
Part 2
           Introduction to Mesoscopic Physics	

• Transport, transmission and probability of 
quantum diffusion.	

• Mesoscopic limit: characteristic length scales.	

• Deviation from classical incoherent transport: 
quantum crossings.	

• Weak localization and Sharvin effect.	

• Universal conductance fluctuations.
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Incoherent propagation !
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Quantum probability for electron diffusion between two points 

P(r,r ') = ai
∗(r,r ') aj (r,r ')
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vanishes on average

Do coherent effects survive disorder average?

aj

ai
∗

 δ i − δ j ≫ 1

ai
∗ aj = ai aj e

i δi −δ j( )



aj

ai*
r r'

r'r

(a)

(b)

Before averaging : speckle pattern  (full coherence)	
Configuration average: most of the contributions vanish because 
of large phase differences.

Diffuson Pcl(r, r
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A new design !
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To a good approximation, the incoherent contribution obeys 
a classical diffusion equation 

∂
∂t

− DΔ⎛
⎝⎜

⎞
⎠⎟
P(r,r ',t) = δ (r − r ')δ (t)

Incoherent electrons diffuse in the conductor with a  
diffusion coefficient D

L

l

r2 = 2d Dt

space dimensionality

 l ≪ L

L2 = DτD

Thouless time

 t ≪ τD  t ≫ τD

⇔ −iω + Dq2( )P(q,ω ) = 1

with  D =
vgl
3
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?
What is the first correction i.e., with the  

smallest phase shift ? 
When amplitude paths cross

Example :

Classical diffusion

quantum 	
crossing

Exchange of amplitudes

Coherent effects 
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Occurrence of a quantum crossing after a time t for a 
photon diffusing in a volume Ld

p× (t) =
λd−1ct
Ld

The time spent by a diffusing photon is             so that   τD = L
2

D

p× (τD ) =
λd−1cτD
Ld

≡
1
g

g = D
cλ d−1 L

d−2
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Physical meaning of this parameter ?

g = D
cλ d−1 L

d−2



A metal can be modeled as a quantum gas of electrons 
scattered by an elastic disorder. 

!
Classically, the conductance of a cubic sample  of size     is 
given by Ohm’s law:                    where    is the conductivity.               G = σL

d−2

L
d

σ

g =
le

3λd−1
Ld−2 = Gcl/(e2/h)

     is the classical electrical conductance so that             

Gcl/(e2/h) ≫ 1

Gcl

Electrical conductance of a metal
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Classical transport : Gcl = g ×
e2

h
with g ≫ 1

Quantum corrections:  ∆G = Gcl ×
1

g

so that ∆G ≃

e2

h

A direct consequence:  quantum corrections to electrical 	
transport
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Expansion in powers of quantum crossings         allows to 
calculate quantum corrections to physical quantities.

This singular perturbation expansion is not a simple coincidence 
but an expression of scaling

A renormalization of D(L) changes also g(L):

1 g

The diffusion coefficient D is reduced (weak localization)  
and becomes size dependent :

g(L) = D(L)
cλd−1 L

d−2 ≈
N⊥
2 (L)
N

A quantum phase transition: Anderson localization

D(L) = D 1− 1
πg
ln L

l( ) + 1
πg
ln L

l( )⎛
⎝⎜

⎞
⎠⎟

2

+ ....
⎛

⎝
⎜

⎞

⎠
⎟ (d = 2)
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Scaling and its meaning : 
!
If we know          , we know it at any scale :  	
!
!
!
!

g (L(1 + ϵ)) = g(L)
(

1 + ϵβ(g) + O(g−5)
)

β(g) =
d ln g

d lnL

Expanding, we have	

with                                              (Gell-Mann - Low function) 

Scaling behavior :                   

(P.W. Anderson et al.,1979)

g(L)

g L(1+ ε)( )= f g(L),ε( )

ξ(W ) is the localization length

g(L,W ) = f L
ξ(W )( )
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g(L,W )

L
ξ(W )

d = 3

Anderson phase 
transition

d = 2

B.Kramer, A. McKinnon, 1981

  Anderson localization phase transition occurs in d > 2

Numerical calculations on the (universal) Anderson 
Hamiltonian 



Weak disorder limit: 

Probability of a crossing               is small: phase coherent corrections 	
to the classical limit are small.

Quantum crossings modify the classical probability (i.e. the Diffuson).	
    	
Due to its long range behavior, the Diffuson propagates (localized) 	
coherent effects over large distances.

 Weak disorder physics 

Quantum crossings are independently distributed : 	
          We can generate higher order corrections to the Diffuson 	
            as an expansion in powers of 1 / g

∝1 g( )

λ<< l  ⇒ g >> 1
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Classical diffusion

Interference correction
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In the presence of a dephasing mechanism that breaks time coherence, 
only trajectories with                contribute.	
!
In the presence of an Aharonov-Bohm flux, paired amplitudes in the 
Cooperon acquire opposite phases:

φ
2πφ/φ0 −2πφ/φ0 the phase difference becomes: 4πφ/φ0

t < τφ

Cooperon

φ0/2           periodicity of the Sharvin effect 

is obtained from the covariant diffusion equationPint(r, r
′, t)

(

1

τφ
+

∂

∂t
− D

[

∇r′ + i
2e

h̄
A(r′)

]2
)

Pint(r, r
′, t) = δ(r − r′)δ(t)

effective charge 2e
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Tab = tab
2

Caba 'b ' =
δTabδTa 'b '
TabT ′a ′b

Slab geometry

transmission coefficient

Correlation function of the 	
transmission coefficient :

 correlations involve the product 	
of 4 complex amplitudes with or 	
without quantum crossings	a
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Fluctuations and correlations









Universal conductance fluctuations

0 crossing: 	
1 crossing: vanishes due to the summation over the channels.	
2 crossings: correction                                           universal	
!
(very different from the classical self-averaging	
 limit                     )	
!

G
2
= Gcl

2 = e2 h( )2 g2
Landauer description : G=

e2

h
Tab

ab
∑

δG2 ∝G
2
/ g2 = (e2 / h)2

� 

δG2 ∝Ld −4



Universal conductance fluctuations

Dephasing and decoherence
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2 Diffusons

2 Cooperons

sensitive to an applied 
Aharonov-Bohm magnetic flux

φ

φ φ

φ

φ



We expect the conductance 
fluctuations to be reduced by a factor 2

δG2 δG2

2

φ

1.5

vanishing of the weak localization 
correction for the same magnetic field

In the presence of incoherent 
processes               : L > Lφ

δG2
→ 0

 46 Si-doped GaAs samples at 45 mK 

δG2

� 

G

(Mailly-Sanquer)



Thank you for your attention.

Based on Mesoscopic physics of electrons and photons, 	
by Eric Akkermans and Gilles Montambaux, Cambridge University 
Press, 2007
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