Part 2

Introduction to Mesoscopic Physics

Transport, transmission and probability of
quantum diffusion.

Mesoscopic limit: characteristic length scales.

Deviation from classical incoherent transport:
quantum crossings.

Weak localization and Sharvin effect.

Universal conductance fluctuations.



{Do coherent effects survive disorder average?}

Quantum probability for electron diffusion between two points

Incoherent propagation !
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Before averaging : speckle pattern (full coherence)
Configuration average: most of the contributions vanish because
of large phase differences.
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Before averaging : speckle pattern (full coherence)
Configuration average: most of the contributions vanish because
of large phase differences.

A new design !
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To a good approximation, the incoherent contribution obeys
a classical diffusion equation

(% — DA)P(r,r',t) =o(r—r() & (—ia)+ qu)P(q,a)) =1

Incoherent electrons diffuse 1n the conductor with a
diffusion coefficient D
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with D = Vet
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To a good approximation, the incoherent contribution obeys
a classical diffusion equation

(% — DA)P(r,r',t) =o(r—ro(t) & (—ia)+ qu)P(q,a)) =1

Incoherent electrons diffuse 1n the conductor with a
diffusion coefficient D
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Coherent effects

What 1s the first correction i.e., with the
smallest phase shift
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Coherent effects

What 1s the first correction i.e., with the
smallest phase shift
When amplitude paths cross

quantum
crossing

Classical diffusion Exchange of amplitudes



Occurrence of a guantum crossing after a time t for a
: : : d
photon diffusing in a volume L
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Occurrence of a quantum crossing after a time t for a
: : : d
photon diffusing in a volume L




Occurrence of a quantum crossing after a time t for a
: : : d
photon diffusing in a volume L
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The time spent by a diffusing photon 1s 7, = L%) so that
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Physical meaning of this parameter ?



Electrical conductance of a metal

A metal can be modeled as a quantum gas of electrons
scattered by an elastic disorder.

Classically, the conductance of a cubic sample of size/,“is
given by Ohm’s law: (7 — 57 “ where 7 is the conductivity.



Electrical conductance of a metal

A metal can be modeled as a quantum gas of electrons
scattered by an elastic disorder.

Classically, the conductance of a cubic sample of size/,“is
given by Ohm’s law: (7 — 57 “ where 7 is the conductivity.
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(+.; 1s the classical electrical conductance so that

Gcl/(GQ/h) > 1



A direct consequence: quantum corrections to electrical
transport
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Classical transport: G, = g x - with g > 1



A direct consequence: quantum corrections to electrical
transport
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Classical transport: G, = g x - with g > 1
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Quantum corrections: AG =G x —
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so that AG ~ %



A quantum phase transition: Anderson localization

Expansion in powers of quantum crossings 1/g allows to
calculate quantum corrections to physical quantities.



A quantum phase transition: Anderson localization

Expansion in powers of quantum crossings 1/g allows to
calculate quantum corrections to physical quantities.

The diffusion coefficient D is reduced (weak localization)
and becomes size dependent :

DL - D(l__ln(L/) L )] @=2)

g 42

This singular perturbation expansion 1s not a simple coincidence
but an expression of scaling

A renormalization of D(L) changes also g(L):

D(L) a2

g(L)=

20



Scaling and 1ts meaning :  (P.W. Anderson et al.,1979)

It we know g( L), we know 1t at any scale :

g(LA+8)=f(g(L).e)



Scaling and 1ts meaning :  (P.W. Anderson et al.,1979)

It we know g( L), we know 1t at any scale :

g(LA+8)=f(g(L).e)

Expanding, we have ¢ (L(1+¢€)) =g(L) (14 ¢B(g) + O(g~))

dln g

with  B(g) = Tln T Gell-Mann - Low function)

Scaling behavior :

gtb.W)=1 (%(W))

S(W) is the localization length

22



Numerical calculations on the (universal) Anderson
Hamiltonian

d=72 d=73
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FIG. 1, Scaling function Ay, /M vs AL/M for the localization length Ay, of a svstem of thickness M for (a) d =2 (M
“d4) and (b) d =3 (M= 3}, Insets show '.! l 15 pi neter Ay, a5 a I'.n:xclmr of the disorder W.

Anderson localization phase transition occurs in d > 2



Weak disorder it A<< | =>g>> 1

Probability of a crossing (oc 1/ g) 1s small: phase coherent corrections
to the classical limit are small.

Quantum crossings modity the classical probability (i.e. the Ditfuson).



Weak disorder physics

A< =g>1

Probability of a crossing (oc 1/ g) 1s small: phase coherent corrections
to the classical limit are small.

Quantum crossings modify the classical probability (i.e. the Diffuson).

Due to its long range behaviour, the Diffuson propagates (localized)
coherent effects over large distances.

Quantum crossings are independently distributed :
We can generate higher order corrections to the Diffuson
as an expansion in powers of 1/ g
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How to calculate P _(¢) ? R, ()=|RB,(r,r,0dr
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Diffuson Cooperon

lassical return probability Interference term
EAEF L1 (F FI]

Return probability is doubled ! If time reversal invariance
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Important difference :

])C 7 (]f', = ', [ ) —> paired trajectories follow the same direction

int (I” I" l ) = paired trajectories follow opposite directions

Diffuson

, Cooperon
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have the same phase j p.dl

(l’ & t) P (}/‘ = l‘) If time reversal invariance

int

If phase coherence between the reversed trajectories Is preserved




In the presence of a dephasing mechanism that breaks time coherence,
only trajectories with ¢ < 7, contribute.



In the presence of a dephasing mechanism that breaks time coherence,
only trajectories with ¢ < 7, contribute.

In the presence of an Aharonov-Bohm flux, paired amplitudes in the
Cooperon acquire opposite phases:

Cooperon



In the presence of a dephasing mechanism that breaks time coherence,
only trajectories with ¢ < 7, contribute.

In the presence of an Aharonov-Bohm flux, paired amplitudes in the
Cooperon acquire opposite phases:

Cooperon
Pyt (1, 7', t)is obtained from the covariant diffusion equation

effective charge 2e
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Webb ——
Sample specific interference
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Phase difference 27—
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Oscillates with period hle

Sharvin, Sharvin fe— - -
Survives disorder average
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Oscillates with period hil2e




[ Fluctuations and correlations j

transmission coefficient
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correlations involve the product
of 4 complex amplitudes with or
without quantum crossings

® © Correlation function of the
col | transmission coetficient :
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Slab geometry



Specklie and conductance fluctuations
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Memory effect

1, f(a,a',bb’) f(a,a".b,b") = g(Aa)5(Aa — Ab)




Speckle fluctuations vs conductance fluctuations L’Z

l/g

)
61,01, :%Tab I,y F(b,0Y)
28

Angular correlations of intermediate range
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Speckle fluctuations vs conductance fluctuations
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Long-range angular correlations, with very weak amplitude
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Universal conductance fluctuations
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Landauer description: ~ G=—Y'T,

0 crossing: G = G’ :(ez/h)z g’
| crossing: vanishes due to the summation over the channels.
2 crossings: correction §G* OCEZ / g>=(e” / h)> universal

(very different from the classical self-averaging
limit 6G™ <L )



Dephasing and decoherence

Universal conductance fluctuations

2 Cooperonsj

sensitive to an applied
Aharonov-Bohm magnetic tlux
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46 Si-doped GaAs samples at 45 mK
(Mailly-Sanquer)
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We expect the conductance
fluctuations to be reduced by a factor 2
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Thank you tor your attention.

Mesoscopic Physics of
Electrons and Photons

Eric Akkermans and Gilles Montambaux

Based on Mesoscopic physics of electrons and photons,
by Eric Akkermans and Gilles Montambaux, Cambridge University
Press, 2007



