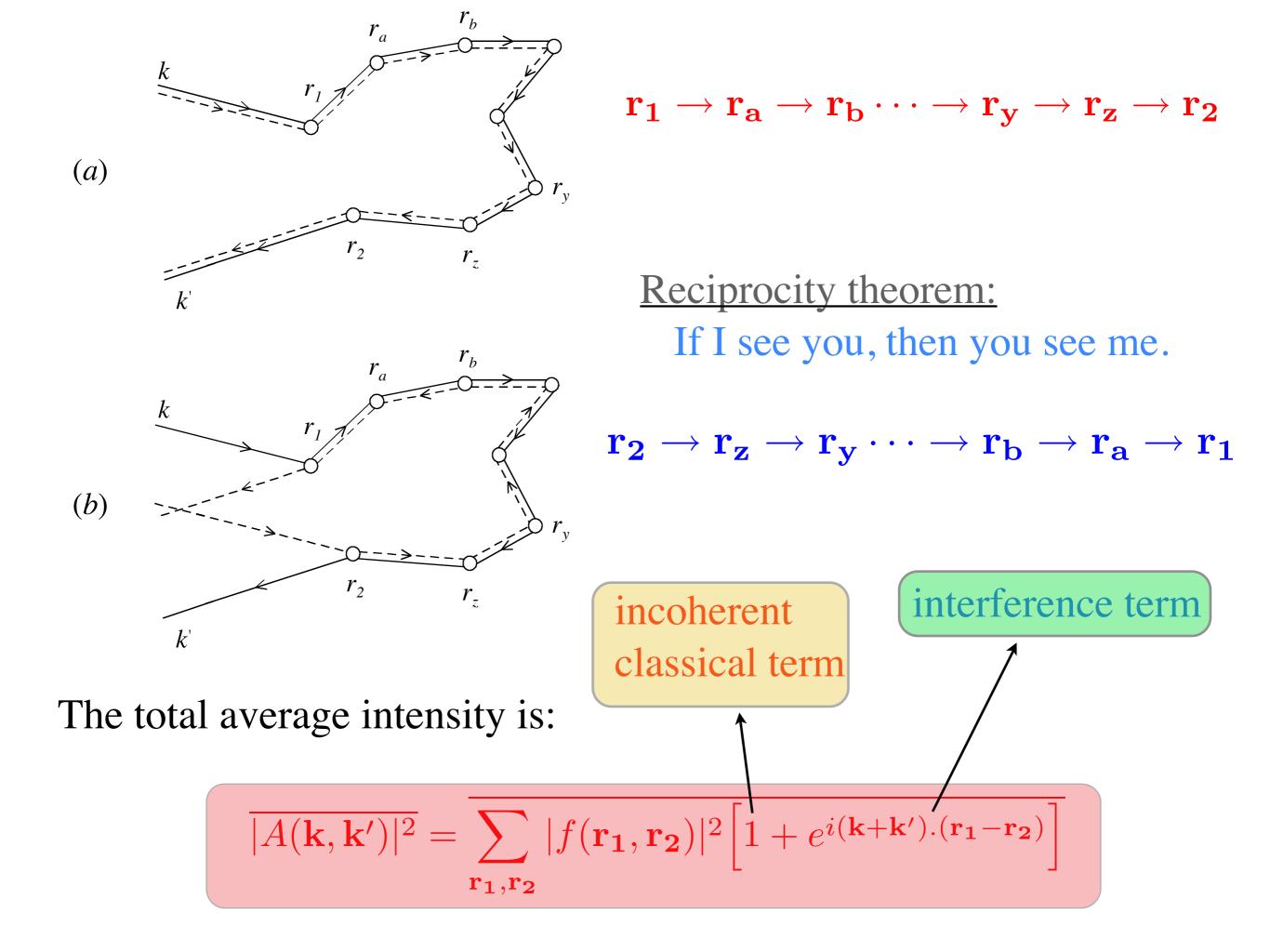

with

$$f(\mathbf{r_1}, \mathbf{r_2}) f^*(\mathbf{r_3}, \mathbf{r_4}) = \sum_{j,j'} a_j(\mathbf{r_1}, \mathbf{r_2}) a_{j'}^*(\mathbf{r_3}, \mathbf{r_4}) = \sum_{j,j'} |a_j| |a_{j'}| e^{i(\delta_j - \delta_{j'})}$$



On average over disorder, most contributions to ff^* disappear since the dephasing $\delta_i - \delta_{i'} \gg 1$

The only remaining contributions to the intensity correspond to terms with zero dephasing, i.e., to identical trajectories.


$$\mathbf{r_1} \rightarrow \mathbf{r_a} \rightarrow \mathbf{r_b} \cdots \rightarrow \mathbf{r_y} \rightarrow \mathbf{r_z} \rightarrow \mathbf{r_2}$$

$$r_1 \rightarrow r_a \rightarrow r_b \cdots \rightarrow r_y \rightarrow r_z \rightarrow r_2$$

Reciprocity theorem:

If I see you, then you see me.

$$\overline{|A(\mathbf{k}, \mathbf{k}')|^2} = \sum_{\mathbf{r_1}, \mathbf{r_2}} |f(\mathbf{r_1}, \mathbf{r_2})|^2 \left[1 + e^{i(\mathbf{k} + \mathbf{k}') \cdot (\mathbf{r_1} - \mathbf{r_2})}\right]$$

Generally, the interference term vanishes due to the sum over $\mathbf{r_1}$ and $\mathbf{r_2}$, except for two notable cases:

$$\overline{|A(\mathbf{k}, \mathbf{k}')|^2} = \sum_{\mathbf{r_1}, \mathbf{r_2}} |f(\mathbf{r_1}, \mathbf{r_2})|^2 \left[1 + e^{i(\mathbf{k} + \mathbf{k}') \cdot (\mathbf{r_1} - \mathbf{r_2})}\right]$$

Generally, the interference term vanishes due to the sum over $\mathbf{r_1}$ and $\mathbf{r_2}$, except for two notable cases:

 $\mathbf{k} + \mathbf{k}' \simeq 0$: Coherent backscattering

$$\overline{|A(\mathbf{k}, \mathbf{k}')|^2} = \sum_{\mathbf{r_1}, \mathbf{r_2}} |f(\mathbf{r_1}, \mathbf{r_2})|^2 \left[1 + e^{i(\mathbf{k} + \mathbf{k}') \cdot (\mathbf{r_1} - \mathbf{r_2})}\right]$$

Generally, the interference term vanishes due to the sum over $\mathbf{r_1}$ and $\mathbf{r_2}$, except for two notable cases:

 $\mathbf{k} + \mathbf{k}' \simeq 0$: Coherent backscattering


 ${\bf r_1} - {\bf r_2} \simeq 0$: closed loops, weak localization and $\phi_0/2$ periodicity of the Sharvin effect.

$$\overline{|A(\mathbf{k}, \mathbf{k}')|^2} = \sum_{\mathbf{r_1}, \mathbf{r_2}} |f(\mathbf{r_1}, \mathbf{r_2})|^2 \left[1 + e^{i(\mathbf{k} + \mathbf{k}') \cdot (\mathbf{r_1} - \mathbf{r_2})}\right]$$

Generally, the interference term vanishes due to the sum over $\mathbf{r_1}$ and $\mathbf{r_2}$, except for two notable cases:

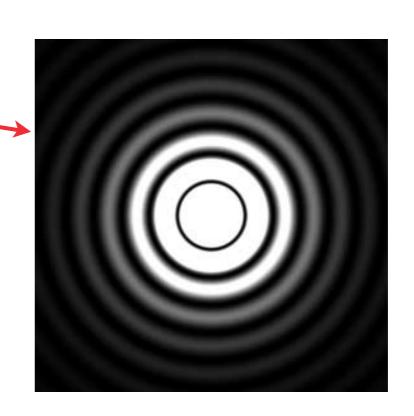
 $\mathbf{k} + \mathbf{k}' \simeq 0$: Coherent backscattering

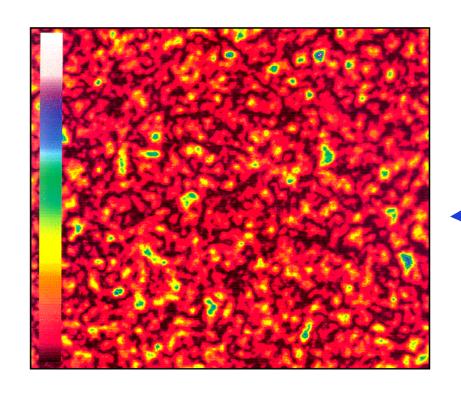
 ${\bf r_1} - {\bf r_2} \simeq 0$: closed loops, weak localization and $\phi_0/2$ periodicity of the Sharvin effect.

Coherent backscattering

Random quantum systems (quantum complexity)

Disorder does not break phase coherence and it does not introduce irreversibility


Random quantum systems (quantum complexity)


Disorder does not break phase coherence and it does not introduce irreversibility

It introduces randomness and complexity: all symmetries are lost, there are no good quantum numbers.

Exemple: speckle patterns in optics

Diffraction — through a circular aperture: order in interference

Transmission of light through a — disordered suspension: complex system

Mesoscopic quantum systems

- Most (all ?) quantum systems are complex
- Complexity (randomness) and decoherence are separate and independent notions.
- Complexity
 quantum numbers)
- Decoherence coherence $L\gg L_{arphi}$

A mesoscopic quantum system is a coherent complex quantum system with $L \leq L_{\varphi}$

An Exemple

Classical limit : $L\gg L_{\varphi}$

Classical limit : $L\gg L_{\varphi}$

The system is a collection of $N=(L/L_{\varphi})^d\gg 1$ statistically independent subsystems.

Classical limit : $L\gg L_{\varphi}$

The system is a collection of $N=(L/L_{\varphi})^d\gg 1$ statistically independent subsystems.

A macroscopic observable defined in each subsystem takes independent random values in each of the N pieces.

Classical limit : $L \gg L_{\varphi}$

The system is a collection of $N=(L/L_{\varphi})^d\gg 1$ statistically independent subsystems.

A macroscopic observable defined in each subsystem takes independent random values in each of the N pieces.

Law of large numbers: any macroscopic observable is equal with probability one to its average value.

The system performs an average over realizations of the disorder.

Need:

Need:

ullet a good understanding of the phase coherence length L_{arphi}

Need:

- ullet a good understanding of the phase coherence length L_{arphi}
- a description of fluctuations and coherence in a quantum complex system.

Need:

- ullet a good understanding of the phase coherence length L_{arphi}
- a description of fluctuations and coherence in a quantum complex system.
- If disorder is strong enough, the system may undergo a quantum phase transition

Exemple: electrical conductance of a metal

A metal can be modeled as a quantum gas of electrons scattered by an elastic disorder.

At T=0 and in the absence of decoherence, it is a complex quantum system.

Due to disorder there is a finite conductance which is a quantum observable.

Exemple: electrical conductance of a metal

A metal can be modeled as a quantum gas of electrons scattered by an elastic disorder.

At T=0 and in the absence of decoherence, it is a complex quantum system.

Due to disorder there is a finite conductance which is a quantum observable.

Classically, the conductance of a cubic sample of volume L^d is given by Ohm's law: $G = \sigma L^{d-2}$ where σ is the conductivity.

Quantum conductance fluctuations

Classical self-averaging limit :
$$\frac{\delta G}{\overline{G}} = \frac{1}{N} = \left(\frac{L_{\varphi}}{L}\right)^{d/2}$$

where $\delta G = \sqrt{\overline{G^2} - \overline{G}^2}$ and $\overline{G} = \sigma L^{d-2}$ $\overline{}$ is the average over disorder.

$$\delta G^2 \propto L^{d-4}$$

Quantum conductance fluctuations

Classical self-averaging limit :
$$\frac{\delta G}{\overline{G}} = \frac{1}{N} = \left(\frac{L_{\varphi}}{L}\right)^{d/2}$$

where $\delta G = \sqrt{\overline{G^2} - \overline{G}^2}$ and $\overline{G} = \sigma L^{d-2}$ $\overline{}$ is the average over disorder.

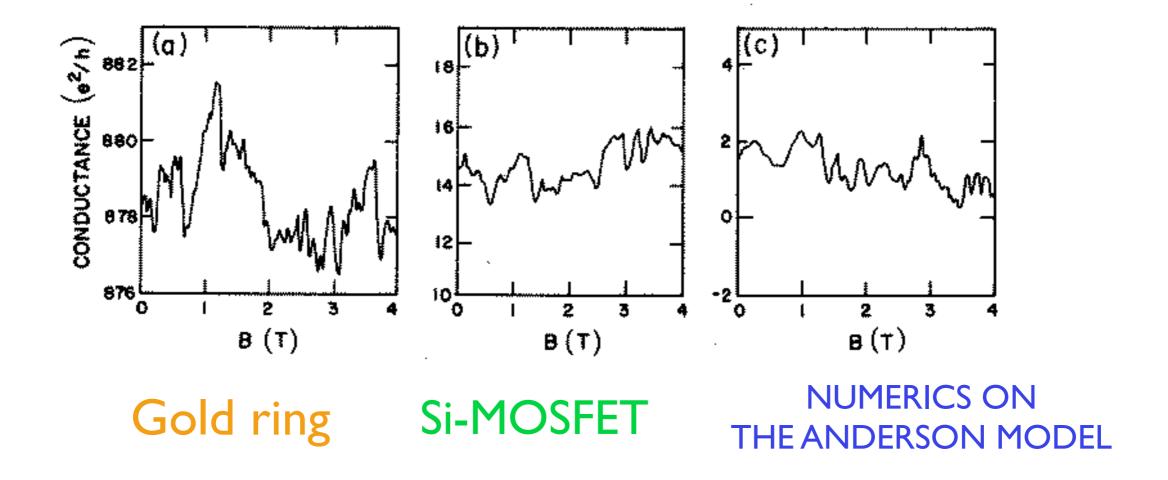
$$\delta G^2 \propto L^{d-4}$$

In contrast, a mesocopic quantum system is such that : $\delta G \simeq \frac{e^2}{h}$

Fluctuations are quantum, large and independent of the source of disorder: they are called universal.

Quantum conductance fluctuations

Classical self-averaging limit :
$$\frac{\delta G}{\overline{G}} = \frac{1}{N} = \left(\frac{L_{\varphi}}{L}\right)^{d/2}$$


where $\delta G=\sqrt{\overline{G^2}-\overline{G}^2}$ and $\overline{G}=\sigma L^{d-2}$ $\overline{\cdots}$ is the average over disorder.

$$\delta G^2 \propto L^{d-4}$$

In contrast, a mesocopic quantum system is such that : $\delta G \simeq \frac{e^2}{h}$

Fluctuations are quantum, large and independent of the source of disorder: they are called universal.

In the mesoscopic limit, the electrical conductance is not self-averaging.

