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Topology of quasicrystals : 
Measuring topological numbers 

with waves 
!

!

Department of Physics, UBC, Vancouver, August 2017

Eric Akkermans 



Benefitted from discussions and collaborations with:

Technion:  
!
Evgeni Gurevich (KLA-Tencor) 
Dor Gittelman 
Eli Levy (+ Rafael) 
Ariane Soret (ENS Cachan) 
Or Raz (HUJI, Maths) 
Omrie Ovdat 
Yaroslav Don 

!

 Elsewhere: 
!
Gerald Dunne (UConn.) 
Alexander Teplyaev (UConn.) 
Jacqueline Bloch (LPN, Marcoussis) 
Dimitri Tanese (LPN, Marcoussis) 
Florent Baboux (LPN, Marcoussis) 
Alberto Amo (LPN, Marcoussis) 
Eva Andrei (Rutgers) 
Jinhai Mao (Rutgers) 
Alexandre Dareau (Vienna) 
Jerome Beugnon (College de France) 
Fabrice Gerbier (College de France) 

!
!

Rafael:  
Assaf Barak 
Amnon Fisher 
!
!

!!
!
!



Program for today

• Fractal spectrum and quasicrystals  

• Basics - Gap labelling theorem - the 
Fibonacci spectrum (experiments)  

• Topological meaning of GLT : winding 
numbers  

• Topological numbers from structure - Bragg 
(diffraction). 



Fractal spectrum  
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)LJXUH ���� 7KH ILUVW JHQHUDWLRQV RI WKH )LERQDFFL FKDLQ� Sj ; j = 0, 1, 2, 3, 4, 5, 6�

Sj>1 = [Sj−1Sj−2] ,

ZKHUH WKH VTXDUH EUDFNHWV V\PEROL]HV FRQFDWHQDWLRQ� 5HSHWLWLYH LPSOHPHQWDWLRQ RI
WKLV UXOH \LHOGV WKH VWUXFWXUHV

A→ AB → ABA→ ABAAB → ABAABABA→ ABAABABAABAAB · · · ,
�����

ZKHUH WKH OHQJWKV RI WKH UHVXOWDQW FKDLQV� Fj � DUH IL[HG E\ WKH VDPH UXOH� Fj>1 =

Fj−1 + Fj−2� DQG FRUUHVSRQG WR WKH )LERQDFFL QXPEHUV

Fj = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610...., �����

7KH UHVXOWDQW VWUXFWXUHV DUH DOVR LOOXVWUDWHG LQ ILJXUH ���� 7KH UDWLR Fj+1/Fj WHQGV WR
WKH JROGHQ PHDQ τ = (1+

√
5)/2 LQ WKH OLPLW j →∞� 7KH FRUUHVSRQGLQJ VHTXHQFH S∞

EHFRPHV ULJRURXVO\ TXDVLSHULRGLF DQG LQYDULDQW� L�H�� VHOI�VLPLODU XQGHU WKLV LWHUDWLRQ
WUDQVIRUPDWLRQ� 7KH FRQFDWHQDWLRQ PHWKRG IRU EXLOGLQJ WKH )LERQDFFL VHTXHQFH LV
YHU\ ZHOO NQRZQ� EXW OLPLWHG RQO\ WR )LERQDFFL OLNH TXDVLSHULRGLF FKDLQV DV LW LV QRW
JHQHUDOL]DEOH�

����� *HQHUDWLRQ PHWKRGV� 6XEVWLWXWLRQ UXOHV

$ VXEVWLWXWLRQ LV D UXOH WKDW UHSODFHV OHWWHUV ZLWK ZRUGV� WKXV JHQHUDWLQJ KLJKO\
RUGHUHG� VHOI�VLPLODU REMHFWV ZKLFK DUH QRW QHFHVVDULO\ SHULRGLF� $V D JUDSKLF LO�
OXVWUDWLRQ� ILJXUH ��� GHSLFWV D 2D JHQHUDOL]DWLRQ IRU VXEVWLWXWLRQ UXOHV� ZKHUH 2D

OHWWHUV DUH UHSODFHG E\ 2D ZRUGV� ,Q RXU 1D FDVH� WKLV PHWKRG FRQVLGHUV DQ DOSKD�
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)LJXUH ���� 6HWXS DQG ZDYH SURSDJDWLRQ QRWDWLRQV IRU WKH GLHOHFWULF VFDWWHULQJ JH�
RPHWU\ SUREOHP� {iL, oL} ≡

{
E(→)

L , E(←)
L

}
GHQRWH WKH HOHFWULF ILHOG DPSOLWXGHV

RI LQFRPLQJ DQG RXWJRLQJ ZDYHV DW WKH OHIW ERXQGDU\� UHVSHFWLYHO\� 6LPLODUO\�
{iR, oR} ≡

{
E(←)

R , E(→)
R

}
DUH GHILQHG RXWVLGH WKH ULJKW VWUXFWXUH ERXQGDU\�

SUHVHQW FDVH GXH WR WKH GLVFRQWLQXLW\ RI WKH UHIUDFWLYH LQGH[ LQ WKH OD\HUHG VWUXFWXUH��
%XW DW VRPH SRLQW WKH ZULWLQJ RI UHODWLRQV ����� DQG ������ UHO\ RQ WKH GHILQLWLRQ
RI D ZDYH YHFWRU DQG D JURXS YHORFLW\ � KHUH ZH DVVXPH IUHH SURSDJDWLRQ LQ HDFK
LQGLYLGXDO VODE�

$Q LQWHUIDFH I ≡ A ↔ B EHWZHHQ DGMDFHQW VODEV A DQG B LV GHILQHG LQ ILJXUH ����
7KH ERXQGDU\ FRQGLWLRQV DW D GLHOHFWULF LQWHUIDFH DUH LPSRVHG WKURXJK FRQWLQXLW\
UHODWLRQV

E(→)
A + E(←)

A

∣∣∣
I±

= E(→)
B + E(←)

B

∣∣∣
I∓

, ������

DQG

nA

(
E(→)

A + E(←)
A

)∣∣∣
I±

= nB

(
E(→)

B + E(←)
B

)∣∣∣
I∓

. ������

7KH SKDVH DFFXPXODWLRQ ZKLFK DFFRXQWV IRU IUHH SURSDJDWLRQ WKURXJK D VODE A RU B
LV

⎧
⎨

⎩
E(→)

A→,B→ = E(→)
A←,B←einA,BdA,Bk ≡ E(→)

A←,B←eiδA,B

E(←)
A→,B→ = E(←)

A←,B←e−inA,BdA,Bk ≡ E(←)
A←,B←e−iδA,B ,

ZKHUH ZH KDYH GHILQHG�

δA ≡ nAdAk , δB ≡ nBdBk . ������

,W LV FRQYHQLHQW WR VHW WKH OD\HU WKLFNQHVV VR WKDW nAdA = nBdB ZKLFK OHDGV WR
δA = δB ≡ δ�

5HPDUN� $OO VFDWWHULQJ PDWUL[ EDVHG SORWV LQ WKLV FKDSWHU DQG RQ KDYH WKH VDPH
x�D[LV� δ/π = ndk = 2nd/λ� )RU VLPSOLFLW\� WKH D[LV WLWOH LV JLYHQ DV k�
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Quasi-periodic structure (Fibonacci quasi-crystal)

Concatenation rule 

Fibonacci sequence: 

  A→AB→ABA→ABAAB→ABAABABA→…

Quasi-periodic stack of dielectric layers of two types (nA,nB) 
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OXVWUDWLRQ� ILJXUH ��� GHSLFWV D 2D JHQHUDOL]DWLRQ IRU VXEVWLWXWLRQ UXOHV� ZKHUH 2D
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,W LV FRQYHQLHQW WR VHW WKH OD\HU WKLFNQHVV VR WKDW nAdA = nBdB ZKLFK OHDGV WR
δA = δB ≡ δ�

5HPDUN� $OO VFDWWHULQJ PDWUL[ EDVHG SORWV LQ WKLV FKDSWHU DQG RQ KDYH WKH VDPH
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Quasi-periodic structure (Fibonacci quasi-crystal)

Concatenation rule 

Quasi-periodic stack of dielectric layers of two types (nA,nB) 
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FRXQWLQJ IXQFWLRQ �WKH LQWHJUDWHG GHQVLW\ RI VWDWHV�� WKH WUDQVPLVVLRQ SUREDELOLW\�
DQG DOVR WKH ORFDO ILHOG DPSOLWXGH DQG LQWHQVLW\� HDFK RI ZKLFK KDV D GLUHFW SK\VL�
FDO PHDQLQJ� DQG SUHVHQW D YDULHW\ RI UHVXOWV WR LOOXVWUDWH WKH HIIHFW RI WKH OD\HUHG
VWUXFWXUH W\SH RQ WKH DIRUHPHQWLRQHG SK\VLFDO TXDQWLWLHV� 7KLV VXPPDU\ LV LQWHQGHG
WR KLJKOLJKW WKH DGDSWDWLRQ SUHIRUPHG WR WKLV YHU\ ZHOO NQRZQ PHWKRG >$'/��@� DQG
DOVR WR LQWURGXFH WKH QRWDWLRQV ZKLFK ZLOO EH KHOSIXO LQ WKH QH[W FKDSWHUV�

����� :DYH HTXDWLRQV

7KH JHQHUDO DVSHFWV RI FRKHUHQW SURSDJDWLRQ DUH FRPPRQ WR D ZLGH YDULHW\ RI ZDYHV
ZKLFK SURSDJDWH LQ VFDWWHULQJ PHGLD� 7KLV QRWZLWKVWDQGLQJ� HDFK W\SH RI ZDYH H[�
KLELWV LWV RZQ FKDUDFWHULVWLF EHKDYLRU� :H QRZ SUHVHQW VHYHUDO H[DPSOHV RI ZDYH
HTXDWLRQV� DQG ZH VWXG\ WZR LPSRUWDQW FODVVHV LQ JUHDWHU GHWDLO� WKH +HOPKROW] HTXD�
WLRQ� ZKLFK GHVFULEHV VFDODU ZDYH SURSDJDWLRQ VXLWHG IRU HOHFWURPDJQHWLF 7( RU 70
PRGHV SURSDJDWLQJ LQ D GLHOHFWULF� DQG WKH 6FKU«GLQJHU HTXDWLRQ DVVRFLDWHG ZLWK D
QRQ LQWHUDFWLQJ HOHFWURQ JDV �ZHDNO\ GLVRUGHUHG PHWDOV RU VHPLFRQGXFWRUV��

+HOPKROW] HTXDWLRQ

7KH FDVH RI HOHFWURPDJQHWLF ZDYHV LV VSHFLDO� IRU VHYHUDO UHDVRQV� ,W LV SUREDEO\
RQH RI WKH HDUOLHVW H[DPSOHV ZKHUH FKDQJHV LQ ZDYH SKDVH FRKHUHQFH GXH WR SDV�
VDJH WKURXJK D UDQGRP PHGLXP ZDV H[DPLQHG� ,Q WKH EHJLQQLQJ RI WKH WZHQWLHWK
FHQWXU\� YHU\ SUHFLVH VWXGLHV ZHUH FDUULHG RXW RQ HOHFWURPDJQHWLF ZDYH SURSDJDWLRQ
WKURXJK GLIIXVLYH PHGLD� VSHFLILFDOO\ WKH DWPRVSKHUH� )URP D FRQFHSWXDO YLHZSRLQW�
WKLV SUREOHP VWLPXODWHG WKH FRPPXQLW\ ZRUNLQJ LQ WKH WKHRU\ RI SUREDELOLW\� ZKR
UHJDUGHG LW DV D QHZ ILHOG IRU WKH DSSOLFDWLRQ RI PHWKRGV GHYHORSHG IRU WKH VWXG\ RI
%URZQLDQ PRWLRQ� )RU WKH DWPRVSKHUH� WKH GHVFULSWLRQ LQ WHUPV RI D VWDWLF GLVRUGHUHG
PHGLXP LV QRW DSSURSULDWH� )RU PDQ\ RWKHU FDVHV� KRZHYHU� WKH GHVFULSWLRQ LQ WHUPV
RI VWDWLF GLVRUGHU GHVFULEHG E\ D WLPH�LQGHSHQGHQW SRWHQWLDO ZRUNV ZHOO� DQG LW LV WKLV
FDVH WKDW ZH FRQVLGHU KHUH�

)RU D 7( PRGH SURSDJDWLQJ LQ WKH x GLUHFWLRQ DORQJ D PHGLXP ZLWK VSDWLDOO\
YDU\LQJ GLHOHFWULF IXQFWLRQ ϵ(x)� 0D[ZHOO¼V HTXDWLRQV IRU WKH HOHFWURPDJQHWLF ILHOG
DPSOLWXGHV� Ez = ψ(x)e−iωt DQG Hy = χ(x)e−iωt� EHFRPH WZR FRXSOHG HTXDWLRQV

dψ

dx
= ik0 χ ,

dχ

dx
= ik0

ϵ(x)

ϵ
ψ,

ZKHUH k0 = nω/c� QDPHO\ IRU DQ DYHUDJH GLHOHFWULF RI UHIUDFWLYH LQGH[ n =
√
ϵ/ϵ0

DQG DYHUDJH GLHOHFWULF FRQVWDQW ϵ �6HH IRU LQVWDQFH >$0��@�� 7KLV UHGXFHV WR D VFDODU
+HOPKROW] HTXDWLRQ IRU ψ(x)�

−d2ψ

dx2
− k20v(x)ψ(x) = k20ψ(x),
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ZKHUH v(x) ≡ ϵ(x)
ϵ − 1 ≡ n2(x)− 1� ZLWK UHIUDFWLYH LQGH[ n(x)�

6FKU«GLQJHU HTXDWLRQ

7KH 6FKU«GLQJHU ZDYH HTXDWLRQ IRU D SDUWLFOH RI PDVV m LQ D RQH GLPHQVLRQDO SR�
WHQWLDO V (x) DOVR KDV D +HOPKROW]�OLNH IRUP

− !2
2m

d2ψ

dx2
+ V (x)ψ = Eψ(x).

7KLV FDQ EH IRUPDOO\ ZULWWHQ DV H ψ = k2 ψ�
7KH WZR H[DPSOHV ZH KDYH GLVFXVVHG DUH QRW WKH RQO\ RQHV WR H[KLELW HIIHFWV

UHODWHG WR FRKHUHQW SURSDJDWLRQ LQ FRPSOH[ PHGLD� ,Q IDFW� WKHVH HIIHFWV DUH FRP�
PRQ WR DOO ZDYH SKHQRPHQD �TXDQWXP� RSWLFDO� K\GURG\QDPLF� HWF�� LQGHSHQGHQW
RI GLVSHUVLRQ UHODWLRQ DQG VSDFH GLPHQVLRQ� SURYLGHG WKDW WKHUH DUH QR QRQOLQHDU
HIIHFWV� ,QGHHG� WKHVH PD\ KLGH FRPSOH[LW\ HIIHFWV� 0RUHRYHU� QRQOLQHDU HTXDWLRQV
RIWHQ KDYH VSHFLDO VROXWLRQV �VROLWRQV� YRUWLFHV����� ZKRVH VWDELOLW\ LV HQVXUHG E\ D
WRSRORJLFDO FRQVWUDLQW ZKLFK LV YHU\ GLIILFXOW WR GHVWDELOL]H E\ PHDQV RI D GLVRUGHUHG
SRWHQWLDO� 7KH FRPSHWLWLYH UROH RI GLVRUGHU DQG QRQ�OLQHDULW\ LV LPSRUWDQW EXW LV VWLOO
UHODWLYHO\ SRRUO\ XQGHUVWRRG �

����� 6FDWWHULQJ PDWUL[ IRUPDOLVP

3URSDJDWLRQ WKURXJK D RQH�GLPHQVLRQDO VWUXFWXUH FDQ EH GHVFULEHG E\ D VFDWWHULQJ
PDWUL[� RU 6�PDWUL[� S(k)� UHODWLQJ LQFRPLQJ DQG RXWJRLQJ DPSOLWXGHV RI SURSDJDWLQJ
SODQH ZDYHV RI ZDYH YHFWRU k = ω/c �VHH ILJXUH ���D� � ([FHOOHQW SHGDJRJLFDO
GLVFXVVLRQV� SDUWLFXODUO\ IRU RQH�GLPHQVLRQDO V\VWHPV� FDQ EH IRXQG LQ >$%��� %9��@�
7KH VFDWWHULQJ S PDWUL[ LV GHILQHG DV

(
oL

oR

)
=

( −→r t

t ←−r

)(
iL

iR

)
≡ S

(
iL

iR

)
. �����

7KH WUDQVPLVVLRQ DQG UHIOHFWLRQ DPSOLWXGHV� t≡ |t|ei θt � −→r ≡ |r|ei
−→
θ � DQG ←−r ≡ |r|ei

←−
θ

DUH PDUNHG E\ DUURZV FRUUHVSRQGLQJ WR OHIW RU ULJKW LQFRPLQJ ZDYHV LQ WKH WZR
H[SHULPHQWV UHSUHVHQWHG RQ ILJXUH ���E� :H FRQVLGHU WKH V\VWHP WR EH LQYDULDQW
XQGHU WLPH UHYHUVDO� VR WKDW WKH PDWUL[ S LV V\PPHWULF� )XUWKHUPRUH� LW LV XQLWDU\
�S−1 = S†� DV D FRQVHTXHQFH RI FRQVHUYDWLRQ RI SUREDELOLW\ �IRU WKH 6FKU«GLQJHU
HTXDWLRQ�� RU RI WKH LQWHQVLW\ RI WKH ILHOG �IRU WKH +HOPKROW] HTXDWLRQ�� 7KLV OHDGV
WR WKH VHW RI UHODWLRQV

|−→r |2 + |t|2 = 1

|←−r |2 + |t|2 = 1 �����
t−→r ∗ +←−r t∗ = 0 .
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Spectrum of the Helmholtz equation on a quasi-periodic chain

Scattering boundary conditions :

1

1

(b)

(a) iL

oL

oR

iR

)LJXUH ���� 7KH VFDWWHULQJ SUREOHP� �D� $ VNHWFK IRU WKH QRWDWLRQV RI LQFRPLQJ
DQG RXWJRLQJ ZDYHV� �E� 7KH DPSOLWXGH QRWDWLRQV IRU WZR SRVVLEOH H[SHULPHQWV�
LQFRPLQJ ZDYHV IURP WKH ULJKW RU IURP WKH OHIW�

7KH VFDWWHULQJ PDWUL[� WKHUHIRUH� FRQWDLQ WZR PDJQLWXGHV DQG WKUHH SKDVHV� (TXDWLRQ
����� LPSOLHV WKDW GHWS = −→r←−r −t2 = −t/t∗� 6LQFH S LV XQLWDU\� LW FDQ EH GLDJRQDOL]HG
E\ D XQLWDU\ WUDQVIRUPDWLRQ LQWR WKH GLDJRQDO IRUP FRQWDLQLQJ RQO\ WZR LQGHSHQGHQW
SKDVHV

(
eiΦ1 0

0 eiΦ2

)
. �����

'HILQLQJ WKH WRWDO SKDVH VKLIW� δ(k) ≡ (Φ1(k) + Φ2(k))/2� ZH WKHQ KDYH

GHWS(k) = e2iδ(k) = − t

t∗ . �����

)URP WKH GHILQLWLRQ RI WKH SKDVH RI WKH WUDQVPLVVLRQ DPSOLWXGH� t ≡ |t|ei θt � DQG IURP
������ ZH REWDLQ WKH UHODWLRQ δ(k) = θt(k)+π/2� $ VLPSOH DQG HOHJDQW UHODWLRQ H[LVWV
EHWZHHQ WKH SKDVH VKLIW δ(k) DQG WKH FKDQJH RI GHQVLW\ RI VWDWHV ρ(k)� VXFK WKDW

ρ(k)− ρ0(k) = 1

2π
,P ∂

∂k
OQ GHWS(k) , �����

ZKHUH ρ0(k) LV WKH GHQVLW\ RI VWDWHV IRU WKH IUHH V\VWHP� QDPHO\ ZLWK ]HUR SRWHQWLDO
IRU WKH 6FKU«GLQJHU HTXDWLRQ� RU ϵ(x) = ϵ0 IRU WKH +HOPKROW] HTXDWLRQ�

7KH VRXUFH RI VFDWWHULQJ LQ HLWKHU 6FKU«GLQJHU �RU +HOPKROW]� HTXDWLRQ LV WKH
YDU\LQJ SRWHQWLDO V (x) �RU WKH YDU\LQJ UHIUDFWLYH LQGH[ n(x)�� 6KRXOG LW YDQLVK �WKH
IUHH VSDFH FDVH�� WKH S�PDWUL[ UHGXFHV WR WKH LGHQWLW\� 1RZ DVVXPH WKDW WKH SRWHQWLDO
GHFUHDVHV IDVW HQRXJK VR WKDW ZH FDQ HQFORVH WKH VFDWWHULQJ V\VWHP LQVLGH D UHJLRQ
RI VL]H L� PXFK ODUJHU WKDQ WKH VXSSRUW RI WKH VFDWWHULQJ SRWHQWLDO �DV VRPH VRUW
RI ¾EODFN ER[¿�� :H WKHQ DSSO\ SHULRGLF ERXQGDU\ FRQGLWLRQV� ψ(0) = ψ(L) DQG
ψ′(0) = ψ′(L)� DW WKH ERXQGDU\ RI WKH ODUJH ER[� QRWLQJ WKDW IRU ODUJH HQRXJK L� WKH
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FRXQWLQJ IXQFWLRQ �WKH LQWHJUDWHG GHQVLW\ RI VWDWHV�� WKH WUDQVPLVVLRQ SUREDELOLW\�
DQG DOVR WKH ORFDO ILHOG DPSOLWXGH DQG LQWHQVLW\� HDFK RI ZKLFK KDV D GLUHFW SK\VL�
FDO PHDQLQJ� DQG SUHVHQW D YDULHW\ RI UHVXOWV WR LOOXVWUDWH WKH HIIHFW RI WKH OD\HUHG
VWUXFWXUH W\SH RQ WKH DIRUHPHQWLRQHG SK\VLFDO TXDQWLWLHV� 7KLV VXPPDU\ LV LQWHQGHG
WR KLJKOLJKW WKH DGDSWDWLRQ SUHIRUPHG WR WKLV YHU\ ZHOO NQRZQ PHWKRG >$'/��@� DQG
DOVR WR LQWURGXFH WKH QRWDWLRQV ZKLFK ZLOO EH KHOSIXO LQ WKH QH[W FKDSWHUV�

����� :DYH HTXDWLRQV

7KH JHQHUDO DVSHFWV RI FRKHUHQW SURSDJDWLRQ DUH FRPPRQ WR D ZLGH YDULHW\ RI ZDYHV
ZKLFK SURSDJDWH LQ VFDWWHULQJ PHGLD� 7KLV QRWZLWKVWDQGLQJ� HDFK W\SH RI ZDYH H[�
KLELWV LWV RZQ FKDUDFWHULVWLF EHKDYLRU� :H QRZ SUHVHQW VHYHUDO H[DPSOHV RI ZDYH
HTXDWLRQV� DQG ZH VWXG\ WZR LPSRUWDQW FODVVHV LQ JUHDWHU GHWDLO� WKH +HOPKROW] HTXD�
WLRQ� ZKLFK GHVFULEHV VFDODU ZDYH SURSDJDWLRQ VXLWHG IRU HOHFWURPDJQHWLF 7( RU 70
PRGHV SURSDJDWLQJ LQ D GLHOHFWULF� DQG WKH 6FKU«GLQJHU HTXDWLRQ DVVRFLDWHG ZLWK D
QRQ LQWHUDFWLQJ HOHFWURQ JDV �ZHDNO\ GLVRUGHUHG PHWDOV RU VHPLFRQGXFWRUV��

+HOPKROW] HTXDWLRQ

7KH FDVH RI HOHFWURPDJQHWLF ZDYHV LV VSHFLDO� IRU VHYHUDO UHDVRQV� ,W LV SUREDEO\
RQH RI WKH HDUOLHVW H[DPSOHV ZKHUH FKDQJHV LQ ZDYH SKDVH FRKHUHQFH GXH WR SDV�
VDJH WKURXJK D UDQGRP PHGLXP ZDV H[DPLQHG� ,Q WKH EHJLQQLQJ RI WKH WZHQWLHWK
FHQWXU\� YHU\ SUHFLVH VWXGLHV ZHUH FDUULHG RXW RQ HOHFWURPDJQHWLF ZDYH SURSDJDWLRQ
WKURXJK GLIIXVLYH PHGLD� VSHFLILFDOO\ WKH DWPRVSKHUH� )URP D FRQFHSWXDO YLHZSRLQW�
WKLV SUREOHP VWLPXODWHG WKH FRPPXQLW\ ZRUNLQJ LQ WKH WKHRU\ RI SUREDELOLW\� ZKR
UHJDUGHG LW DV D QHZ ILHOG IRU WKH DSSOLFDWLRQ RI PHWKRGV GHYHORSHG IRU WKH VWXG\ RI
%URZQLDQ PRWLRQ� )RU WKH DWPRVSKHUH� WKH GHVFULSWLRQ LQ WHUPV RI D VWDWLF GLVRUGHUHG
PHGLXP LV QRW DSSURSULDWH� )RU PDQ\ RWKHU FDVHV� KRZHYHU� WKH GHVFULSWLRQ LQ WHUPV
RI VWDWLF GLVRUGHU GHVFULEHG E\ D WLPH�LQGHSHQGHQW SRWHQWLDO ZRUNV ZHOO� DQG LW LV WKLV
FDVH WKDW ZH FRQVLGHU KHUH�

)RU D 7( PRGH SURSDJDWLQJ LQ WKH x GLUHFWLRQ DORQJ D PHGLXP ZLWK VSDWLDOO\
YDU\LQJ GLHOHFWULF IXQFWLRQ ϵ(x)� 0D[ZHOO¼V HTXDWLRQV IRU WKH HOHFWURPDJQHWLF ILHOG
DPSOLWXGHV� Ez = ψ(x)e−iωt DQG Hy = χ(x)e−iωt� EHFRPH WZR FRXSOHG HTXDWLRQV

dψ

dx
= ik0 χ ,

dχ

dx
= ik0

ϵ(x)

ϵ
ψ,

ZKHUH k0 = nω/c� QDPHO\ IRU DQ DYHUDJH GLHOHFWULF RI UHIUDFWLYH LQGH[ n =
√
ϵ/ϵ0

DQG DYHUDJH GLHOHFWULF FRQVWDQW ϵ �6HH IRU LQVWDQFH >$0��@�� 7KLV UHGXFHV WR D VFDODU
+HOPKROW] HTXDWLRQ IRU ψ(x)�

−d2ψ

dx2
− k20v(x)ψ(x) = k20ψ(x),
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ZKHUH v(x) ≡ ϵ(x)
ϵ − 1 ≡ n2(x)− 1� ZLWK UHIUDFWLYH LQGH[ n(x)�

6FKU«GLQJHU HTXDWLRQ

7KH 6FKU«GLQJHU ZDYH HTXDWLRQ IRU D SDUWLFOH RI PDVV m LQ D RQH GLPHQVLRQDO SR�
WHQWLDO V (x) DOVR KDV D +HOPKROW]�OLNH IRUP

− !2
2m

d2ψ

dx2
+ V (x)ψ = Eψ(x).

7KLV FDQ EH IRUPDOO\ ZULWWHQ DV H ψ = k2 ψ�
7KH WZR H[DPSOHV ZH KDYH GLVFXVVHG DUH QRW WKH RQO\ RQHV WR H[KLELW HIIHFWV

UHODWHG WR FRKHUHQW SURSDJDWLRQ LQ FRPSOH[ PHGLD� ,Q IDFW� WKHVH HIIHFWV DUH FRP�
PRQ WR DOO ZDYH SKHQRPHQD �TXDQWXP� RSWLFDO� K\GURG\QDPLF� HWF�� LQGHSHQGHQW
RI GLVSHUVLRQ UHODWLRQ DQG VSDFH GLPHQVLRQ� SURYLGHG WKDW WKHUH DUH QR QRQOLQHDU
HIIHFWV� ,QGHHG� WKHVH PD\ KLGH FRPSOH[LW\ HIIHFWV� 0RUHRYHU� QRQOLQHDU HTXDWLRQV
RIWHQ KDYH VSHFLDO VROXWLRQV �VROLWRQV� YRUWLFHV����� ZKRVH VWDELOLW\ LV HQVXUHG E\ D
WRSRORJLFDO FRQVWUDLQW ZKLFK LV YHU\ GLIILFXOW WR GHVWDELOL]H E\ PHDQV RI D GLVRUGHUHG
SRWHQWLDO� 7KH FRPSHWLWLYH UROH RI GLVRUGHU DQG QRQ�OLQHDULW\ LV LPSRUWDQW EXW LV VWLOO
UHODWLYHO\ SRRUO\ XQGHUVWRRG �

����� 6FDWWHULQJ PDWUL[ IRUPDOLVP

3URSDJDWLRQ WKURXJK D RQH�GLPHQVLRQDO VWUXFWXUH FDQ EH GHVFULEHG E\ D VFDWWHULQJ
PDWUL[� RU 6�PDWUL[� S(k)� UHODWLQJ LQFRPLQJ DQG RXWJRLQJ DPSOLWXGHV RI SURSDJDWLQJ
SODQH ZDYHV RI ZDYH YHFWRU k = ω/c �VHH ILJXUH ���D� � ([FHOOHQW SHGDJRJLFDO
GLVFXVVLRQV� SDUWLFXODUO\ IRU RQH�GLPHQVLRQDO V\VWHPV� FDQ EH IRXQG LQ >$%��� %9��@�
7KH VFDWWHULQJ S PDWUL[ LV GHILQHG DV

(
oL

oR

)
=

( −→r t

t ←−r

)(
iL

iR

)
≡ S

(
iL

iR

)
. �����

7KH WUDQVPLVVLRQ DQG UHIOHFWLRQ DPSOLWXGHV� t≡ |t|ei θt � −→r ≡ |r|ei
−→
θ � DQG ←−r ≡ |r|ei

←−
θ

DUH PDUNHG E\ DUURZV FRUUHVSRQGLQJ WR OHIW RU ULJKW LQFRPLQJ ZDYHV LQ WKH WZR
H[SHULPHQWV UHSUHVHQWHG RQ ILJXUH ���E� :H FRQVLGHU WKH V\VWHP WR EH LQYDULDQW
XQGHU WLPH UHYHUVDO� VR WKDW WKH PDWUL[ S LV V\PPHWULF� )XUWKHUPRUH� LW LV XQLWDU\
�S−1 = S†� DV D FRQVHTXHQFH RI FRQVHUYDWLRQ RI SUREDELOLW\ �IRU WKH 6FKU«GLQJHU
HTXDWLRQ�� RU RI WKH LQWHQVLW\ RI WKH ILHOG �IRU WKH +HOPKROW] HTXDWLRQ�� 7KLV OHDGV
WR WKH VHW RI UHODWLRQV

|−→r |2 + |t|2 = 1

|←−r |2 + |t|2 = 1 �����
t−→r ∗ +←−r t∗ = 0 .
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Spectrum of the Helmholtz equation on a quasi-periodic chain

Scattering boundary conditions :

1

1

(b)

(a) iL

oL

oR

iR

)LJXUH ���� 7KH VFDWWHULQJ SUREOHP� �D� $ VNHWFK IRU WKH QRWDWLRQV RI LQFRPLQJ
DQG RXWJRLQJ ZDYHV� �E� 7KH DPSOLWXGH QRWDWLRQV IRU WZR SRVVLEOH H[SHULPHQWV�
LQFRPLQJ ZDYHV IURP WKH ULJKW RU IURP WKH OHIW�

7KH VFDWWHULQJ PDWUL[� WKHUHIRUH� FRQWDLQ WZR PDJQLWXGHV DQG WKUHH SKDVHV� (TXDWLRQ
����� LPSOLHV WKDW GHWS = −→r←−r −t2 = −t/t∗� 6LQFH S LV XQLWDU\� LW FDQ EH GLDJRQDOL]HG
E\ D XQLWDU\ WUDQVIRUPDWLRQ LQWR WKH GLDJRQDO IRUP FRQWDLQLQJ RQO\ WZR LQGHSHQGHQW
SKDVHV

(
eiΦ1 0

0 eiΦ2

)
. �����

'HILQLQJ WKH WRWDO SKDVH VKLIW� δ(k) ≡ (Φ1(k) + Φ2(k))/2� ZH WKHQ KDYH

GHWS(k) = e2iδ(k) = − t

t∗ . �����

)URP WKH GHILQLWLRQ RI WKH SKDVH RI WKH WUDQVPLVVLRQ DPSOLWXGH� t ≡ |t|ei θt � DQG IURP
������ ZH REWDLQ WKH UHODWLRQ δ(k) = θt(k)+π/2� $ VLPSOH DQG HOHJDQW UHODWLRQ H[LVWV
EHWZHHQ WKH SKDVH VKLIW δ(k) DQG WKH FKDQJH RI GHQVLW\ RI VWDWHV ρ(k)� VXFK WKDW

ρ(k)− ρ0(k) = 1

2π
,P ∂

∂k
OQ GHWS(k) , �����

ZKHUH ρ0(k) LV WKH GHQVLW\ RI VWDWHV IRU WKH IUHH V\VWHP� QDPHO\ ZLWK ]HUR SRWHQWLDO
IRU WKH 6FKU«GLQJHU HTXDWLRQ� RU ϵ(x) = ϵ0 IRU WKH +HOPKROW] HTXDWLRQ�

7KH VRXUFH RI VFDWWHULQJ LQ HLWKHU 6FKU«GLQJHU �RU +HOPKROW]� HTXDWLRQ LV WKH
YDU\LQJ SRWHQWLDO V (x) �RU WKH YDU\LQJ UHIUDFWLYH LQGH[ n(x)�� 6KRXOG LW YDQLVK �WKH
IUHH VSDFH FDVH�� WKH S�PDWUL[ UHGXFHV WR WKH LGHQWLW\� 1RZ DVVXPH WKDW WKH SRWHQWLDO
GHFUHDVHV IDVW HQRXJK VR WKDW ZH FDQ HQFORVH WKH VFDWWHULQJ V\VWHP LQVLGH D UHJLRQ
RI VL]H L� PXFK ODUJHU WKDQ WKH VXSSRUW RI WKH VFDWWHULQJ SRWHQWLDO �DV VRPH VRUW
RI ¾EODFN ER[¿�� :H WKHQ DSSO\ SHULRGLF ERXQGDU\ FRQGLWLRQV� ψ(0) = ψ(L) DQG
ψ′(0) = ψ′(L)� DW WKH ERXQGDU\ RI WKH ODUJH ER[� QRWLQJ WKDW IRU ODUJH HQRXJK L� WKH
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FRXQWLQJ IXQFWLRQ �WKH LQWHJUDWHG GHQVLW\ RI VWDWHV�� WKH WUDQVPLVVLRQ SUREDELOLW\�
DQG DOVR WKH ORFDO ILHOG DPSOLWXGH DQG LQWHQVLW\� HDFK RI ZKLFK KDV D GLUHFW SK\VL�
FDO PHDQLQJ� DQG SUHVHQW D YDULHW\ RI UHVXOWV WR LOOXVWUDWH WKH HIIHFW RI WKH OD\HUHG
VWUXFWXUH W\SH RQ WKH DIRUHPHQWLRQHG SK\VLFDO TXDQWLWLHV� 7KLV VXPPDU\ LV LQWHQGHG
WR KLJKOLJKW WKH DGDSWDWLRQ SUHIRUPHG WR WKLV YHU\ ZHOO NQRZQ PHWKRG >$'/��@� DQG
DOVR WR LQWURGXFH WKH QRWDWLRQV ZKLFK ZLOO EH KHOSIXO LQ WKH QH[W FKDSWHUV�

����� :DYH HTXDWLRQV

7KH JHQHUDO DVSHFWV RI FRKHUHQW SURSDJDWLRQ DUH FRPPRQ WR D ZLGH YDULHW\ RI ZDYHV
ZKLFK SURSDJDWH LQ VFDWWHULQJ PHGLD� 7KLV QRWZLWKVWDQGLQJ� HDFK W\SH RI ZDYH H[�
KLELWV LWV RZQ FKDUDFWHULVWLF EHKDYLRU� :H QRZ SUHVHQW VHYHUDO H[DPSOHV RI ZDYH
HTXDWLRQV� DQG ZH VWXG\ WZR LPSRUWDQW FODVVHV LQ JUHDWHU GHWDLO� WKH +HOPKROW] HTXD�
WLRQ� ZKLFK GHVFULEHV VFDODU ZDYH SURSDJDWLRQ VXLWHG IRU HOHFWURPDJQHWLF 7( RU 70
PRGHV SURSDJDWLQJ LQ D GLHOHFWULF� DQG WKH 6FKU«GLQJHU HTXDWLRQ DVVRFLDWHG ZLWK D
QRQ LQWHUDFWLQJ HOHFWURQ JDV �ZHDNO\ GLVRUGHUHG PHWDOV RU VHPLFRQGXFWRUV��

+HOPKROW] HTXDWLRQ

7KH FDVH RI HOHFWURPDJQHWLF ZDYHV LV VSHFLDO� IRU VHYHUDO UHDVRQV� ,W LV SUREDEO\
RQH RI WKH HDUOLHVW H[DPSOHV ZKHUH FKDQJHV LQ ZDYH SKDVH FRKHUHQFH GXH WR SDV�
VDJH WKURXJK D UDQGRP PHGLXP ZDV H[DPLQHG� ,Q WKH EHJLQQLQJ RI WKH WZHQWLHWK
FHQWXU\� YHU\ SUHFLVH VWXGLHV ZHUH FDUULHG RXW RQ HOHFWURPDJQHWLF ZDYH SURSDJDWLRQ
WKURXJK GLIIXVLYH PHGLD� VSHFLILFDOO\ WKH DWPRVSKHUH� )URP D FRQFHSWXDO YLHZSRLQW�
WKLV SUREOHP VWLPXODWHG WKH FRPPXQLW\ ZRUNLQJ LQ WKH WKHRU\ RI SUREDELOLW\� ZKR
UHJDUGHG LW DV D QHZ ILHOG IRU WKH DSSOLFDWLRQ RI PHWKRGV GHYHORSHG IRU WKH VWXG\ RI
%URZQLDQ PRWLRQ� )RU WKH DWPRVSKHUH� WKH GHVFULSWLRQ LQ WHUPV RI D VWDWLF GLVRUGHUHG
PHGLXP LV QRW DSSURSULDWH� )RU PDQ\ RWKHU FDVHV� KRZHYHU� WKH GHVFULSWLRQ LQ WHUPV
RI VWDWLF GLVRUGHU GHVFULEHG E\ D WLPH�LQGHSHQGHQW SRWHQWLDO ZRUNV ZHOO� DQG LW LV WKLV
FDVH WKDW ZH FRQVLGHU KHUH�

)RU D 7( PRGH SURSDJDWLQJ LQ WKH x GLUHFWLRQ DORQJ D PHGLXP ZLWK VSDWLDOO\
YDU\LQJ GLHOHFWULF IXQFWLRQ ϵ(x)� 0D[ZHOO¼V HTXDWLRQV IRU WKH HOHFWURPDJQHWLF ILHOG
DPSOLWXGHV� Ez = ψ(x)e−iωt DQG Hy = χ(x)e−iωt� EHFRPH WZR FRXSOHG HTXDWLRQV

dψ

dx
= ik0 χ ,

dχ

dx
= ik0

ϵ(x)

ϵ
ψ,

ZKHUH k0 = nω/c� QDPHO\ IRU DQ DYHUDJH GLHOHFWULF RI UHIUDFWLYH LQGH[ n =
√
ϵ/ϵ0

DQG DYHUDJH GLHOHFWULF FRQVWDQW ϵ �6HH IRU LQVWDQFH >$0��@�� 7KLV UHGXFHV WR D VFDODU
+HOPKROW] HTXDWLRQ IRU ψ(x)�

−d2ψ

dx2
− k20v(x)ψ(x) = k20ψ(x),
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ZKHUH v(x) ≡ ϵ(x)
ϵ − 1 ≡ n2(x)− 1� ZLWK UHIUDFWLYH LQGH[ n(x)�

6FKU«GLQJHU HTXDWLRQ

7KH 6FKU«GLQJHU ZDYH HTXDWLRQ IRU D SDUWLFOH RI PDVV m LQ D RQH GLPHQVLRQDO SR�
WHQWLDO V (x) DOVR KDV D +HOPKROW]�OLNH IRUP

− !2
2m

d2ψ

dx2
+ V (x)ψ = Eψ(x).

7KLV FDQ EH IRUPDOO\ ZULWWHQ DV H ψ = k2 ψ�
7KH WZR H[DPSOHV ZH KDYH GLVFXVVHG DUH QRW WKH RQO\ RQHV WR H[KLELW HIIHFWV

UHODWHG WR FRKHUHQW SURSDJDWLRQ LQ FRPSOH[ PHGLD� ,Q IDFW� WKHVH HIIHFWV DUH FRP�
PRQ WR DOO ZDYH SKHQRPHQD �TXDQWXP� RSWLFDO� K\GURG\QDPLF� HWF�� LQGHSHQGHQW
RI GLVSHUVLRQ UHODWLRQ DQG VSDFH GLPHQVLRQ� SURYLGHG WKDW WKHUH DUH QR QRQOLQHDU
HIIHFWV� ,QGHHG� WKHVH PD\ KLGH FRPSOH[LW\ HIIHFWV� 0RUHRYHU� QRQOLQHDU HTXDWLRQV
RIWHQ KDYH VSHFLDO VROXWLRQV �VROLWRQV� YRUWLFHV����� ZKRVH VWDELOLW\ LV HQVXUHG E\ D
WRSRORJLFDO FRQVWUDLQW ZKLFK LV YHU\ GLIILFXOW WR GHVWDELOL]H E\ PHDQV RI D GLVRUGHUHG
SRWHQWLDO� 7KH FRPSHWLWLYH UROH RI GLVRUGHU DQG QRQ�OLQHDULW\ LV LPSRUWDQW EXW LV VWLOO
UHODWLYHO\ SRRUO\ XQGHUVWRRG �

����� 6FDWWHULQJ PDWUL[ IRUPDOLVP

3URSDJDWLRQ WKURXJK D RQH�GLPHQVLRQDO VWUXFWXUH FDQ EH GHVFULEHG E\ D VFDWWHULQJ
PDWUL[� RU 6�PDWUL[� S(k)� UHODWLQJ LQFRPLQJ DQG RXWJRLQJ DPSOLWXGHV RI SURSDJDWLQJ
SODQH ZDYHV RI ZDYH YHFWRU k = ω/c �VHH ILJXUH ���D� � ([FHOOHQW SHGDJRJLFDO
GLVFXVVLRQV� SDUWLFXODUO\ IRU RQH�GLPHQVLRQDO V\VWHPV� FDQ EH IRXQG LQ >$%��� %9��@�
7KH VFDWWHULQJ S PDWUL[ LV GHILQHG DV

(
oL

oR

)
=

( −→r t

t ←−r

)(
iL

iR

)
≡ S

(
iL

iR

)
. �����

7KH WUDQVPLVVLRQ DQG UHIOHFWLRQ DPSOLWXGHV� t≡ |t|ei θt � −→r ≡ |r|ei
−→
θ � DQG ←−r ≡ |r|ei

←−
θ

DUH PDUNHG E\ DUURZV FRUUHVSRQGLQJ WR OHIW RU ULJKW LQFRPLQJ ZDYHV LQ WKH WZR
H[SHULPHQWV UHSUHVHQWHG RQ ILJXUH ���E� :H FRQVLGHU WKH V\VWHP WR EH LQYDULDQW
XQGHU WLPH UHYHUVDO� VR WKDW WKH PDWUL[ S LV V\PPHWULF� )XUWKHUPRUH� LW LV XQLWDU\
�S−1 = S†� DV D FRQVHTXHQFH RI FRQVHUYDWLRQ RI SUREDELOLW\ �IRU WKH 6FKU«GLQJHU
HTXDWLRQ�� RU RI WKH LQWHQVLW\ RI WKH ILHOG �IRU WKH +HOPKROW] HTXDWLRQ�� 7KLV OHDGV
WR WKH VHW RI UHODWLRQV

|−→r |2 + |t|2 = 1

|←−r |2 + |t|2 = 1 �����
t−→r ∗ +←−r t∗ = 0 .
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Spectrum of the Helmholtz equation on a quasi-periodic chain

Scattering boundary conditions :

1

1

(b)

(a) iL

oL

oR

iR

)LJXUH ���� 7KH VFDWWHULQJ SUREOHP� �D� $ VNHWFK IRU WKH QRWDWLRQV RI LQFRPLQJ
DQG RXWJRLQJ ZDYHV� �E� 7KH DPSOLWXGH QRWDWLRQV IRU WZR SRVVLEOH H[SHULPHQWV�
LQFRPLQJ ZDYHV IURP WKH ULJKW RU IURP WKH OHIW�

7KH VFDWWHULQJ PDWUL[� WKHUHIRUH� FRQWDLQ WZR PDJQLWXGHV DQG WKUHH SKDVHV� (TXDWLRQ
����� LPSOLHV WKDW GHWS = −→r←−r −t2 = −t/t∗� 6LQFH S LV XQLWDU\� LW FDQ EH GLDJRQDOL]HG
E\ D XQLWDU\ WUDQVIRUPDWLRQ LQWR WKH GLDJRQDO IRUP FRQWDLQLQJ RQO\ WZR LQGHSHQGHQW
SKDVHV

(
eiΦ1 0

0 eiΦ2

)
. �����

'HILQLQJ WKH WRWDO SKDVH VKLIW� δ(k) ≡ (Φ1(k) + Φ2(k))/2� ZH WKHQ KDYH

GHWS(k) = e2iδ(k) = − t

t∗ . �����

)URP WKH GHILQLWLRQ RI WKH SKDVH RI WKH WUDQVPLVVLRQ DPSOLWXGH� t ≡ |t|ei θt � DQG IURP
������ ZH REWDLQ WKH UHODWLRQ δ(k) = θt(k)+π/2� $ VLPSOH DQG HOHJDQW UHODWLRQ H[LVWV
EHWZHHQ WKH SKDVH VKLIW δ(k) DQG WKH FKDQJH RI GHQVLW\ RI VWDWHV ρ(k)� VXFK WKDW

ρ(k)− ρ0(k) = 1

2π
,P ∂

∂k
OQ GHWS(k) , �����

ZKHUH ρ0(k) LV WKH GHQVLW\ RI VWDWHV IRU WKH IUHH V\VWHP� QDPHO\ ZLWK ]HUR SRWHQWLDO
IRU WKH 6FKU«GLQJHU HTXDWLRQ� RU ϵ(x) = ϵ0 IRU WKH +HOPKROW] HTXDWLRQ�

7KH VRXUFH RI VFDWWHULQJ LQ HLWKHU 6FKU«GLQJHU �RU +HOPKROW]� HTXDWLRQ LV WKH
YDU\LQJ SRWHQWLDO V (x) �RU WKH YDU\LQJ UHIUDFWLYH LQGH[ n(x)�� 6KRXOG LW YDQLVK �WKH
IUHH VSDFH FDVH�� WKH S�PDWUL[ UHGXFHV WR WKH LGHQWLW\� 1RZ DVVXPH WKDW WKH SRWHQWLDO
GHFUHDVHV IDVW HQRXJK VR WKDW ZH FDQ HQFORVH WKH VFDWWHULQJ V\VWHP LQVLGH D UHJLRQ
RI VL]H L� PXFK ODUJHU WKDQ WKH VXSSRUW RI WKH VFDWWHULQJ SRWHQWLDO �DV VRPH VRUW
RI ¾EODFN ER[¿�� :H WKHQ DSSO\ SHULRGLF ERXQGDU\ FRQGLWLRQV� ψ(0) = ψ(L) DQG
ψ′(0) = ψ′(L)� DW WKH ERXQGDU\ RI WKH ODUJH ER[� QRWLQJ WKDW IRU ODUJH HQRXJK L� WKH
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Quasi-periodic structure (Fibonacci quasi-crystal)

Spectrum of modes
Quasicrystals spectra

▪ We obtain the following spectral properties

Transmission 

Density of 
states

Transmission spectrum

Density of modes
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Topological quasicrystals spectra
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Topological quasicrystals spectra
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Density of modes IDOS- counting function
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2nd/O

(Hgap)=p+qW
-1N

N

k 
)LJXUH ����� 1RUPDOL]HG ,'26 IRU WKH )LERQDFFL FKDLQ S10� ZLWK D GLHOHFWULF FRQWUDVW
RI (nhigh− nlow)/nlow = 15�� 7KH ORFDWLRQ RI 8 VHOHFWHG JDSV XVLQJ WKHLU WRSRORJLFDO
QXPEHUV [p, q] DUH LQGLFDWHG LQ DFFRUGDQFH WR �������

EDQG VWUXFWXUHV� 7KH DSSHDUDQFH RI VXFK QXPEHUV LQ WKH VSHFWUXP RI TXDVLSHULRGLF
VWUXFWXUHV VXFK DV WKH )LERQDFFL FKDLQ� PDUNV WKH TXDVLSHULRGLF VWUXFWXUH VSHFWUXP DV
WRSRORJLFDO� 7KH TXDVLSHULRGLF VWUXFWXUH LV WRSRORJLFDO ZLWK QR IXUWKHU PDQLSXODWLRQ
�VXFK DV H[WHUQDO ILHOGV� UHTXLUHG� DV LW RULJLQDWHV IURP D SXUHO\ VWUXFWXUDO SURSHUW\�
+RZHYHU� WKLV VWDWHPHQW VWLOO ODFNV DQ XQGHUVWDQGLQJ UHJDUGLQJ WKH XQGHUO\LQJ V\P�
PHWU\� UHODWLQJ &KHUQ QXPEHUV LQ JDS ODEHOV WR RWKHU NQRZQ WRSRORJLFDO SUREOHPV�
7KH SXUSRVH RI FKDSWHU � LV WR DGGUHVV WKLV SRLQW DQG WR SURSRVH QHZ H[SUHVVLRQV
DQG SRVVLEOH PHDVXUHPHQWV RI &KHUQ QXPEHUV LQ WKHLU PRVW IXQGDPHQWDO GHILQLWLRQ�
D ZLQGLQJ RI D SKDVH GULYHQ E\ VRPH JDXJH ILHOG�

7KH JDS ODEHOLQJ WKHRUHP LV GHILQHG IRU DQ\ VXEVWLWXWLRQ TXDVLFU\VWDO� DOWKRXJK
WKH DPRXQW RI LQWHJHUV UHTXLUHG WR ODEHO HDFK VSHFWUDO JDS LV XVXDOO\ ODUJHU WKDQ 2�

��� 6SHFWUDO JDSV DQG %UDJJ SHDNV

+HUH ZH XVH WKH RSSRVLWH DUJXPHQW WR WKDW JLYHQ LQ ���� 7KH IDFW WKDW WKH TXDVLSHUL�
RGLF FKDLQ VFDWWHULQJ VSHFWUXP LV WRSRORJLFDO �WKURXJK WKH LQWHJHU ODEHOV RI WKH VSHF�
WUDO JDSV� H[WHQGV WR LWV UHFLSURFDO VSDFH SURSHUWLHV� GLVFXVVHG LQ ���� WKURXJK WKH
JHQHUDOL]HG %ORFK WKHRUHP� 7KH VSDWLDO IUHTXHQF\ RI WKH LQILQLWH QXPEHU RI %UDJJ
SHDNV RI WKH LQILQLWH TXDVLSHULRGLF FKDLQ LV GLUHFWO\ UHODWHG WR WKH LQILQLWH QXPEHU RI
VSHFWUDO JDSV LQ WKH VFDWWHULQJ �RU WUDQVPLVVLRQ� VSHFWUXP� )LJXUH ���� VKRZV WKLV
HTXLYDOHQFH KROGV IRU WKH )LERQDFFL FKDLQ S10 H[DPSOH�
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Gap Labeling Theorem 
(GLT)



The density of modes ρ(ω) : 

Discrete scaling symmetry

Fractal spectrum of the Fibonacci quasi-periodic chain



Discrete scaling symmetry: formal description

( ) ( )N b a Nω ωω ωΔ = Δ

- fixed scaling fac s, r tob a

2 2 ,p p p∈Z

b× b×

Counting function: ( ) ( ') 'N dω

ω ω

ω

ω ρ ω ω
+Δ

Δ ≡ ∫ =  (# of states in [ω, ω+Δω])

Δω

Discrete scaling 
symmetry



15

)LJXUH ����� 6HOI VLPLODULW\ LQ WKH FRXQWLQJ IXQFWLRQ �D� 7KH FRXQWLQJ IXQFWLRQ N (k)
IRU S12� �E� $ FORVH�XS RQ WKH PLGGOH SDUW RI SDQHO �D�� �F� $ FORVH�XS RQ WKH
PLGGOH SDUW RI SDQHO �E��

k
k k

)LJXUH ����� �D� 'HQVLW\ RI PRGHV VSHFWUXP DQG VWDFN VWUXFWXUH IRU S16� �E� $
QXPHULFDO RI WKH TXDQWLW\ N (∆k) LQ ������ �

VRPH LQWHUHVWLQJ PRGHV LV VKRZQ LQ ILJXUH ����� 7KH SORWV VKRZ WKDW WKH HOHFWULF
ILHOG LQWHQVLW\ LV YDQLVKLQJO\ VPDOO IRU DOPRVW DOO IUHTXHQFLHV H[FHSW IRU VRPH GLVFUHWH
PRGHV� )RU VRPH RI WKHVH PRGHV WKH HOHFWULF LQWHQVLW\ VSDWLDO GLVWULEXWLRQ LV ORFDOL]HG
DQG �VXUSULVLQJO\� V\PPHWULF DURXQG WKH PLGGOH RI WKH VWDFN� DQG VHOI VLPLODU DQG
UHVHPEOLQJ WKH &DQWRU VHW VWUXFWXUH� 7KH UHDVRQ IRU WKH V\PPHWU\ LV EHOLHYHG WR EH
WKH DOPRVW SDOLQGURPLF QDWXUH RI WKH )LERQDFFL VHTXHQFH >'3��@� 7KLV VRPHZKDW RGG
HOHFWULF ILHOG VSDWLDO VWUXFWXUH LV SUREHG GXH WR WKH HQKDQFHG LQWUD�VODE UHVROXWLRQ RI
WKH FDOFXODWLRQ� +HUH WRR WKHUH LV D VWURQJ HQKDQFHPHQW RI WKH HOHFWULF ILHOG DPSOLWXGH
LQ WKH EDQG HGJH PRGHV � XS WR 60 WLPHV WKDW RI WKH LQFRPLQJ ILHOG�

)LJXUH ����� 7KH HOHFWULF ILHOG LQWHQVLW\ PDS IRU WKH )LERQDFFL FKDLQ S8� /HIW� IXOO
VSHFWUXP� 2WKHU SORWV� FORVH XS ]RRP RQ VRPH LVRODWHG PRGHV� 6SDWLDO ORFDOL]DWLRQ
DQG VSDWLDO VHOI�VLPLODULW\ DUH DSSDUHQW�
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Testing the discrete scaling symmetry

Nk
(g) Δk( )≡ g k '− k

Δk
⎛
⎝⎜

⎞
⎠⎟ ρ k '( )dk ' =∫ Δk( )α × Fg

ln Δk
lnb

⎛
⎝⎜

⎞
⎠⎟

)LJXUH ����� 7KH QRUPDOL]HG GHQVLW\ RI PRGHV �OHIW SDUW� DQG WKH WUDQVPLVVLRQ
VSHFWUXP �ULJKW SDUW�� IRU WKH )LERQDFFL FKDLQ S10�

T T T T 

0                0.5                1 k 0.4              0.5              0.6 k 0.4              0.5              0.6 k 0.485          0.5          0.515 k 

(b) (a) 

)LJXUH ����� 7UDQVPLVVLRQ VSHFWUXP DQG VWDFN VWUXFWXUH IRU S9 �D� �DQG S12� 6WUXF�
WXUHV DUH LOOXVWUDWHG DERYH WKH VSHFWUD� 7KH VHOI VLPLODULW\ RI WKH VSHFWUD LV HYLGHQW
LQ WKH FORVH�XS RQ WKH PLGGOH SDUW RI WKH WZR VSHFWUD�

VLPLODULW\� +RZHYHU� LQ WKH SUHYLRXV SDUDJUDSK UHJDUGLQJ WKH VSDWLDOO\ IUDFWDO &DQWRU
VHW� D TXDQWLWDWLYH PHDVXUH RI VHOI VLPLODULW\ DQG IUDFWDOLW\ KDV EHHQ GHPRQVWUDWHG
LQ ������ DQG ������� $ VLPLODU DUJXPHQW DSSOLHV KHUH DV ZHOO� ZLWK WKH FRXQWLQJ
IXQFWLRQ UHSODFLQJ PDVV� DQG ZDYH�QXPEHU k UHSODFLQJ WKH OHQJWK� QDPHO\�

N (bp∆k) = apN (∆k) ; N (∆k) =

k+∆kˆ

k

ρ(k′)dk′, ������

ZKLFK UHVXOWV LQ D VFDOLQJ ODZ ZLWK D FRUUHVSRQGLQJ SRZHU ODZ EHKDYLRU DQG ORJ�
SHULRGLF RVFLOODWLRQ�

N (∆k) = (∆k)OQ a/ OQ bF (OQ∆k/ OQ b)
F (X + 1) = F (X) , ������

ZKHUH F LV D SHULRGLF IXQFWLRQ RI SHULRG 1� )LJXUH ���� VKRZV D QXPHULFDO FDOFXODWLRQ
RI N (∆k) >*XU@� IRU D )LERQDFFL FKDLQ RI ∼ 2000 OHWWHUV� 7KLV FDOFXODWLRQ KDV VKRZQ
WKDW HYHQ IRU D ¾ILQLWH LWHUDWLRQ¿� WKH IUDFWDO ILQJHUSULQWV DUH REVHUYDEOH� +RZHYHU
WKLV OLHV RXWVLGH WKH VFRSH RI WKLV WKHVLV�

7KH HOHFWULF LQWHQVLW\ PDS IRU WKH )LERQDFFL FKDLQ S8� DQG D FORVH XS ORRN DW
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)LJXUH ����� 6HOI VLPLODULW\ LQ WKH FRXQWLQJ IXQFWLRQ �D� 7KH FRXQWLQJ IXQFWLRQ N (k)
IRU S12� �E� $ FORVH�XS RQ WKH PLGGOH SDUW RI SDQHO �D�� �F� $ FORVH�XS RQ WKH
PLGGOH SDUW RI SDQHO �E��

(a)

)LJXUH ����� �D� 'HQVLW\ RI PRGHV VSHFWUXP DQG VWDFN VWUXFWXUH IRU S16� �E� $
QXPHULFDO RI WKH TXDQWLW\ N (∆k) LQ ������ �

VRPH LQWHUHVWLQJ PRGHV LV VKRZQ LQ ILJXUH ����� 7KH SORWV VKRZ WKDW WKH HOHFWULF
ILHOG LQWHQVLW\ LV YDQLVKLQJO\ VPDOO IRU DOPRVW DOO IUHTXHQFLHV H[FHSW IRU VRPH GLVFUHWH
PRGHV� )RU VRPH RI WKHVH PRGHV WKH HOHFWULF LQWHQVLW\ VSDWLDO GLVWULEXWLRQ LV ORFDOL]HG
DQG �VXUSULVLQJO\� V\PPHWULF DURXQG WKH PLGGOH RI WKH VWDFN� DQG VHOI VLPLODU DQG
UHVHPEOLQJ WKH &DQWRU VHW VWUXFWXUH� 7KH UHDVRQ IRU WKH V\PPHWU\ LV EHOLHYHG WR EH
WKH DOPRVW SDOLQGURPLF QDWXUH RI WKH )LERQDFFL VHTXHQFH >'3��@� 7KLV VRPHZKDW RGG
HOHFWULF ILHOG VSDWLDO VWUXFWXUH LV SUREHG GXH WR WKH HQKDQFHG LQWUD�VODE UHVROXWLRQ RI
WKH FDOFXODWLRQ� +HUH WRR WKHUH LV D VWURQJ HQKDQFHPHQW RI WKH HOHFWULF ILHOG DPSOLWXGH
LQ WKH EDQG HGJH PRGHV � XS WR 60 WLPHV WKDW RI WKH LQFRPLQJ ILHOG�

)LJXUH ����� 7KH HOHFWULF ILHOG LQWHQVLW\ PDS IRU WKH )LERQDFFL FKDLQ S8� /HIW� IXOO
VSHFWUXP� 2WKHU SORWV� FORVH XS ]RRP RQ VRPH LVRODWHG PRGHV� 6SDWLDO ORFDOL]DWLRQ
DQG VSDWLDO VHOI�VLPLODULW\ DUH DSSDUHQW�
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)LJXUH ����� 6HOI VLPLODULW\ LQ WKH FRXQWLQJ IXQFWLRQ �D� 7KH FRXQWLQJ IXQFWLRQ N (k)
IRU S12� �E� $ FORVH�XS RQ WKH PLGGOH SDUW RI SDQHO �D�� �F� $ FORVH�XS RQ WKH
PLGGOH SDUW RI SDQHO �E��

k
k k

)LJXUH ����� �D� 'HQVLW\ RI PRGHV VSHFWUXP DQG VWDFN VWUXFWXUH IRU S16� �E� $
QXPHULFDO RI WKH TXDQWLW\ N (∆k) LQ ������ �

VRPH LQWHUHVWLQJ PRGHV LV VKRZQ LQ ILJXUH ����� 7KH SORWV VKRZ WKDW WKH HOHFWULF
ILHOG LQWHQVLW\ LV YDQLVKLQJO\ VPDOO IRU DOPRVW DOO IUHTXHQFLHV H[FHSW IRU VRPH GLVFUHWH
PRGHV� )RU VRPH RI WKHVH PRGHV WKH HOHFWULF LQWHQVLW\ VSDWLDO GLVWULEXWLRQ LV ORFDOL]HG
DQG �VXUSULVLQJO\� V\PPHWULF DURXQG WKH PLGGOH RI WKH VWDFN� DQG VHOI VLPLODU DQG
UHVHPEOLQJ WKH &DQWRU VHW VWUXFWXUH� 7KH UHDVRQ IRU WKH V\PPHWU\ LV EHOLHYHG WR EH
WKH DOPRVW SDOLQGURPLF QDWXUH RI WKH )LERQDFFL VHTXHQFH >'3��@� 7KLV VRPHZKDW RGG
HOHFWULF ILHOG VSDWLDO VWUXFWXUH LV SUREHG GXH WR WKH HQKDQFHG LQWUD�VODE UHVROXWLRQ RI
WKH FDOFXODWLRQ� +HUH WRR WKHUH LV D VWURQJ HQKDQFHPHQW RI WKH HOHFWULF ILHOG DPSOLWXGH
LQ WKH EDQG HGJH PRGHV � XS WR 60 WLPHV WKDW RI WKH LQFRPLQJ ILHOG�

)LJXUH ����� 7KH HOHFWULF ILHOG LQWHQVLW\ PDS IRU WKH )LERQDFFL FKDLQ S8� /HIW� IXOO
VSHFWUXP� 2WKHU SORWV� FORVH XS ]RRP RQ VRPH LVRODWHG PRGHV� 6SDWLDO ORFDOL]DWLRQ
DQG VSDWLDO VHOI�VLPLODULW\ DUH DSSDUHQW�
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Testing the discrete scaling symmetry

Nk
(g) Δk( )≡ g k '− k

Δk
⎛
⎝⎜

⎞
⎠⎟ ρ k '( )dk ' =∫ Δk( )α × Fg

ln Δk
lnb

⎛
⎝⎜

⎞
⎠⎟

)LJXUH ����� 7KH QRUPDOL]HG GHQVLW\ RI PRGHV �OHIW SDUW� DQG WKH WUDQVPLVVLRQ
VSHFWUXP �ULJKW SDUW�� IRU WKH )LERQDFFL FKDLQ S10�

T T T T 

0                0.5                1 k 0.4              0.5              0.6 k 0.4              0.5              0.6 k 0.485          0.5          0.515 k 

(b) (a) 

)LJXUH ����� 7UDQVPLVVLRQ VSHFWUXP DQG VWDFN VWUXFWXUH IRU S9 �D� �DQG S12� 6WUXF�
WXUHV DUH LOOXVWUDWHG DERYH WKH VSHFWUD� 7KH VHOI VLPLODULW\ RI WKH VSHFWUD LV HYLGHQW
LQ WKH FORVH�XS RQ WKH PLGGOH SDUW RI WKH WZR VSHFWUD�

VLPLODULW\� +RZHYHU� LQ WKH SUHYLRXV SDUDJUDSK UHJDUGLQJ WKH VSDWLDOO\ IUDFWDO &DQWRU
VHW� D TXDQWLWDWLYH PHDVXUH RI VHOI VLPLODULW\ DQG IUDFWDOLW\ KDV EHHQ GHPRQVWUDWHG
LQ ������ DQG ������� $ VLPLODU DUJXPHQW DSSOLHV KHUH DV ZHOO� ZLWK WKH FRXQWLQJ
IXQFWLRQ UHSODFLQJ PDVV� DQG ZDYH�QXPEHU k UHSODFLQJ WKH OHQJWK� QDPHO\�

N (bp∆k) = apN (∆k) ; N (∆k) =

k+∆kˆ

k

ρ(k′)dk′, ������

ZKLFK UHVXOWV LQ D VFDOLQJ ODZ ZLWK D FRUUHVSRQGLQJ SRZHU ODZ EHKDYLRU DQG ORJ�
SHULRGLF RVFLOODWLRQ�

N (∆k) = (∆k)OQ a/ OQ bF (OQ∆k/ OQ b)
F (X + 1) = F (X) , ������

ZKHUH F LV D SHULRGLF IXQFWLRQ RI SHULRG 1� )LJXUH ���� VKRZV D QXPHULFDO FDOFXODWLRQ
RI N (∆k) >*XU@� IRU D )LERQDFFL FKDLQ RI ∼ 2000 OHWWHUV� 7KLV FDOFXODWLRQ KDV VKRZQ
WKDW HYHQ IRU D ¾ILQLWH LWHUDWLRQ¿� WKH IUDFWDO ILQJHUSULQWV DUH REVHUYDEOH� +RZHYHU
WKLV OLHV RXWVLGH WKH VFRSH RI WKLV WKHVLV�

7KH HOHFWULF LQWHQVLW\ PDS IRU WKH )LERQDFFL FKDLQ S8� DQG D FORVH XS ORRN DW
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)LJXUH ����� 6HOI VLPLODULW\ LQ WKH FRXQWLQJ IXQFWLRQ �D� 7KH FRXQWLQJ IXQFWLRQ N (k)
IRU S12� �E� $ FORVH�XS RQ WKH PLGGOH SDUW RI SDQHO �D�� �F� $ FORVH�XS RQ WKH
PLGGOH SDUW RI SDQHO �E��

(a)

)LJXUH ����� �D� 'HQVLW\ RI PRGHV VSHFWUXP DQG VWDFN VWUXFWXUH IRU S16� �E� $
QXPHULFDO RI WKH TXDQWLW\ N (∆k) LQ ������ �

VRPH LQWHUHVWLQJ PRGHV LV VKRZQ LQ ILJXUH ����� 7KH SORWV VKRZ WKDW WKH HOHFWULF
ILHOG LQWHQVLW\ LV YDQLVKLQJO\ VPDOO IRU DOPRVW DOO IUHTXHQFLHV H[FHSW IRU VRPH GLVFUHWH
PRGHV� )RU VRPH RI WKHVH PRGHV WKH HOHFWULF LQWHQVLW\ VSDWLDO GLVWULEXWLRQ LV ORFDOL]HG
DQG �VXUSULVLQJO\� V\PPHWULF DURXQG WKH PLGGOH RI WKH VWDFN� DQG VHOI VLPLODU DQG
UHVHPEOLQJ WKH &DQWRU VHW VWUXFWXUH� 7KH UHDVRQ IRU WKH V\PPHWU\ LV EHOLHYHG WR EH
WKH DOPRVW SDOLQGURPLF QDWXUH RI WKH )LERQDFFL VHTXHQFH >'3��@� 7KLV VRPHZKDW RGG
HOHFWULF ILHOG VSDWLDO VWUXFWXUH LV SUREHG GXH WR WKH HQKDQFHG LQWUD�VODE UHVROXWLRQ RI
WKH FDOFXODWLRQ� +HUH WRR WKHUH LV D VWURQJ HQKDQFHPHQW RI WKH HOHFWULF ILHOG DPSOLWXGH
LQ WKH EDQG HGJH PRGHV � XS WR 60 WLPHV WKDW RI WKH LQFRPLQJ ILHOG�

)LJXUH ����� 7KH HOHFWULF ILHOG LQWHQVLW\ PDS IRU WKH )LERQDFFL FKDLQ S8� /HIW� IXOO
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Testing the discrete scaling symmetry

Nk
(g) Δk( )≡ g k '− k

Δk
⎛
⎝⎜
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⎠⎟ ρ k '( )dk ' =∫ Δk( )α × Fg

ln Δk
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)LJXUH ����� 7KH QRUPDOL]HG GHQVLW\ RI PRGHV �OHIW SDUW� DQG WKH WUDQVPLVVLRQ
VSHFWUXP �ULJKW SDUW�� IRU WKH )LERQDFFL FKDLQ S10�
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VLPLODULW\� +RZHYHU� LQ WKH SUHYLRXV SDUDJUDSK UHJDUGLQJ WKH VSDWLDOO\ IUDFWDO &DQWRU
VHW� D TXDQWLWDWLYH PHDVXUH RI VHOI VLPLODULW\ DQG IUDFWDOLW\ KDV EHHQ GHPRQVWUDWHG
LQ ������ DQG ������� $ VLPLODU DUJXPHQW DSSOLHV KHUH DV ZHOO� ZLWK WKH FRXQWLQJ
IXQFWLRQ UHSODFLQJ PDVV� DQG ZDYH�QXPEHU k UHSODFLQJ WKH OHQJWK� QDPHO\�

N (bp∆k) = apN (∆k) ; N (∆k) =

k+∆kˆ

k

ρ(k′)dk′, ������

ZKLFK UHVXOWV LQ D VFDOLQJ ODZ ZLWK D FRUUHVSRQGLQJ SRZHU ODZ EHKDYLRU DQG ORJ�
SHULRGLF RVFLOODWLRQ�

N (∆k) = (∆k)OQ a/ OQ bF (OQ∆k/ OQ b)
F (X + 1) = F (X) , ������

ZKHUH F LV D SHULRGLF IXQFWLRQ RI SHULRG 1� )LJXUH ���� VKRZV D QXPHULFDO FDOFXODWLRQ
RI N (∆k) >*XU@� IRU D )LERQDFFL FKDLQ RI ∼ 2000 OHWWHUV� 7KLV FDOFXODWLRQ KDV VKRZQ
WKDW HYHQ IRU D ¾ILQLWH LWHUDWLRQ¿� WKH IUDFWDO ILQJHUSULQWV DUH REVHUYDEOH� +RZHYHU
WKLV OLHV RXWVLGH WKH VFRSH RI WKLV WKHVLV�

7KH HOHFWULF LQWHQVLW\ PDS IRU WKH )LERQDFFL FKDLQ S8� DQG D FORVH XS ORRN DW
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PRGHV� )RU VRPH RI WKHVH PRGHV WKH HOHFWULF LQWHQVLW\ VSDWLDO GLVWULEXWLRQ LV ORFDOL]HG
DQG �VXUSULVLQJO\� V\PPHWULF DURXQG WKH PLGGOH RI WKH VWDFN� DQG VHOI VLPLODU DQG
UHVHPEOLQJ WKH &DQWRU VHW VWUXFWXUH� 7KH UHDVRQ IRU WKH V\PPHWU\ LV EHOLHYHG WR EH
WKH DOPRVW SDOLQGURPLF QDWXUH RI WKH )LERQDFFL VHTXHQFH >'3��@� 7KLV VRPHZKDW RGG
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Testing the discrete scaling symmetry
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WKH DOPRVW SDOLQGURPLF QDWXUH RI WKH )LERQDFFL VHTXHQFH >'3��@� 7KLV VRPHZKDW RGG
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WKH FDOFXODWLRQ� +HUH WRR WKHUH LV D VWURQJ HQKDQFHPHQW RI WKH HOHFWULF ILHOG DPSOLWXGH
LQ WKH EDQG HGJH PRGHV � XS WR 60 WLPHV WKDW RI WKH LQFRPLQJ ILHOG�

)LJXUH ����� 7KH HOHFWULF ILHOG LQWHQVLW\ PDS IRU WKH )LERQDFFL FKDLQ S8� /HIW� IXOO
VSHFWUXP� 2WKHU SORWV� FORVH XS ]RRP RQ VRPH LVRODWHG PRGHV� 6SDWLDO ORFDOL]DWLRQ
DQG VSDWLDO VHOI�VLPLODULW\ DUH DSSDUHQW�
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A quasi-periodic dielectric chain

does not have a geometric fractal 
structure, but,

its spectrum has a fractal structure :

Spectral fractal dimension



Experimental study of a fractal energy spectrum 
!
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Number of letters of a sequence      is the Fibonacci 
number       so that   
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Cavity polaritons : 
between an optical cavity mode and confined excitons (quantum wells)

Massive photons



Eψ (x, y) =− !
2

2mph

Δ⊥ψ (x, y)

Cavity polaritons obey a d=2                     equationSchr!!odinger

Effective photon mass mph =
n2Ec

c2

n = effective refraction index,

Ec =
!c
n
kz = energy of the fundamental mode of the cavity

Δ⊥ ≡ ∂x
2+ ∂y

2



Effective photon mass mph =
n2Ec

c2

n = effective refraction index,

Ec =
!c
n
kz = energy of the fundamental mode of the cavity

Δ⊥ ≡ ∂x
2+ ∂y

2

Eigenmodes of the d=2 problem            numerics 

Eψ (x, y) =− !
2

2mph
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Cavity polaritons obey a d=2                     equationSchr!!odinger



Eigenmodes of the d=2 problem            numerics 

Well controlled d=1 effective model is preferable !

Eψ (x, y) =− !
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Δ⊥ψ (x, y)
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Effective photon mass mph =
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n = effective refraction index,

Ec =
!c
n
kz = energy of the fundamental mode of the cavity

Δ⊥ ≡ ∂x
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Cavity polaritons obey a d=2                     equationSchr!!odinger
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Effective 1D model 
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V (x) = χ τ −1n( )ub x − an( )
n
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V (x) = χ τ −1n( )ub x − an( )
n
∑

with

is the golden mean

Effective 1D model 

Shape of each letter
Characteristic 
function

τ = 5 +1
2 ≈1.62

χ(x)=
1, 0 < x < 2 −τ
0, 2 −τ < x <1

⎧
⎨
⎪

⎩⎪



Advantages of cavity polaritons :	
!
allow for a 
excitations in real and momentum spaces. 	

Visualisation/imaging of individual eigenmodes

of a quasi-1D cavity in the shape of a Fibonacci sequence.
Using nonresonant excitation in the low density regime, we
probe the modes both in real and reciprocal space. We
observe a quantitative agreement between experiments and
the calculated modes and density of states. In particular, we
evidence features of a fractal energy spectrum, namely gaps
densely distributed and an integrated density of states
reflecting the existence of a discrete scaling symmetry as
expressed by Eq. (2).
In our sample, cavity polaritons are confined within

narrow strips (wire cavities), whose width is modulated
quasiperiodically. These wires are fabricated by processing
a planar high quality factor (Q ∼ 72 000) microcavity
grown by molecular beam epitaxy. It consists in a λ=2
Ga0.05Al0.95As layer surrounded by two Ga0.8Al0.2As=
Ga0.05Al0.95As Bragg mirrors with 28 and 40 pairs in the
top/bottom mirrors, respectively. Twelve GaAs quantum
wells of width 7 nm are inserted in the structure resulting
in a 15 meV Rabi splitting. 200 μm long wires with the
lateral dimension modulated quasiperiodically are designed
using electron beam lithography and dry etching [Figs. 1(a)
and 1(b)]. The modulation consists in two wire sections
(“letters”) A and B of same length a but different widths wA
and wB respectively [Fig. 1(b)]. The modulation of the wire
width induces an effective 1D potential for the longitudinal
motion of polaritons, as discussed in the sequel. The letters
are arranged according to the Fibonacci sequence [4] using
the recursion,

Sj≥3 ¼ ½Sj−2Sj−1#; and S1 ¼ B; S2 ¼ A; (3)

where ½Sj−2Sj−1#means concatenation of two subsequences
Sj−2 and Sj−1. The number of letters (length) of a sequence
Sj is given by the Fibonacci number Fj, such that
Fjþ1 ¼ Fj þ Fj−1. The ratio Fjþ1=Fj tends to the golden
mean σ ¼ ð1þ

ffiffiffi
5

p
Þ=2≃ 1.62 in the limit j → ∞, while

the corresponding sequence S∞ becomes rigorously qua-
siperiodic and invariant, i.e., self-similar, under the iteration
transformation Eq. (3). Our sample corresponds to S13
counting 233 letters with a ¼ 0.8 μm, wA ¼ 3.5 μm and
wB ¼ 1.86 μm. To study the polariton modes in these

quasiperiodic wires, we perform low temperature (10 K)
microphotoluminescence experiments. Single wires are
excited nonresonantly using a cw monomode laser tuned
typically 100 meV above the polariton resonances. The
excitation spot extends over a 80 μm-long region along the
wire. The sample emission is collected with a 0.65
numerical aperture objective and focused on the entrance
slit (parallel to the wire) of a spectrometer coupled to a
CCD camera. Imaging of the sample surface (the Fourier
plane of the collection objective) allows for studying the
spectrally resolved polariton modes in real (reciprocal)
space. Excitation power is kept low enough to stay below
the condensation threshold and obtain a nearly homo-
geneous population of the lower energy polariton states.
Figure 2(a) displays the spatially and spectrally resolved

emission measured on a single modulated wire cavity for an
exciton-photon detuning around −8 meV (defined as the
energy difference between the cavity mode at normal
incidence and the exciton resonance). Several polariton
modes are imaged. They present complex patterns of bright
spots distributed all over the region of the wire under
investigation. To understand the nature of these modes and
properties of their spectral density, we have calculated the
polariton eigenstates in such quasiperiodic structures.
In ourmodel, whose details are given in the Supplemental

Material [25], we describe the confined photon modes
using a 2D scalar wave equation with vanishing boundary
conditions on the boundary of the wire, considered as an
axially symmetric strip where the longitudinal coordinate
x ∈ ½0; L# (L being the length of thewire), and the transverse
coordinate −wðxÞ=2≤y≤wðxÞ=2. Here, wðxÞ > 0 accounts
for the x-dependent width of the wire [Fig. 1(c)], i.e., a
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Fjþ1 ¼ Fj þ Fj−1. The ratio Fjþ1=Fj tends to the golden
mean σ ¼ ð1þ

ffiffiffi
5

p
Þ=2≃ 1.62 in the limit j → ∞, while
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space. Excitation power is kept low enough to stay below
the condensation threshold and obtain a nearly homo-
geneous population of the lower energy polariton states.
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energy difference between the cavity mode at normal
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modes are imaged. They present complex patterns of bright
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properties of their spectral density, we have calculated the
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conditions on the boundary of the wire, considered as an
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Calculating the integrated density of states (IDOS) 
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Integrated density of states (IDOS) 
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Integrated density of states (IDOS) 
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This result has a broader range of validity : Gap 
labeling theorem (Bellissard, 1982)



Labeling the gaps...

36

Integrated density of states (IDOS) 

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

[-1,2]
[4,-6]

[1,-1]

[-2,4]
[3,-4]

[0,1]

[-3,6]
[2,-2]

2nd/O

(Hgap)=p+qW
-1N

N

k 
)LJXUH ����� 1RUPDOL]HG ,'26 IRU WKH )LERQDFFL FKDLQ S10� ZLWK D GLHOHFWULF FRQWUDVW
RI (nhigh− nlow)/nlow = 15�� 7KH ORFDWLRQ RI 8 VHOHFWHG JDSV XVLQJ WKHLU WRSRORJLFDO
QXPEHUV [p, q] DUH LQGLFDWHG LQ DFFRUGDQFH WR �������

EDQG VWUXFWXUHV� 7KH DSSHDUDQFH RI VXFK QXPEHUV LQ WKH VSHFWUXP RI TXDVLSHULRGLF
VWUXFWXUHV VXFK DV WKH )LERQDFFL FKDLQ� PDUNV WKH TXDVLSHULRGLF VWUXFWXUH VSHFWUXP DV
WRSRORJLFDO� 7KH TXDVLSHULRGLF VWUXFWXUH LV WRSRORJLFDO ZLWK QR IXUWKHU PDQLSXODWLRQ
�VXFK DV H[WHUQDO ILHOGV� UHTXLUHG� DV LW RULJLQDWHV IURP D SXUHO\ VWUXFWXUDO SURSHUW\�
+RZHYHU� WKLV VWDWHPHQW VWLOO ODFNV DQ XQGHUVWDQGLQJ UHJDUGLQJ WKH XQGHUO\LQJ V\P�
PHWU\� UHODWLQJ &KHUQ QXPEHUV LQ JDS ODEHOV WR RWKHU NQRZQ WRSRORJLFDO SUREOHPV�
7KH SXUSRVH RI FKDSWHU � LV WR DGGUHVV WKLV SRLQW DQG WR SURSRVH QHZ H[SUHVVLRQV
DQG SRVVLEOH PHDVXUHPHQWV RI &KHUQ QXPEHUV LQ WKHLU PRVW IXQGDPHQWDO GHILQLWLRQ�
D ZLQGLQJ RI D SKDVH GULYHQ E\ VRPH JDXJH ILHOG�

7KH JDS ODEHOLQJ WKHRUHP LV GHILQHG IRU DQ\ VXEVWLWXWLRQ TXDVLFU\VWDO� DOWKRXJK
WKH DPRXQW RI LQWHJHUV UHTXLUHG WR ODEHO HDFK VSHFWUDO JDS LV XVXDOO\ ODUJHU WKDQ 2�

��� 6SHFWUDO JDSV DQG %UDJJ SHDNV

+HUH ZH XVH WKH RSSRVLWH DUJXPHQW WR WKDW JLYHQ LQ ���� 7KH IDFW WKDW WKH TXDVLSHUL�
RGLF FKDLQ VFDWWHULQJ VSHFWUXP LV WRSRORJLFDO �WKURXJK WKH LQWHJHU ODEHOV RI WKH VSHF�
WUDO JDSV� H[WHQGV WR LWV UHFLSURFDO VSDFH SURSHUWLHV� GLVFXVVHG LQ ���� WKURXJK WKH
JHQHUDOL]HG %ORFK WKHRUHP� 7KH VSDWLDO IUHTXHQF\ RI WKH LQILQLWH QXPEHU RI %UDJJ
SHDNV RI WKH LQILQLWH TXDVLSHULRGLF FKDLQ LV GLUHFWO\ UHODWHG WR WKH LQILQLWH QXPEHU RI
VSHFWUDO JDSV LQ WKH VFDWWHULQJ �RU WUDQVPLVVLRQ� VSHFWUXP� )LJXUH ���� VKRZV WKLV
HTXLYDOHQFH KROGV IRU WKH )LERQDFFL FKDLQ S10 H[DPSOH�

��©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

N εgap( ) = p + qτ −1

p,q∈!

τ = 5 +1
2 ≈1.62This result has a broader range of validity : Gap 

labeling theorem (Bellissard, 1982)

Topological invariants
independent of potential strength, 
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Log-periodic oscillations : fingerprint of the 
fractal spectrum



Topological content of the gap labelling theorem 
(GLT) - winding (Chern) numbers 

!

Part 3



Chern numbers and gap labeling. 	
!
• Is there a relation with other occurrences of Chern 

numbers (e.g. quantum Hall effect, topological 
insulators, graphene, Weyl semi-metals…) ? 	

!
• Not so obvious : in the previous cases, topology and 

associated Berry curvature result from the existence of 
underlying magnetic fields, Aharonov-Bohm fluxes, 
Dirac structure…	

!
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Quasi-periodic structure (Fibonacci quasi-crystal)

Spectrum of the cavity modes
Quasicrystals spectra

▪ We obtain the following spectral properties

Transmission 

Density of 
states

Transmission spectrum

Density of modes
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Topological quasicrystals spectra
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Topological quasicrystals spectra
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Topological quasicrystals spectra
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Objective: describe the gap labeling Chern numbers as 

the winding of a phase with respect to some gauge field



Example : Free electrons in a 2D crystal + magnetic field 

Outline
General features ----- square lattice

Half-flux quantum per unit cell ------- Dirac spectrum

Honeycomb lattice,  graphene, manipulation of Dirac points

Finite systems, edge states

Hofstadter in other contexts
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Anatomy of the Hofstadter butterfly

M. Azbel (1964)

G.H. Wannier

Y. Avron, B. Simon

J. Bellissard, R. Rammal

D. Thouless, Q. Niu

TKNN : Thouless, Kohmoto, Nightingale, den Nijs

Y. Hatsugai

Osadchy, Avron, (2001)

U1U2 = e
2iπαU2U1 α = φ

φ0
Anatomy of the Hofstadter butterfly

Energy levels and wave functions of Bloch electrons 
in rational and irrational magnetic fields, 
Douglas Hofstadter, Phys. Rev. B 14 (1976) 2239
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0I  
h
e

Mα = φ
φ0

Non trivial group of magnetic translations: 
U1 = e

iKx

U2 = e
iKy

⎧
⎨
⎪

⎩⎪

φ0 =
h
e

(Harper problem)

Hofstadter butterfly



Topological features manifest through specific 
properties of edge (gap) modes in the presence of 

boundaries

45

Under certain (boundary) conditions, instead of observing 

we observe



Topological features manifest through the 
behaviour of gap modes

46

Under certain (boundary) conditions, instead of observing 

we observe Additional gap modes



47

Outline

Boundary conditions 
finite size effect

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Palindromicity cycle

Topological edge-states (2D) 1D Fibonacci cavity

New 
controllable 

modes
analogous to	

topological insulators

Gap modes cross over the gaps while varying 	
a parameter     yet to be determined φ



Building quasi-periodic chains - 	

Winding (Chern) numbers



• Characteristic function	
!

• Cut & Project 

Equivalent ways to build quasi-periodic chains



!

 Characteristic function  

χn = sign cos 2πnτ −1+φ( )−cos π τ −1( )⎡⎣ ⎤⎦

▪ The C&P method defines 
crystals and quasicrystals.
▪ Rational slope
▪ Irrational slopes

▪ A famous C&P quasicrystal 
example –The Fibonacci chain.

▪ The Fibonacci chain can 
generated using:
▪ C&P method
▪ Characteristic function

Leonardo Pisano
(Fibonacci)

ABB A A BB AAB AA A

F�1 F�3

F�2 F�4

F�5

F�6

F�7 F�9 F�11 F�13

F�8 F�10 F�12

� � � �> @

]......[
1
1

cos2cos

21

11

NnN

n

F

nsign

FFFF

SWIWSF

 
 �
 �

�� ��

B
A

Cut and Project quasicrystals and the Fibonacci chain
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The angle     is a (legitimate) degree of freedom. φ

is known as a phasonφ

Meaning ?
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Cut and Project quasicrystals and the Fibonacci chain

⇔FN φ( ) = χ1 χ2…χn…χN[ ]

τ = 5 +1
2 ≈1.62
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Cut and Project quasicrystals and the Fibonacci chain

⇔FN φ( ) = χ1 χ2…χn…χN[ ]

τ = 5 +1
2 ≈1.62

It is o
ur gauge field candidate ! 



Cut & Project method 

Very active branch in maths of tiling, dynamical systems	

E. Pelantová et al. / Quasicrystals 7

Figure 3. Voronoi tiling of the cut-and-project set shown in Figure 2.

Figure 4. The tiles appearing in the Voronoi tiling of Figure 3.

V2 : y = ηx, ε ̸= η. If we choose vectors x⃗1 = 1
ε−η (1, ε) and x⃗2 = 1

η−ε(1, η) then
for any point of the lattice Z2 we have

(p, q) = (q − pη)x⃗1︸ ︷︷ ︸
π1(p,q)

+ (q − pε)x⃗2︸ ︷︷ ︸
π2(p,q)

.

Let us recall that the construction by cut and projection requires that the projection π1

restricted to the lattice L is one-to-one, and that the set π2(L) is dense in V2.
If η and ε are irrational numbers, then these conditions are satisfied. The projection

of the lattice L = Z2 on the straight lines V1 and V2 are written using additive abelian
groups

Z[η] := {a + bη | a, b ∈ Z} ,

Z[ε] := {a + bε | a, b ∈ Z} .

These groups are obviously isomorphic; the isomorphism ⋆ : Z[η] → Z[ε] is given by
the prescription

x = a + bη %→ x⋆ = a + bε .

The cut-and-project scheme can then be illustrated by the following diagram.

Duneau & Katz	
Moody, Meyer	

Pinsner, Voiculescu	
Mendes-France, Allouche	

Bombieri, Taylor,	
Kellendonk, Grimm,	

Queffelec, Bellissard, ……	

Generate both periodic and quasi-periodic (quasicrystals) structures.	
 	
             A brief tutorial for practical implementation.



▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

y = bx+const

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

ABB A B AAB AA A

Cut and Project quasicrystals and the Fibonacci chain

Start from a 2D lattice L = !2



▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

y = bx+const

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

ABB A B AAB AA A

Cut and Project quasicrystals and the Fibonacci chain

Generate only 2 	
possible distances

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

ABB A B AAB AA A

Cut and Project quasicrystals and the Fibonacci chain

Start from a 2D lattice L = !2



For a rational slope : periodic superlattice

▪ The C&P method defines 
crystals and quasicrystals.
▪ Rational slope

constxy � 3
2

B AA B AA B AA

Periodic 
superlattice

Cut and Project quasicrystals and the Fibonacci chain

For an irrational slope : quasi-periodic structure
▪ The C&P method defines 

crystals and quasicrystals.
▪ Rational slope
▪ Irrational slopes

▪ A famous C&P quasicrystal 
example –The Fibonacci chain.

Leonardo Pisano
(Fibonacci)

)51( ; 2
11 � � � WW constxy

ABB A A BB AAB A AA

Cut and Project quasicrystals and the Fibonacci chain

▪ The C&P method defines 
crystals and quasicrystals.
▪ Rational slope
▪ Irrational slopes

▪ A famous C&P quasicrystal 
example –The Fibonacci chain.

Leonardo Pisano
(Fibonacci)

)51( ; 2
11 � � � WW constxy

ABB A A BB AAB A AA

Cut and Project quasicrystals and the Fibonacci chain

y = τ −1x+const

τ =
1+ 5( )

2
golden mean
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Characteristic function

χn = sign cos 2πnτ −1+φ( )−cos π τ −1( )⎡⎣ ⎤⎦

φ

φ∞ = 3πσ = 3π τ −1

Define instead

C&P method

χn = sign cos 2πnτ −1+φ∞ + Δφ( )− cos πτ −1( )⎡⎣ ⎤⎦

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

y = τ −1x+const

τ =
1+ 5( )

2
golden mean

Characteristic function C&P method

(Usually ignored)

� � � �> @11 cos2cos �� �� SWIWSF nsignn

:I The modulation phase

Cut and Project quasicrystals and the Fibonacci chain

In finite structures: 13 � SWIFibo

� � � �> @11 cos2cos �� �'�� SWIIWSF Fibon nsign
S
IW

2
1 '
� � xy

Each I yields a valid 
Fibonacci segmentWe understand the meaning of  Δφ

Δφ

    is an innocuous and thus 	
     ignored modulation phase.	
!
For an infinite Fibonacci chain : 

Is it possible to give a meaning 	
to       using the C&P method ?Δφ
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Consider the infinite chain  W∞

Changing    is equivalent to moving along φ W∞

The modulation phase I
Characteristic function

� � � �> @
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FN φ( ) = χ1 χ2…χn…χN[ ]
There are finitely many different finite segments   
!
!
which are unitary related.  The modulation phase I

Sf

N=89
I =0
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FN φ( ) = χ1 χ2…χn…χN[ ]
There are finitely many different finite segments   
!
!
which are unitary related.  The modulation phase I

Sf

N=89
I =0

The modulation phase I
Sf

N=89
I =0.1
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The modulation phase I
Sf

N=89
I =0

The modulation phase I
Sf

N=89
I =0.1

The modulation phase I
Sf

N=89
I =0.15
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The modulation phase I
Sf

N=89
I =0

The modulation phase I
Sf

N=89
I =0.1

The modulation phase I
Sf

N=89
I =0.15The modulation phase I

Sf

N=89
I =0.2

The modulation phase I
Sf

N=89
I =0.2



χn = sign cos 2πnτ −1+φ( )−cos π τ −1( )⎡⎣ ⎤⎦φ
π

Varying     over a period φ 2π



χn = sign cos 2πnτ −1+φ( )−cos π τ −1( )⎡⎣ ⎤⎦

Varying     over a period φ 2π

φ
π

Scanning        generates local structural changes. φ

A structural degree of freedom 



A torus

UHFLSURFDO ODWWLFH ZLWK UHVSHFW WR WKH (kx, kφ) D[HV LV VWLOO GHVFULEHG E\ WDQϕ� 7R EXLOG
WKH WRUXV 4%=N LQ WKH (kx, kφ) UHFLSURFDO VSDFH� ZH IROORZ WKH VDPH JXLGHOLQHV DV
WKH VWUXFWXUDO FR�QXPEHULQJ DSSURDFK �VHH ����� :H VHW DQ RULJLQ (kx, kφ) = (0, 0)

DW VRPH SRLQW DQG ODEHO WKHP ZLWK WKH ODWWLFH FRRUGLQDWHV >m = 0�n = 0@� 7KH
QH[W VWHS LV WR LGHQWLI\ WKH WKUHH RWKHU FRUQHUV RI WKH 4%=N � XVLQJ ������� WR EH
>m = ql�n = −pl@ ZKHUH (kx, kφ) = (ql FRVϕ + pl VLQϕ, 0)�>m = pl�n = ql@ ZKHUH
(kx, kφ) = (0, pl VLQϕ+ql FRVϕ)� DQG >m = ql+pl�n = ql−pl@ ZKHUH (kx, kφ) = (pl VLQϕ+
ql FRVϕ, pl VLQϕ + ql FRVϕ)� 7KHVH 4 SRLQWV GHILQH WKH WRUXV 4%=N DV UHSUHVHQWHG RQ
)LJ������ ,W H[DFWO\ HQFORVHV N SRLQWV�

(a) (b)
I

)LJXUH ����� 6WUXFWXUDO SURSHUWLHV RI WKH 2D VHW
{−→
F N (φ)

}
IRU N = 89� �D� 7KH

VWUXFWXUDO x − φ PDS FUHDWHG WKURXJK WKH &XW 	 3URMHFW PHWKRG IRUPV D WLOWHG 2D
FU\VWDO ZLWK D 2D XQLW FHOO LQGLFDWHG E\ UHG DQG EOXH VTXDUHV� 7KH IDFW WKDW pl : ql =
5 : 8 LV HDV\ WR GHGXFH� 7KLV PDS LV D WRUXV REWDLQHG E\ ZUDSSLQJ WKH PDS DORQJ
ERWK D[HV� VR WKDW WKH IRXU EOXH VTXDUHV FRLQFLGH� �E� $Q LOOXVWUDWLRQ RI WKH UHVXOWLQJ
WRUXV�

:H QRZ GLVFXVV WKH QRUPDOL]DWLRQ RI WKH UHFLSURFDO VSDFH WRUXV FRRUGLQDWHV� 7KH
kx FRRUGLQDWHV PD\ EH QRUPDOL]HG E\ (pl VLQϕ+ ql FRVϕ)−1 = 1/

√
p2l + q2l VR WKDW

kx ∈ [0, 1]� $IWHU WKLV QRUPDOL]DWLRQ� WKH N SRLQWV DW ZKLFK F (kx, kφ) ̸= 0 FRUUHVSRQG
WR DOO N SRVVLEOH �DSSUR[LPDWH� %UDJJ SHDNV YDOXHV kq� $V IRU QRUPDOL]DWLRQ DORQJ
WKH φ�D[LV� LW LV REWDLQHG IURP WKH UHFLSURFDO ODWWLFH SRLQW ZLWK kφ = δkφ� WKH VPDOOHVW
QRQ]HUR YDOXH RI kφ� 7KH �WRURLGDO� YHFWRU EHWZHHQ WKH RULJLQ DQG WKLV ODWWLFH SRLQW�
(δkx, δkφ)� LV LQVWUXPHQWDO WR ILQG DOO SRLQWV ZLWKLQ WKH 4%=N WRUXV DFFRUGLQJ WR WKH
FR�QXPEHULQJ DOJRULWKP �VHH ����� 7KH N SRLQWV DUH IRXQG WKURXJK WKH UHFXUUHQW
YHFWRULDO DGGLWLRQ �DQG ZLQGLQJ� RI WKLV YHFWRU VLPLODU WR WKH FR�QXPEHULQJ JHQHUDWRU
�VHH )LJ������� 7KLV VLQJOH IXQGDPHQWDO ODWWLFH SRLQW LV REWDLQHG XVLQJ RQH RI WKH WZR
WKH SUHGHFHVVRU DSSUR[LPDQWV RI WKH VORSH WDQϕ = pl/ql LQ ������ GHSHQGLQJ RQ WKH
SDULW\ RI l� 7KLV SRLQW KDV EHHQ SURYHQ LQ ��� XVLQJ WKH 9DMGD LGHQWLW\ >9DM��@� ,W LV
JLYHQ E\ WKH SRLQW [m = ql−1, n = −pl−1] IRU HYHQ l� RU WKH SRLQW [m = ql−2, n = −pl−2]

���

FN φ( ) = χ1 χ2…χn…χN[ ]
How to generate the      unitary equivalents ?   
!
!

FN



Are there spectral consequences 	
of these structural properties ?

No !

Almost No…



Almost No…

We have already calculated and measure the spectrum in details

Are there spectral consequences 	
of these structural properties ?



Integrated Density of States-Gap Labeling

N ω gap( ) = p + qτ −1 within a          gapp,q[ ]

              are topological invariants (Chern numbers). 
Independent of the potential strength, inhomogeneity, ...
p,q( ) ∈!

τ =
1+ 5( )

2
golden mean



Integrated Density of States-Gap Labeling

N ω gap( ) = p + qτ −1 within a          gapp,q[ ]

              are topological invariants (Chern numbers). 
Independent of the potential strength, inhomogeneity, ...
p,q( ) ∈!

τ =
1+ 5( )

2
golden mean
Independent of the phase  Δφ



How do we obtain the gap labeling theorem ?

Using the substitution matrix approach

Spectral characteristics are independent of the phase  Δφ

Quasicrystals spectra

▪ We obtain the following spectral properties

Transmission 

Density of 
states

Transmission spectrum

Density of modes



How do we obtain the gap labeling theorem ?
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Spectral characteristics are independent of the phase  Δφ

Quasicrystals spectra
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How do we obtain the gap labeling theorem ?

Using the substitution matrix approach

Spectral characteristics are independent of the phase  Δφ

Quasicrystals spectra

▪ We obtain the following spectral properties

Transmission 

Density of 
states

Transmission spectrum

Density of modes
Independent of the phase  Δφ

To see that : scattering formalism



Scattering formalism

offers a general and elegant framework to study spectral properties 	
and transport (Landauer approach).
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1.4. Scattering matrix formalism 5

where

⌅i =
ni sin �i+1
ni+1 sin �i

cos �i + cos �i+1

µi =
ni sin �i+1
ni+1 sin �i

(1.15)

and �i = k0nili.

1.4. Scattering matrix formalism

Propagation through a one-dimensional structure can be described by a scattering
matrix, or S-matrix, S(k), relating incoming and outgoing amplitudes of propagat-
ing plane waves of wave vector k = ⌃/c (see Figure 1.1.) . Excellent pedagogical
discussions, particularly for one-dimensional systems, can be found in.13–15

Figure 1.1. Schematic description of the scattering matrix setup, showing the incoming (iR, iL)
and outgoing (oR, oL) amplitudes on the left and right of the scattering region.

With obvious notations, the scattering S matrix is defined as:
�

oL
oR

⇥
=

�
r t
t r⌅

⇥�
iL
iR

⇥
⇤ S

�
iL
iR

⇥
. (1.16)

We consider the system to be invariant under time reversal, so that the matrix S is
symmetric. Furthermore, it is unitary (S�1 = S†) as a consequence of conservation
of probability (for the Schrödinger equation), or of the intensity of the field (for the
Helmholtz equation). This leads to the set of relations:

|r|2 + |t|2 = 1 (1.17)
|r⌅|2 + |t|2 = 1 (1.18)
tr⇥ + r⌅t⇥ = 0 . (1.19)

These equations imply that det S = rr⌅ � t2 = �t/t⇥. Since S is unitary, it can be
diagonalized by a unitary transformation into the diagonal form:

�
ei⇤1 0
0 ei⇤2

⇥
. (1.20)

Defining the total phase shift, ⇥(k) ⇤ (⇤1(k) + ⇤2(k))/2, we then have:

det S(k) = e2i⇥(k) = � t
t⇥

. (1.21)

A (quantum,wave) system with a potential (defined w.r.t. a free part ) 	
is enclosed in a “black box”. We probe it using scattering waves. 

With obvious notations, the 
(unitary) scattering matrix is :
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It can be diagonalised as 
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Helmholtz equation). This leads to the set of relations:

|r|2 + |t|2 = 1 (1.17)
|r⌅|2 + |t|2 = 1 (1.18)
tr⇥ + r⌅t⇥ = 0 . (1.19)

These equations imply that det S = rr⌅ � t2 = �t/t⇥. Since S is unitary, it can be
diagonalized by a unitary transformation into the diagonal form:

�
ei⇤1 0
0 ei⇤2

⇥
. (1.20)

Defining the total phase shift, ⇥(k) ⇤ (⇤1(k) + ⇤2(k))/2, we then have:

det S(k) = e2i⇥(k) = � t
t⇥

. (1.21)
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of the S-matrix defined in (1.34) can be related to the resolvents defined in the
presence (G) and in the absence (G(0)) of the scattering potential,

ln detS(z) = ln det(z � H)� ln det(z � H0) . (1.35)

Thus,

Im Tr
⇤
G(E + i0+)� G0(E + i0+)

⌅
= ⇧

d
dE

⇧
i

2⇧
ln detS(E)

⌃
. (1.36)

Recalling that the density of states is given by ⇧⌃(E) = �Im TrG(E + i0+) leads
again to (1.22). This relation is a particular case of a more general set of relations
known as the Krein-Birman-Schwinger relations which can be rewritten as,

Tr [G(z)� G0(z)] =
⌥ +⇤

�⇤

dE
(E � z)2

i
2⇧

ln detS(E) (1.37)

or more generally,

Tr [⇥(H)� ⇥(H0)] =
⌥ +⇤

�⇤
dE

d⇥
dE

i
2⇧

ln detS(E) (1.38)

where ⇥(H) is some regular function of the Hamiltonian H. When applied to
⇥(x) = e�tx, (1.38) gives the well known relations between the heat kernel P(t) ⇤
Tr

�
e�tH⇥

and the S-matrix:

P(t)� P0(t) =
⌥ +⇤

�⇤
dEe�tE [⌃(E)� ⌃0(E)] (1.39)

and between the zeta function ⌥H(s) = TrH�s and the total phase shift:

⌥H(s)� ⌥H0(s) = �
⌥ +⇤

�⇤
dEE�s d⇥(E)

dE
(1.40)

We now introduce some terminologies used in different fields to describe re-
lated quantities. From (1.34), we have that

detS(z) = det
z � H
z � H0

(1.41)

We can rewrite (1.35) in the form ln det S(z) = Tr ln(z � H)� Tr ln(z � H0). Then,
using the definition of the counting function N (E), we have

i⇥(z) =
⌥

dN (E) ln(z � E)�
⌥

dN0(E) ln(z � E) (1.42)

The quantity i⇥(z) = L(z) is sometimes called the Lyapunov function.6 Taking
z = E ± i� with � ⌅ 0+, we obtain

⇥(E) = ⇧ (N (E)�N0(E)) (1.43)

which states that the total phase shift measures the change of counting func-
tion up to energy E in the presence of the scattering potential. The quantity
�(z) = e2L(z) = det(z � H)/(z � H0) is often called the Fredholm determinant
or the Böttcher function in the mathematics literature.17

There is an interesting relation established by Herbert and Jones and by Thou-
less,21 which identifies the real part of the Lyapunov function

⌅(E) ⇤ ReL(E + i⇤) =
⌥

dN(E⇧) ln |E � E⇧| (1.44)

as the spatial decay (or localization) length of the corresponding energy state.

where            is a regular function of the Hamiltonian.
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or the Böttcher function in the mathematics literature.17

There is an interesting relation established by Herbert and Jones and by Thou-
less,21 which identifies the real part of the Lyapunov function

⌅(E) ⇤ ReL(E + i⇤) =
⌥

dN(E⇧) ln |E � E⇧| (1.44)

as the spatial decay (or localization) length of the corresponding energy state.

November 2, 2012 0:32 PSP Review Volume - 9.75in x 6.5in Panbook-GD-10-22-2012

6

From the definition of the phase of the transmission amplitude, t ⇥ |t|ei �, and from
(1.21), we obtain the relation ⇥(k) = �(k) + ⌅/2. A simple and elegant relation
exists between the phase shift ⇥(k) and the change of density of states ⇧(k):

⇧(k)� ⇧0(k) =
1

2⌅
Im

⌥

⌥k
ln det S(k) (1.22)

where ⇧0(k) is the density of states for the free system, namely with zero potential
for the Schrödinger equation in (1.3), or ⇤(x) = ⇤0 for the Helmholtz equation (1.2).

The source of scattering in either Schrödinger or Helmholtz equations is the
potential V(x) (or the varying refractive index n(x)). Should they vanish, the S-
matrix reduces to the identity. Now assume that they decrease fast enough so that
we can enclose the scattering system (the “black box” in Fig. 1.1.) inside a region
of size L, much larger than the support of the scattering potential. Apply periodic
boundary conditions, ⌃(0) = ⌃(L) and ⌃⌅(0) = ⌃⌅(L), at the boundary of the
large box, noting that for large enough L, the physics is independent of the precise
boundary conditions. For large enough L,

⌃(0) = ⌃(L) ⇤ iL + oL = oReikL + iRe�ikL

⌃⌅(0) = ⌃⌅(L) ⇤ ik(iL � oL) = ik(oReikL � iRe�ikL) . (1.23)

These algebraic relations may be written as a spectral condition:

det
�

1 � eikL
�

0 1
1 0

⇥
S(k)

⇥
= 0 . (1.24)

Solving for S, leads to the following relation between the total phase shift defined
in (1.21) and the possible wave vectors:

kn(L) =
⌅n
L

� ⇥(kn)
L

(1.25)

Noting that k(0)n (L) = ⌅n/2L are the eigenmodes in the absence of scattering po-
tential, namely for ⇥(k) = 0, we can rewrite (1.25) for two consecutive values of n
under the form,

(kn+1 � kn)

�
L +

d⇥(k)
dk

⇥
= ⌅ (1.26)

Defining the density of states, or density of modes (DOM) as ⇧(k) = 1/(kn+1 � kn)
leads to (1.22):

⇧(k)� ⇧0(k) =
1
⌅

d⇥(k)
dk

(1.27)

Recalling the definition in (1.9) of the counting function, N (k) =
⇤ k ⇧(k⌅)dk⌅, and

its relation to the DOM in (1.10), we obtain:

⇥(k) = ⌅�N(k) = ⌅ (N(k)� N0(k)) (1.28)

which relates the total phase shift of the S-matrix to a spectral quantity. Both (1.22)
and (1.28) are rather remarkable (and well-known) results since they express the
fact that a measurement of the scattering data from a black box allows one to re-
trieve its spectral information provided it is coupled to the external environment.
Some further details are given in the next section.
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where

⌅i =
ni sin �i+1
ni+1 sin �i

cos �i + cos �i+1

µi =
ni sin �i+1
ni+1 sin �i

(1.15)

and �i = k0nili.

1.4. Scattering matrix formalism

Propagation through a one-dimensional structure can be described by a scattering
matrix, or S-matrix, S(k), relating incoming and outgoing amplitudes of propagat-
ing plane waves of wave vector k = ⌃/c (see Figure 1.1.) . Excellent pedagogical
discussions, particularly for one-dimensional systems, can be found in.13–15

Figure 1.1. Schematic description of the scattering matrix setup, showing the incoming (iR, iL)
and outgoing (oR, oL) amplitudes on the left and right of the scattering region.

With obvious notations, the scattering S matrix is defined as:
�

oL
oR

⇥
=

�
r t
t r⌅

⇥�
iL
iR

⇥
⇤ S

�
iL
iR

⇥
. (1.16)

We consider the system to be invariant under time reversal, so that the matrix S is
symmetric. Furthermore, it is unitary (S�1 = S†) as a consequence of conservation
of probability (for the Schrödinger equation), or of the intensity of the field (for the
Helmholtz equation). This leads to the set of relations:

|r|2 + |t|2 = 1 (1.17)
|r⌅|2 + |t|2 = 1 (1.18)
tr⇥ + r⌅t⇥ = 0 . (1.19)

These equations imply that det S = rr⌅ � t2 = �t/t⇥. Since S is unitary, it can be
diagonalized by a unitary transformation into the diagonal form:

�
ei⇤1 0
0 ei⇤2

⇥
. (1.20)

Defining the total phase shift, ⇥(k) ⇤ (⇤1(k) + ⇤2(k))/2, we then have:

det S(k) = e2i⇥(k) = � t
t⇥

. (1.21)since

G. Dunne, E. Levy, E.A.,”Optics of Aperiodic Structures: Fundamentals and Device Applications”,  
L. dal Negro ed., Pan Stanford Publishing, (2013)	
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of the S-matrix defined in (1.34) can be related to the resolvents defined in the
presence (G) and in the absence (G(0)) of the scattering potential,

ln detS(z) = ln det(z � H)� ln det(z � H0) . (1.35)

Thus,

Im Tr
⇤
G(E + i0+)� G0(E + i0+)

⌅
= ⇧

d
dE

⇧
i

2⇧
ln detS(E)

⌃
. (1.36)

Recalling that the density of states is given by ⇧⌃(E) = �Im TrG(E + i0+) leads
again to (1.22). This relation is a particular case of a more general set of relations
known as the Krein-Birman-Schwinger relations which can be rewritten as,

Tr [G(z)� G0(z)] =
⌥ +⇤

�⇤

dE
(E � z)2

i
2⇧

ln detS(E) (1.37)

or more generally,

Tr [⇥(H)� ⇥(H0)] =
⌥ +⇤

�⇤
dE

d⇥
dE

i
2⇧

ln detS(E) (1.38)

where ⇥(H) is some regular function of the Hamiltonian H. When applied to
⇥(x) = e�tx, (1.38) gives the well known relations between the heat kernel P(t) ⇤
Tr

�
e�tH⇥

and the S-matrix:

P(t)� P0(t) =
⌥ +⇤

�⇤
dEe�tE [⌃(E)� ⌃0(E)] (1.39)

and between the zeta function ⌥H(s) = TrH�s and the total phase shift:

⌥H(s)� ⌥H0(s) = �
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dEE�s d⇥(E)

dE
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We now introduce some terminologies used in different fields to describe re-
lated quantities. From (1.34), we have that

detS(z) = det
z � H
z � H0

(1.41)

We can rewrite (1.35) in the form ln det S(z) = Tr ln(z � H)� Tr ln(z � H0). Then,
using the definition of the counting function N (E), we have
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There is an interesting relation established by Herbert and Jones and by Thou-
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detS(z) = det
z � H
z � H0

(1.41)

We can rewrite (1.35) in the form ln det S(z) = Tr ln(z � H) � Tr ln(z � H0). Then,
using the definition of the counting function N (E), we have

i⇥(z) =
⌥

dN (E) ln(z � E) �
⌥

dN0(E) ln(z � E) (1.42)

The quantity i⇥(z) = L(z) is sometimes called the Lyapunov function.6 Taking
z = E ± i� with � ⌅ 0+, we obtain

⇥(E) = ⇧ (N (E) � N0(E)) (1.43)

which states that the total phase shift measures the change of counting func-
tion up to energy E in the presence of the scattering potential. The quantity
�(z) = e2L(z) = det(z � H)/(z � H0) is often called the Fredholm determinant
or the Böttcher function in the mathematics literature.17

There is an interesting relation established by Herbert and Jones and by Thou-
less,21 which identifies the real part of the Lyapunov function

⌅(E) ⇤ ReL(E + i⇤) =
⌥

dN(E⇧) ln |E � E⇧| (1.44)

as the spatial decay (or localization) length of the corresponding energy state.
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From the definition of the phase of the transmission amplitude, t ⇥ |t|ei �, and from
(1.21), we obtain the relation ⇥(k) = �(k) + ⌅/2. A simple and elegant relation
exists between the phase shift ⇥(k) and the change of density of states ⇧(k):

⇧(k)� ⇧0(k) =
1

2⌅
Im

⌥

⌥k
ln det S(k) (1.22)

where ⇧0(k) is the density of states for the free system, namely with zero potential
for the Schrödinger equation in (1.3), or ⇤(x) = ⇤0 for the Helmholtz equation (1.2).

The source of scattering in either Schrödinger or Helmholtz equations is the
potential V(x) (or the varying refractive index n(x)). Should they vanish, the S-
matrix reduces to the identity. Now assume that they decrease fast enough so that
we can enclose the scattering system (the “black box” in Fig. 1.1.) inside a region
of size L, much larger than the support of the scattering potential. Apply periodic
boundary conditions, ⌃(0) = ⌃(L) and ⌃⌅(0) = ⌃⌅(L), at the boundary of the
large box, noting that for large enough L, the physics is independent of the precise
boundary conditions. For large enough L,

⌃(0) = ⌃(L) ⇤ iL + oL = oReikL + iRe�ikL

⌃⌅(0) = ⌃⌅(L) ⇤ ik(iL � oL) = ik(oReikL � iRe�ikL) . (1.23)

These algebraic relations may be written as a spectral condition:

det
�

1 � eikL
�

0 1
1 0

⇥
S(k)

⇥
= 0 . (1.24)

Solving for S, leads to the following relation between the total phase shift defined
in (1.21) and the possible wave vectors:

kn(L) =
⌅n
L

� ⇥(kn)
L

(1.25)

Noting that k(0)n (L) = ⌅n/2L are the eigenmodes in the absence of scattering po-
tential, namely for ⇥(k) = 0, we can rewrite (1.25) for two consecutive values of n
under the form,

(kn+1 � kn)

�
L +

d⇥(k)
dk

⇥
= ⌅ (1.26)

Defining the density of states, or density of modes (DOM) as ⇧(k) = 1/(kn+1 � kn)
leads to (1.22):

⇧(k)� ⇧0(k) =
1
⌅

d⇥(k)
dk

(1.27)

Recalling the definition in (1.9) of the counting function, N (k) =
⇤ k ⇧(k⌅)dk⌅, and

its relation to the DOM in (1.10), we obtain:

⇥(k) = ⌅�N(k) = ⌅ (N(k)� N0(k)) (1.28)

which relates the total phase shift of the S-matrix to a spectral quantity. Both (1.22)
and (1.28) are rather remarkable (and well-known) results since they express the
fact that a measurement of the scattering data from a black box allows one to re-
trieve its spectral information provided it is coupled to the external environment.
Some further details are given in the next section.
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where

⌅i =
ni sin �i+1
ni+1 sin �i

cos �i + cos �i+1

µi =
ni sin �i+1
ni+1 sin �i

(1.15)

and �i = k0nili.

1.4. Scattering matrix formalism

Propagation through a one-dimensional structure can be described by a scattering
matrix, or S-matrix, S(k), relating incoming and outgoing amplitudes of propagat-
ing plane waves of wave vector k = ⌃/c (see Figure 1.1.) . Excellent pedagogical
discussions, particularly for one-dimensional systems, can be found in.13–15

Figure 1.1. Schematic description of the scattering matrix setup, showing the incoming (iR, iL)
and outgoing (oR, oL) amplitudes on the left and right of the scattering region.

With obvious notations, the scattering S matrix is defined as:
�

oL
oR

⇥
=

�
r t
t r⌅

⇥�
iL
iR

⇥
⇤ S

�
iL
iR

⇥
. (1.16)

We consider the system to be invariant under time reversal, so that the matrix S is
symmetric. Furthermore, it is unitary (S�1 = S†) as a consequence of conservation
of probability (for the Schrödinger equation), or of the intensity of the field (for the
Helmholtz equation). This leads to the set of relations:

|r|2 + |t|2 = 1 (1.17)
|r⌅|2 + |t|2 = 1 (1.18)
tr⇥ + r⌅t⇥ = 0 . (1.19)

These equations imply that det S = rr⌅ � t2 = �t/t⇥. Since S is unitary, it can be
diagonalized by a unitary transformation into the diagonal form:

�
ei⇤1 0
0 ei⇤2

⇥
. (1.20)

Defining the total phase shift, ⇥(k) ⇤ (⇤1(k) + ⇤2(k))/2, we then have:

det S(k) = e2i⇥(k) = � t
t⇥

. (1.21)since

G. Dunne, E. Levy, E.A.,”Optics of Aperiodic Structures: Fundamentals and Device Applications”,  
L. dal Negro ed., Pan Stanford Publishing, (2013)	
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These equations imply that det S = rr⌅ � t2 = �t/t⇥. Since S is unitary, it can be
diagonalized by a unitary transformation into the diagonal form:
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Defining the total phase shift, ⇥(k) ⇤ (⇤1(k) + ⇤2(k))/2, we then have:

det S(k) = e2i⇥(k) = � t
t⇥
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Fibonacci chain embedded 
between free spaces:        
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Fibonacci chain embedded between free spaces:        

δ k( ) = θt (k)+ π
2 is independent of the modulation phase Δφ
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From the definition of the phase of the transmission amplitude, t ⇥ |t|ei �, and from
(1.21), we obtain the relation ⇥(k) = �(k) + ⌅/2. A simple and elegant relation
exists between the phase shift ⇥(k) and the change of density of states ⇧(k):

⇧(k)� ⇧0(k) =
1

2⌅
Im

⌥

⌥k
ln det S(k) (1.22)

where ⇧0(k) is the density of states for the free system, namely with zero potential
for the Schrödinger equation in (1.3), or ⇤(x) = ⇤0 for the Helmholtz equation (1.2).

The source of scattering in either Schrödinger or Helmholtz equations is the
potential V(x) (or the varying refractive index n(x)). Should they vanish, the S-
matrix reduces to the identity. Now assume that they decrease fast enough so that
we can enclose the scattering system (the “black box” in Fig. 1.1.) inside a region
of size L, much larger than the support of the scattering potential. Apply periodic
boundary conditions, ⌃(0) = ⌃(L) and ⌃⌅(0) = ⌃⌅(L), at the boundary of the
large box, noting that for large enough L, the physics is independent of the precise
boundary conditions. For large enough L,

⌃(0) = ⌃(L) ⇤ iL + oL = oReikL + iRe�ikL

⌃⌅(0) = ⌃⌅(L) ⇤ ik(iL � oL) = ik(oReikL � iRe�ikL) . (1.23)

These algebraic relations may be written as a spectral condition:

det
�

1 � eikL
�

0 1
1 0

⇥
S(k)

⇥
= 0 . (1.24)

Solving for S, leads to the following relation between the total phase shift defined
in (1.21) and the possible wave vectors:

kn(L) =
⌅n
L

� ⇥(kn)
L

(1.25)

Noting that k(0)n (L) = ⌅n/2L are the eigenmodes in the absence of scattering po-
tential, namely for ⇥(k) = 0, we can rewrite (1.25) for two consecutive values of n
under the form,

(kn+1 � kn)

�
L +

d⇥(k)
dk

⇥
= ⌅ (1.26)

Defining the density of states, or density of modes (DOM) as ⇧(k) = 1/(kn+1 � kn)
leads to (1.22):

⇧(k)� ⇧0(k) =
1
⌅

d⇥(k)
dk

(1.27)

Recalling the definition in (1.9) of the counting function, N (k) =
⇤ k ⇧(k⌅)dk⌅, and

its relation to the DOM in (1.10), we obtain:

⇥(k) = ⌅�N(k) = ⌅ (N(k)� N0(k)) (1.28)

which relates the total phase shift of the S-matrix to a spectral quantity. Both (1.22)
and (1.28) are rather remarkable (and well-known) results since they express the
fact that a measurement of the scattering data from a black box allows one to re-
trieve its spectral information provided it is coupled to the external environment.
Some further details are given in the next section.

November 2, 2012 0:32 PSP Review Volume - 9.75in x 6.5in Panbook-GD-10-22-2012

6

From the definition of the phase of the transmission amplitude, t ⇥ |t|ei �, and from
(1.21), we obtain the relation ⇥(k) = �(k) + ⌅/2. A simple and elegant relation
exists between the phase shift ⇥(k) and the change of density of states ⇧(k):

⇧(k) � ⇧0(k) =
1

2⌅
Im

⌥

⌥k
ln det S(k) (1.22)

where ⇧0(k) is the density of states for the free system, namely with zero potential
for the Schrödinger equation in (1.3), or ⇤(x) = ⇤0 for the Helmholtz equation (1.2).

The source of scattering in either Schrödinger or Helmholtz equations is the
potential V(x) (or the varying refractive index n(x)). Should they vanish, the S-
matrix reduces to the identity. Now assume that they decrease fast enough so that
we can enclose the scattering system (the “black box” in Fig. 1.1.) inside a region
of size L, much larger than the support of the scattering potential. Apply periodic
boundary conditions, ⌃(0) = ⌃(L) and ⌃⌅(0) = ⌃⌅(L), at the boundary of the
large box, noting that for large enough L, the physics is independent of the precise
boundary conditions. For large enough L,

⌃(0) = ⌃(L) ⇤ iL + oL = oReikL + iRe�ikL

⌃⌅(0) = ⌃⌅(L) ⇤ ik(iL � oL) = ik(oReikL � iRe�ikL) . (1.23)

These algebraic relations may be written as a spectral condition:

det
�

1 � eikL
�

0 1
1 0

⇥
S(k)

⇥
= 0 . (1.24)

Solving for S, leads to the following relation between the total phase shift defined
in (1.21) and the possible wave vectors:

kn(L) =
⌅n
L

� ⇥(kn)
L

(1.25)

Noting that k(0)n (L) = ⌅n/2L are the eigenmodes in the absence of scattering po-
tential, namely for ⇥(k) = 0, we can rewrite (1.25) for two consecutive values of n
under the form,

(kn+1 � kn)

�
L +

d⇥(k)
dk

⇥
= ⌅ (1.26)

Defining the density of states, or density of modes (DOM) as ⇧(k) = 1/(kn+1 � kn)
leads to (1.22):

⇧(k) � ⇧0(k) =
1
⌅

d⇥(k)
dk

(1.27)

Recalling the definition in (1.9) of the counting function, N (k) =
⇤ k ⇧(k⌅)dk⌅, and

its relation to the DOM in (1.10), we obtain:

⇥(k) = ⌅�N(k) = ⌅ (N(k) � N0(k)) (1.28)

which relates the total phase shift of the S-matrix to a spectral quantity. Both (1.22)
and (1.28) are rather remarkable (and well-known) results since they express the
fact that a measurement of the scattering data from a black box allows one to re-
trieve its spectral information provided it is coupled to the external environment.
Some further details are given in the next section.



76

How to observe a       dependence ? Δφ
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On edge states since scattering states are 	
independent of the structural phase  Δφ

How to observe a       dependence ? Δφ



Impose a closed boundary

mirror

How to create edge states and relate them to the 	
scattering formalism ?
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Impose a closed boundary

mirror
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can be studied as a 

scattering system!

Equivalent to

How to create edge states and relate them to the 	
scattering formalism ?
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• This structure isn’t  Fibonacci : it displays additional modes in the gaps	
!
• Gap locations remain unchanged w.r.t. the original structure	
!
• Frequencies of the gap modes depend on the structural 	
       modulation phase 
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Relation to gap labelling and Chern numbers

Δφ
π

N ω ( p,q)gap( ) = p + qτ −1



Relation to gap labelling and Chern numbers

Δφ
π

Chern numbers [p,q] describe the topological behaviour of 	
edge states in the gaps when changing the structural 	

phase angle     Δφ



Recently measured using cavity polaritons

F. Baboux, E. Levy, J. Bloch, E.A, 2016
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Topological Chern numbers in 	
quasicrystals are of spectral origin ! 



Topological Chern numbers in 	
quasicrystals are of spectral origin ! 

Not really 



A diffraction measurement of Chern numbers

A. Dareau, E. Levy, E.A, F. Gerbier and J. Beugnon, 2016

The modulation phase I
Sf

N=89
I =0

Fibonacci finite string

Figure 1: Experimental setup. (A) Sketch of the optical setup (28). A collimated laser beam at
a wavelength of 532 nm diffracts off a grating programmed on a Digital Mirror Device (DMD).
The far-field diffraction pattern is measured on a CCD camera. (B) When the grating is struc-
tured following a Fibonacci sequence along the horizontal x direction (and uniform along the
vertical y direction), we observe diffraction peaks characteristic of the quasi-periodic structure
of the chain.
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Optical setup 
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– 1024 × 768 pixels
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Related to the transmission	
 spectrum ?

Topological quasicrystals spectra
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Gap labeling theorem,
Bellissard, 1982



Edge states topological fingerprint

▪ Consider a multi-slit quasiperiodic Young’s experiment

Diffraction pattern

Transmission spectrum
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Creating edge states
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No effect of φ
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2D Diffraction experiment

50

DMD Pattern Diffraction pattern

y axis is associated with )

q=46

Diffraction peaks appear for the same as the 1D grating
But for different values

The       value is directly proportionnal to the Chern number

q=48q=49

  

Fibonacci Experiment – 02/12/2015

55 letter artificially « palindromized » 55 letter NON « palindromized »



Summary-Further directions

• Demonstrate the fractal structure of the energy spectrum 
using polaritons in a Fibonacci cavity. 

• Gap Chern numbers are the winding numbers of the chiral 
reflection phase. 	

• Gap traversing of edge states is completely determined by 
corresponding gap Chern numbers.	

• Scattering theory gives a simple way to calculate/measure Chern 
numbers.	

• Topological Chern numbers are also contained in structural data of 
the quasi-crystals. They can be retrieved from a Young-slit 
diffraction experiment. This approach allows for a measurement of 
high numbers even for short chains. 	
!
!
!

!
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An algebraic description :

3.1 Topology of Finite Sequences 21

Consider the shift operator (translation by 1 units) on words ,

T (¸
1

¸
2

. . . ¸
n

. . .) = ¸
2

¸
3

. . . ¸
n+1

. . . (3.9)

For the infinite series WŒ = lim
næŒ W

n

(defined, for instance, with the sub-
stitutions above), it is clear that the translation operator does nothing,

T (WŒ) = WŒ. (3.10)

Therefore, we shall look on the finite series W
n

= ‡n (a).
Consider the finite word W 0

N

œ WŒ of size N = F
n

with

F
n

= �
n+1

≠ �
n

, (3.11)

such that
W 0

N

= ¸
1

¸
2

. . . ¸
N

. (3.12)

These F
n

numbers obey the same characteristic equation of �
n

,

F
N+1

= sF
N

≠ pF
N≠1

, (3.13)

with di�erent initial conditions.
For finite series, we update the definition of translation operator

T
!
W 0

N

"
© W 1

N

= ¸
N

¸
1

¸
2

. . . ¸
N≠2

¸
N≠1

, (3.14)

i.e., it is a cyclic permutation of W 0

N

. In this manner, we define the words

W i

N

= T i

!
W 0

N

"
. (3.15)

The words W i

N

are all valid in the substitution, meaning, W i

N

œ WŒ. Also, by
definition, T N

!
W 0

N

"
= W 0

N

.
Now, define the vertical concatenation of all these matrices by

�N

0

=

Q

ccca

W 0

N

W 1

N

...

W N≠1

N

R

dddb
. (3.16)

Note that with our construction �N

0

=
!
�N

0

"
T . Therefore, the columns of �N

0

also constitute valid words in the substitution.
Next, we ask ourselves, what permutations of the rows still keep the columns

valid of the substitution. It turns out that the a permutation

U
q

�
0

© �
q

, (3.17)

is defined by [24]

U
q

(mÕ, m) =
I

1 mÕ = m q Fn≠2
gcd(Fn≠2,Fn)

(mod F
n

)
0 otherwise

, (3.18)

and depending on a parameter q œ 0 . . . F
n

≠ 1. Note that the superscript N
was omitted for convenience.
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Consider the infinite chain      and a finite segment    FN 0( ) ≡WN
0W∞
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Each word        is a valid segment of the Fibonacci chain 
corresponding to a specific value of φ
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Each word        is a valid segment of the Fibonacci chain 
corresponding to a specific value of φ

3.1 Topology of Finite Sequences 21

Consider the shift operator (translation by 1 units) on words ,

T (¸
1

¸
2

. . . ¸
n

. . .) = ¸
2

¸
3

. . . ¸
n+1

. . . (3.9)

For the infinite series WŒ = lim
næŒ W
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i.e., it is a cyclic permutation of W 0

N

. In this manner, we define the words

W i

N

= T i

!
W 0

N

"
. (3.15)

The words W i

N

are all valid in the substitution, meaning, W i

N

œ WŒ. Also, by
definition, T N

!
W 0

N

"
= W 0

N

.
Now, define the vertical concatenation of all these matrices by

�N

0

=

Q

ccca

W 0

N

W 1

N

...

W N≠1

N

R

dddb
. (3.16)

Note that with our construction �N
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An algebraic description :
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Consider the infinite chain      and a finite segment    FN 0( ) ≡WN
0W∞
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Define the symmetric matrix
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Figure 4.1.3: 2d structure created using the direct approach

(a) Fourier amplitude for ‘ = 0.5 (b) Fourier amplitude for ‘ = 1

(c) Fourier amplitude for ‘ = 1.5

Figure 4.1.4: Fourier images for di�erent values of ‘
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58

3.1 Topology of Finite Sequences 21

Consider the shift operator (translation by 1 units) on words ,

T (¸
1

¸
2

. . . ¸
n

. . .) = ¸
2

¸
3

. . . ¸
n+1

. . . (3.9)

For the infinite series WŒ = lim
næŒ W

n

(defined, for instance, with the sub-
stitutions above), it is clear that the translation operator does nothing,

T (WŒ) = WŒ. (3.10)

Therefore, we shall look on the finite series W
n

= ‡n (a).
Consider the finite word W 0

N

œ WŒ of size N = F
n

with

F
n

= �
n+1

≠ �
n

, (3.11)

such that
W 0

N

= ¸
1

¸
2

. . . ¸
N

. (3.12)

These F
n

numbers obey the same characteristic equation of �
n

,

F
N+1

= sF
N

≠ pF
N≠1

, (3.13)

with di�erent initial conditions.
For finite series, we update the definition of translation operator

T
!
W 0

N

"
© W 1

N

= ¸
N

¸
1

¸
2

. . . ¸
N≠2

¸
N≠1

, (3.14)

i.e., it is a cyclic permutation of W 0

N

. In this manner, we define the words

W i

N

= T i

!
W 0

N

"
. (3.15)

The words W i

N

are all valid in the substitution, meaning, W i

N

œ WŒ. Also, by
definition, T N

!
W 0

N

"
= W 0

N

.
Now, define the vertical concatenation of all these matrices by

�N

0

=

Q

ccca

W 0

N

W 1

N

...

W N≠1

N

R

dddb
. (3.16)

Note that with our construction �N

0

=
!
�N

0

"
T . Therefore, the columns of �N

0

also constitute valid words in the substitution.
Next, we ask ourselves, what permutations of the rows still keep the columns

valid of the substitution. It turns out that the a permutation

U
q

�
0

© �
q

, (3.17)

is defined by [24]

U
q

(mÕ, m) =
I

1 mÕ = m q Fn≠2
gcd(Fn≠2,Fn)

(mod F
n

)
0 otherwise

, (3.18)

and depending on a parameter q œ 0 . . . F
n

≠ 1. Note that the superscript N
was omitted for convenience.

3.1 Topology of Finite Sequences 21

Consider the shift operator (translation by 1 units) on words ,

T (¸
1

¸
2

. . . ¸
n

. . .) = ¸
2

¸
3

. . . ¸
n+1

. . . (3.9)

For the infinite series WŒ = lim
næŒ W

n

(defined, for instance, with the sub-
stitutions above), it is clear that the translation operator does nothing,

T (WŒ) = WŒ. (3.10)

Therefore, we shall look on the finite series W
n

= ‡n (a).
Consider the finite word W 0

N

œ WŒ of size N = F
n

with

F
n

= �
n+1

≠ �
n

, (3.11)

such that
W 0

N

= ¸
1

¸
2

. . . ¸
N

. (3.12)

These F
n

numbers obey the same characteristic equation of �
n

,

F
N+1

= sF
N

≠ pF
N≠1

, (3.13)

with di�erent initial conditions.
For finite series, we update the definition of translation operator

T
!
W 0

N

"
© W 1

N

= ¸
N

¸
1

¸
2

. . . ¸
N≠2

¸
N≠1

, (3.14)

i.e., it is a cyclic permutation of W 0

N

. In this manner, we define the words

W i

N

= T i

!
W 0

N

"
. (3.15)

The words W i

N

are all valid in the substitution, meaning, W i

N

œ WŒ. Also, by
definition, T N

!
W 0

N

"
= W 0

N

.
Now, define the vertical concatenation of all these matrices by

�N

0

=

Q

ccca

W 0

N

W 1

N

...

W N≠1

N

R

dddb
. (3.16)

Note that with our construction �N

0

=
!
�N

0

"
T . Therefore, the columns of �N

0

also constitute valid words in the substitution.
Next, we ask ourselves, what permutations of the rows still keep the columns

valid of the substitution. It turns out that the a permutation

U
q

�
0

© �
q

, (3.17)

is defined by [24]

U
q

(mÕ, m) =
I

1 mÕ = m q Fn≠2
gcd(Fn≠2,Fn)

(mod F
n

)
0 otherwise

, (3.18)

and depending on a parameter q œ 0 . . . F
n

≠ 1. Note that the superscript N
was omitted for convenience.

3.1 Topology of Finite Sequences 21

Consider the shift operator (translation by 1 units) on words ,

T (¸
1

¸
2

. . . ¸
n

. . .) = ¸
2

¸
3

. . . ¸
n+1

. . . (3.9)

For the infinite series WŒ = lim
næŒ W

n

(defined, for instance, with the sub-
stitutions above), it is clear that the translation operator does nothing,

T (WŒ) = WŒ. (3.10)

Therefore, we shall look on the finite series W
n

= ‡n (a).
Consider the finite word W 0

N

œ WŒ of size N = F
n

with

F
n

= �
n+1

≠ �
n

, (3.11)

such that
W 0

N

= ¸
1

¸
2

. . . ¸
N

. (3.12)

These F
n

numbers obey the same characteristic equation of �
n

,

F
N+1

= sF
N

≠ pF
N≠1

, (3.13)

with di�erent initial conditions.
For finite series, we update the definition of translation operator

T
!
W 0

N

"
© W 1

N

= ¸
N

¸
1

¸
2

. . . ¸
N≠2

¸
N≠1

, (3.14)

i.e., it is a cyclic permutation of W 0

N

. In this manner, we define the words

W i

N

= T i

!
W 0

N

"
. (3.15)

The words W i

N

are all valid in the substitution, meaning, W i

N

œ WŒ. Also, by
definition, T N

!
W 0

N

"
= W 0

N

.
Now, define the vertical concatenation of all these matrices by

�N

0

=

Q

ccca

W 0

N

W 1

N

...

W N≠1

N

R

dddb
. (3.16)

Note that with our construction �N

0

=
!
�N

0

"
T . Therefore, the columns of �N

0

also constitute valid words in the substitution.
Next, we ask ourselves, what permutations of the rows still keep the columns

valid of the substitution. It turns out that the a permutation

U
q

�
0

© �
q

, (3.17)

is defined by [24]

U
q

(mÕ, m) =
I

1 mÕ = m q Fn≠2
gcd(Fn≠2,Fn)

(mod F
n

)
0 otherwise

, (3.18)

and depending on a parameter q œ 0 . . . F
n

≠ 1. Note that the superscript N
was omitted for convenience.



109

The unitary matrices        form an abelian  group 

3.1 Topology of Finite Sequences 21

Consider the shift operator (translation by 1 units) on words ,

T (¸
1

¸
2

. . . ¸
n

. . .) = ¸
2

¸
3

. . . ¸
n+1

. . . (3.9)

For the infinite series WŒ = lim
næŒ W

n

(defined, for instance, with the sub-
stitutions above), it is clear that the translation operator does nothing,

T (WŒ) = WŒ. (3.10)

Therefore, we shall look on the finite series W
n

= ‡n (a).
Consider the finite word W 0

N

œ WŒ of size N = F
n

with

F
n

= �
n+1

≠ �
n

, (3.11)

such that
W 0

N

= ¸
1

¸
2

. . . ¸
N

. (3.12)

These F
n

numbers obey the same characteristic equation of �
n

,

F
N+1

= sF
N

≠ pF
N≠1

, (3.13)

with di�erent initial conditions.
For finite series, we update the definition of translation operator

T
!
W 0

N

"
© W 1

N

= ¸
N

¸
1

¸
2

. . . ¸
N≠2

¸
N≠1

, (3.14)

i.e., it is a cyclic permutation of W 0

N

. In this manner, we define the words

W i

N

= T i

!
W 0

N

"
. (3.15)

The words W i

N

are all valid in the substitution, meaning, W i

N

œ WŒ. Also, by
definition, T N

!
W 0

N

"
= W 0

N

.
Now, define the vertical concatenation of all these matrices by

�N

0

=

Q

ccca

W 0

N

W 1

N

...

W N≠1

N

R

dddb
. (3.16)

Note that with our construction �N

0

=
!
�N

0

"
T . Therefore, the columns of �N

0

also constitute valid words in the substitution.
Next, we ask ourselves, what permutations of the rows still keep the columns

valid of the substitution. It turns out that the a permutation

U
q

�
0

© �
q

, (3.17)

is defined by [24]

U
q

(mÕ, m) =
I

1 mÕ = m q Fn≠2
gcd(Fn≠2,Fn)

(mod F
n

)
0 otherwise

, (3.18)

and depending on a parameter q œ 0 . . . F
n

≠ 1. Note that the superscript N
was omitted for convenience.
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Fig. 3.1: Multiplication matrix � (q, r) for the Fibonacci substitution. The x
axis represents the Fourier r space, and the y axis the translation
parameter q. One can readily see the windings of the q parameter
for for each k. For example, at r = 34 one has the winding w = 1 and
for r = 55 it is w = ≠1 (indicated by green arrows).

3.1.4 Windings for the Finite Series
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where F is the discrete Fourier matrix, and kÎ and k‹ are the k-space vectors
corresponding to the columns (horizontal) and the rows (vertical) axes.

The matrix �
0

is diagonal in kÎ and k‹; in other words, the only non-zero
values, “peaks” lie on the main diagonal. By comparing the matrices �

q

for
di�erent q, one obtains [24] that they di�er only by a reshu�ing of their rows
(i.e., the vertical vector k‹). The shift of the Bragg peak locations is given by
the parameter [24]
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where F defines the discrete 2d Fourier transform. Since F (�0
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in Fourier space we conclude that Ũ

q

© F (U
q

) has sharp peaks at the same
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s

Ũ
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The group of unitary transformations {U
q

} is therefore isomorphic to Z/F
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Z.
Going to Fourier space we have
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) = F (U
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) F (�0
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) (4.2.16)

where F defines the discrete 2d Fourier transform. Since F (�0

F

N

) is diagonal
in Fourier space we conclude that Ũ

q

© F (U
q

) has sharp peaks at the same
locations as F (�q

F

N

) (see Fig.4.2.1) . so that the variation of
the peak intensities of F (�q

F

N

) originates from F (�0

F

N

).
The set {Ũ

q

}F

N

q=1

has the group structure of {U
q

} with the multiplication
rule,

Ũ
q

Ũ
s

= Ũ
s

Ũ
q

= Ũ
F
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≠(qsF

N≠2) mod (F

N

).

(4.2.17)
The winding number W

q

= b
q

in Eq. (4.2.6) is encoded in the algebra of group
{Ũ

q

} in Eq. 4.2.17. To see that we define a matrix of the indexes q, s by

L(q, s) = F
N

≠ [qsF
N≠2

] mod (F
N

) (4.2.18)

where the mod(F
N

) acts only on qsF
N≠2

. A color code representation of L
is shown in Fig.4.2.2 from which W

q

= b
q

is readily obtained. For a fixed
value of q = q̃, we vary s and count how many times L(q, s) = F

N

≠ q̃sF
N≠2

mod (F
N

) crosses 0modF
N

. Since winding numbers are usually defined using
counterclockwise integration, we set W

q

= 1 to be the winding number starting
from F

N≠1

and decreasing to 0. For a general substitution of length F
N

the
value of q which satisfies this relation is given by

q
0

= F
N≠1

. (4.2.19)

The value of q associated to the winding number W
q

is given by

q = F
N≠1

b
q

mod (F
N

). (4.2.20)
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Figure 4.1.3: 2d structure created using the direct approach

(a) Fourier amplitude for ‘ = 0.5 (b) Fourier amplitude for ‘ = 1

(c) Fourier amplitude for ‘ = 1.5

Figure 4.1.4: Fourier images for di�erent values of ‘
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3.1 Topology of Finite Sequences 21

Consider the shift operator (translation by 1 units) on words ,

T (¸
1

¸
2

. . . ¸
n

. . .) = ¸
2

¸
3

. . . ¸
n+1

. . . (3.9)

For the infinite series WŒ = lim
næŒ W

n

(defined, for instance, with the sub-
stitutions above), it is clear that the translation operator does nothing,

T (WŒ) = WŒ. (3.10)

Therefore, we shall look on the finite series W
n

= ‡n (a).
Consider the finite word W 0

N

œ WŒ of size N = F
n

with

F
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= �
n+1

≠ �
n

, (3.11)

such that
W 0
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= ¸
1

¸
2

. . . ¸
N

. (3.12)

These F
n

numbers obey the same characteristic equation of �
n

,

F
N+1

= sF
N

≠ pF
N≠1

, (3.13)

with di�erent initial conditions.
For finite series, we update the definition of translation operator

T
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"
© W 1
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= ¸
N

¸
1

¸
2

. . . ¸
N≠2

¸
N≠1

, (3.14)

i.e., it is a cyclic permutation of W 0

N

. In this manner, we define the words

W i

N

= T i

!
W 0

N

"
. (3.15)

The words W i

N

are all valid in the substitution, meaning, W i

N

œ WŒ. Also, by
definition, T N

!
W 0

N

"
= W 0

N

.
Now, define the vertical concatenation of all these matrices by

�N

0

=

Q

ccca

W 0

N

W 1

N

...

W N≠1

N

R

dddb
. (3.16)

Note that with our construction �N

0

=
!
�N

0

"
T . Therefore, the columns of �N

0

also constitute valid words in the substitution.
Next, we ask ourselves, what permutations of the rows still keep the columns

valid of the substitution. It turns out that the a permutation

U
q

�
0

© �
q

, (3.17)

is defined by [24]

U
q

(mÕ, m) =
I

1 mÕ = m q Fn≠2
gcd(Fn≠2,Fn)

(mod F
n

)
0 otherwise

, (3.18)

and depending on a parameter q œ 0 . . . F
n

≠ 1. Note that the superscript N
was omitted for convenience.
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F

N

≠(qsF

N≠2) mod (F

N

).

(4.2.17)
The winding number W
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in Eq. (4.2.6) is encoded in the algebra of group
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) acts only on qsF
N≠2

. A color code representation of L
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value of q = q̃, we vary s and count how many times L(q, s) = F

N

≠ q̃sF
N≠2

mod (F
N

) crosses 0modF
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Figure 4.1.3: 2d structure created using the direct approach

(a) Fourier amplitude for ‘ = 0.5 (b) Fourier amplitude for ‘ = 1

(c) Fourier amplitude for ‘ = 1.5

Figure 4.1.4: Fourier images for di�erent values of ‘
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As for the 𝑈  the set of 𝑈෪  defines the same 
Abelian group with a new multiplication rule 

𝑈෩ × 𝑈෩௦ = 𝑈෩ிಿି௦ிಿషమ   ௗ(ிಿ) 

2 4 1 3 0
4 3 2 1 0
1
3
0

2
1
0

3
4
0

4
2
0

0
0
0

 

𝑞 

𝑠 

An example for 𝐹ହ = 5: 

The matrices       defines an abelian  group isomorphic to 

2 4 1 3 0
4 3 2 1 0
1
3
0

2
1
0

3
4
0

4
2
0

0
0
0
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22 3 Topological Description of Finite Quasiperiodic Sequences

The matrices U
q

form a group U = {U
q

}Fn≠1

q=0

. One can, therefore, define the
group multiplication rule as

U
q

U
r

= U
L(q,r)

(3.19)

so that
L (q, r) = q r F

n≠2

(mod F
n

). (3.20)

In the Fourier space, the rule transforms to

� (q, r) = F
n

≠ (q r F
n≠2

(mod F
n

)) . (3.21)

Fig. 3.1: Multiplication matrix � (q, r) for the Fibonacci substitution. The x
axis represents the Fourier r space, and the y axis the translation
parameter q. One can readily see the windings of the q parameter
for for each k. For example, at r = 34 one has the winding w = 1 and
for r = 55 it is w = ≠1 (indicated by green arrows).

3.1.4 Windings for the Finite Series

Let us return to the matrices �
q

given by (3.17). Consider their 2D Fourier
transform given by

�
q

!
k‹, kÎ

"
= F [�

q

] = F�
q

F†, (3.22)

where F is the discrete Fourier matrix, and kÎ and k‹ are the k-space vectors
corresponding to the columns (horizontal) and the rows (vertical) axes.

The matrix �
0

is diagonal in kÎ and k‹; in other words, the only non-zero
values, “peaks” lie on the main diagonal. By comparing the matrices �

q

for
di�erent q, one obtains [24] that they di�er only by a reshu�ing of their rows
(i.e., the vertical vector k‹). The shift of the Bragg peak locations is given by
the parameter [24]

�
q

(k‹) = a
q

+ b
q

(k‹ ≠ 1) (mod F
n

). (3.23)

The a
q

, b
q

œ 1 . . . F
n

are uniquely determined for each q.
Updating Eq. (3.8) for the discrete case, one has

W
q

© 1
F

n

Fnÿ

k‹=1

(�
q

(k‹) ≠ �
q

(k‹ ≠ 1)) , (3.24)
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with �
q

being the potential, and k‹ the angle. This is simplified to

W
q

= 1
F

n

(�
q

(F
N

) ≠ �
q

(0)) = b
q

. (3.25)

Hence the b
q

s define our winding numbers (see Fig. 3.1).
Another way to observe windings, is to normalize the � (q, r) matrices to set

the range to [0, 1) by dividing by F
n

K (q, r) = ≠q r
F

n≠2

F
n

(mod 1). (3.26)

Define the winding number w as

r = wF
n≠1

. (3.27)

Therefore
K (q, w) = ‘

q w

F
n

(mod 1). (3.28)

with ‘ = ±1 resulting from F
n≠1

F
n≠2

= ±1 (mod F
n

). This is true for the
Fibonacci sequence, and under several conditions to other sequences as well.

3.1.5 Experimental Endeavor

An experimental realization of a winding number in a polaritonic quasicrystal
was realized by Baboux et al. [10]. Here a 2 letter Fibonacci quasicrystal was
realized with a laterally modulated 1D cavity, where the letters a and b cor-
respond to a di�erent width of the cavity. The phason „ was realized with a
characteristic function

‰
j

(„) = sign [cos (2fij/· + „) ≠ cos (fi/·)] , (3.29)

with j = 1 . . . F
n

such that N = F
n

a Fibonacci number. The two values ±1
of the characteristic function ‰

j

correspond to the two letters a and b. This
creates an N -length word

≠æw
N

(„) = ‰
1

‰
2

. . . ‰
N

. (3.30)

The winding number was identified with a location of an edge state. The edge
state was realized by concatenating a word with its mirror opposite Ω≠w

N

(„) =
‰

N

. . . ‰
2

‰
1

such that the structure
Ωæw

N

(„) © ≠æw
N

(„) Ω≠w
N

(„) (3.31)

was considered. The density of states was calculated using scattering matrix
S (k) analysis described above.

This double-Fibonacci word creates a Fabry-Pérot like interface, so that one
needs to inspect the round-trip phase ◊

cav

as explained above. Using Eq. (3.8),
one finds the winding number to be [10]

W = 2q, q œ Z. (3.32)

The integer q œ Z corresponds to the q in the GLT of Bellissard. The factor 2 in
2q corresponds to the edge state moving 2 ◊ q times in the gap when changing
„ from 0 to 2fi.

Several remarks about the winding number found.
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was realized by Baboux et al. [10]. Here a 2 letter Fibonacci quasicrystal was
realized with a laterally modulated 1D cavity, where the letters a and b cor-
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was considered. The density of states was calculated using scattering matrix
S (k) analysis described above.

This double-Fibonacci word creates a Fabry-Pérot like interface, so that one
needs to inspect the round-trip phase ◊

cav

as explained above. Using Eq. (3.8),
one finds the winding number to be [10]

W = 2q, q œ Z. (3.32)

The integer q œ Z corresponds to the q in the GLT of Bellissard. The factor 2 in
2q corresponds to the edge state moving 2 ◊ q times in the gap when changing
„ from 0 to 2fi.

Several remarks about the winding number found.
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3.1.5 Experimental Endeavor

An experimental realization of a winding number in a polaritonic quasicrystal
was realized by Baboux et al. [10]. Here a 2 letter Fibonacci quasicrystal was
realized with a laterally modulated 1D cavity, where the letters a and b cor-
respond to a di�erent width of the cavity. The phason „ was realized with a
characteristic function
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This double-Fibonacci word creates a Fabry-Pérot like interface, so that one
needs to inspect the round-trip phase ◊

cav

as explained above. Using Eq. (3.8),
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22 3 Topological Description of Finite Quasiperiodic Sequences

The matrices U
q

form a group U = {U
q

}Fn≠1

q=0

. One can, therefore, define the
group multiplication rule as

U
q

U
r

= U
L(q,r)

(3.19)

so that
L (q, r) = q r F

n≠2

(mod F
n

). (3.20)

In the Fourier space, the rule transforms to

� (q, r) = F
n

≠ (q r F
n≠2

(mod F
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)) . (3.21)

Fig. 3.1: Multiplication matrix � (q, r) for the Fibonacci substitution. The x
axis represents the Fourier r space, and the y axis the translation
parameter q. One can readily see the windings of the q parameter
for for each k. For example, at r = 34 one has the winding w = 1 and
for r = 55 it is w = ≠1 (indicated by green arrows).

3.1.4 Windings for the Finite Series

Let us return to the matrices �
q

given by (3.17). Consider their 2D Fourier
transform given by

�
q

!
k‹, kÎ

"
= F [�

q

] = F�
q

F†, (3.22)

where F is the discrete Fourier matrix, and kÎ and k‹ are the k-space vectors
corresponding to the columns (horizontal) and the rows (vertical) axes.

The matrix �
0

is diagonal in kÎ and k‹; in other words, the only non-zero
values, “peaks” lie on the main diagonal. By comparing the matrices �

q

for
di�erent q, one obtains [24] that they di�er only by a reshu�ing of their rows
(i.e., the vertical vector k‹). The shift of the Bragg peak locations is given by
the parameter [24]

�
q

(k‹) = a
q

+ b
q

(k‹ ≠ 1) (mod F
n

). (3.23)

The a
q

, b
q

œ 1 . . . F
n

are uniquely determined for each q.
Updating Eq. (3.8) for the discrete case, one has
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(k‹ ≠ 1)) , (3.24)
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with �
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being the potential, and k‹ the angle. This is simplified to
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(0)) = b
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. (3.25)

Hence the b
q

s define our winding numbers (see Fig. 3.1).
Another way to observe windings, is to normalize the � (q, r) matrices to set

the range to [0, 1) by dividing by F
n
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F
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(mod 1). (3.26)

Define the winding number w as

r = wF
n≠1

. (3.27)

Therefore
K (q, w) = ‘

q w

F
n

(mod 1). (3.28)

with ‘ = ±1 resulting from F
n≠1

F
n≠2

= ±1 (mod F
n

). This is true for the
Fibonacci sequence, and under several conditions to other sequences as well.

3.1.5 Experimental Endeavor

An experimental realization of a winding number in a polaritonic quasicrystal
was realized by Baboux et al. [10]. Here a 2 letter Fibonacci quasicrystal was
realized with a laterally modulated 1D cavity, where the letters a and b cor-
respond to a di�erent width of the cavity. The phason „ was realized with a
characteristic function

‰
j

(„) = sign [cos (2fij/· + „) ≠ cos (fi/·)] , (3.29)

with j = 1 . . . F
n

such that N = F
n

a Fibonacci number. The two values ±1
of the characteristic function ‰

j

correspond to the two letters a and b. This
creates an N -length word

≠æw
N

(„) = ‰
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‰
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The winding number was identified with a location of an edge state. The edge
state was realized by concatenating a word with its mirror opposite Ω≠w

N
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. . . ‰
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‰
1

such that the structure
Ωæw

N

(„) © ≠æw
N

(„) Ω≠w
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(„) (3.31)

was considered. The density of states was calculated using scattering matrix
S (k) analysis described above.

This double-Fibonacci word creates a Fabry-Pérot like interface, so that one
needs to inspect the round-trip phase ◊

cav

as explained above. Using Eq. (3.8),
one finds the winding number to be [10]

W = 2q, q œ Z. (3.32)

The integer q œ Z corresponds to the q in the GLT of Bellissard. The factor 2 in
2q corresponds to the edge state moving 2 ◊ q times in the gap when changing
„ from 0 to 2fi.

Several remarks about the winding number found.
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3.1.5 Experimental Endeavor
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was realized by Baboux et al. [10]. Here a 2 letter Fibonacci quasicrystal was
realized with a laterally modulated 1D cavity, where the letters a and b cor-
respond to a di�erent width of the cavity. The phason „ was realized with a
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was considered. The density of states was calculated using scattering matrix
S (k) analysis described above.

This double-Fibonacci word creates a Fabry-Pérot like interface, so that one
needs to inspect the round-trip phase ◊

cav

as explained above. Using Eq. (3.8),
one finds the winding number to be [10]

W = 2q, q œ Z. (3.32)

The integer q œ Z corresponds to the q in the GLT of Bellissard. The factor 2 in
2q corresponds to the edge state moving 2 ◊ q times in the gap when changing
„ from 0 to 2fi.

Several remarks about the winding number found.
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An experimental realization of a winding number in a polaritonic quasicrystal
was realized by Baboux et al. [10]. Here a 2 letter Fibonacci quasicrystal was
realized with a laterally modulated 1D cavity, where the letters a and b cor-
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was considered. The density of states was calculated using scattering matrix
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This double-Fibonacci word creates a Fabry-Pérot like interface, so that one
needs to inspect the round-trip phase ◊
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as explained above. Using Eq. (3.8),
one finds the winding number to be [10]

W = 2q, q œ Z. (3.32)

The integer q œ Z corresponds to the q in the GLT of Bellissard. The factor 2 in
2q corresponds to the edge state moving 2 ◊ q times in the gap when changing
„ from 0 to 2fi.

Several remarks about the winding number found.
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As for the 𝑈  the set of 𝑈෪  defines the same 
Abelian group with a new multiplication rule 
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22 3 Topological Description of Finite Quasiperiodic Sequences
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so that
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In the Fourier space, the rule transforms to
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Fig. 3.1: Multiplication matrix � (q, r) for the Fibonacci substitution. The x
axis represents the Fourier r space, and the y axis the translation
parameter q. One can readily see the windings of the q parameter
for for each k. For example, at r = 34 one has the winding w = 1 and
for r = 55 it is w = ≠1 (indicated by green arrows).

3.1.4 Windings for the Finite Series

Let us return to the matrices �
q

given by (3.17). Consider their 2D Fourier
transform given by

�
q

!
k‹, kÎ

"
= F [�

q

] = F�
q

F†, (3.22)

where F is the discrete Fourier matrix, and kÎ and k‹ are the k-space vectors
corresponding to the columns (horizontal) and the rows (vertical) axes.

The matrix �
0

is diagonal in kÎ and k‹; in other words, the only non-zero
values, “peaks” lie on the main diagonal. By comparing the matrices �

q

for
di�erent q, one obtains [24] that they di�er only by a reshu�ing of their rows
(i.e., the vertical vector k‹). The shift of the Bragg peak locations is given by
the parameter [24]

�
q

(k‹) = a
q

+ b
q

(k‹ ≠ 1) (mod F
n

). (3.23)

The a
q

, b
q

œ 1 . . . F
n

are uniquely determined for each q.
Updating Eq. (3.8) for the discrete case, one has

W
q

© 1
F

n

Fnÿ

k‹=1

(�
q

(k‹) ≠ �
q

(k‹ ≠ 1)) , (3.24)

F10 = 89
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Gaps for transmission experiment:  

The relation to physics: 

k 
)LJXUH ����� $ UHFLSURFDO VSDFH DQG VFDWWHULQJ DQDO\VLV RI WKH )LERQDFFL FKDLQ S10.
7KH UHODWLRQV EHWZHHQ WKH VSDWLDO IUHTXHQF\ RI REVHUYDEOH GLIIUDFWLRQ SHDNV �D��
DQG WKH IUHTXHQF\ RI WKH VSHFWUDO JDSV LQ WKH WUDQVPLVVLRQ VSHFWUXP �E�� ZKHUH WKH
FRQWUDVW LV 100��

5HJDUGLQJ WKLV HTXLYDOHQFH� ZH QRWH WKDW WKH GLIIUDFWLRQ VSHFWUXP DULVHV IURP
SXUHO\ VWUXFWXUDO SURSHUWLHV� ZKLOH WKH VFDWWHULQJ RI ZDYHV LQYROYHV SDUDPHWHUV VXFK
DV GLHOHFWULF FRQWUDVW� FRQWUROOLQJ WKH ZLGWK RI WKH JDSV� ,Q FKDSWHU � WKLV UHODWLRQ
ZLOO EHFRPH YHU\ XVHIXO LQ H[SODLQLQJ WKH WRSRORJLFDO SURSHUWLHV RI TXDVLSHULRGLF
VWUXFWXUHV� HVSHFLDOO\ ZLWK UHJDUGV WR WKH TXHVWLRQ RI WKHLU RULJLQ DQG WKH UROH RI WUXH
LUUDWLRQDOLW\�

)XUWKHUPRUH� WKURXJK WKH JDS ODEHOLQJ WKHRUHP JLYHQ LQ ������� OHQGV WRSRORJLFDO
PHDQLQJ WR p, q LQ H[SUHVVLRQ �������

��� ,QGHSHQGHQW SKDVHV RI WKH VFDWWHULQJ PDWUL[

,Q WKLV VHFWLRQ ZH UHLWHUDWH VRPH XQGHUVWDQGLQJV UHJDUGLQJ WKH SURSHUWLHV RI WKH
VFDWWHULQJ PDWUL[ LQ RUGHU WR SURYLGH D QHZ ODQJXDJH FRQVLGHULQJ WKH LQGHSHQGHQW
SKDVHV RI WKH VFDWWHULQJ PDWUL[ DQG WKHLU UHODWLRQV WR REVHUYDEOH SURSHUWLHV� 7KLV QHZ
GHILQLWLRQ ZLOO EHDU PHDQLQJ LQ WKH DQDO\VLV RI WRSRORJLFDO SURSHUWLHV RI TXDVLSHULRGLF
FKDLQV �WR EH GLVFXVVHG LQ FKDSWHU ��� EXW ZH EHOLHYH WKLV GHILQLWLRQ LV XQLYHUVDO� L�H
LW LV DSSOLFDEOH WR RWKHU VFDWWHULQJ SUREOHPV�

����� 7ZR LQGHSHQGHQW SKDVHV

7KH VFDWWHULQJ PDWUL[ S RI DQ\ FKDLQ ����� FRQWDLQV IRXU HOHPHQWV� 7KHVH IRXU
HOHPHQWV FRQVLVWV RI RQO\ WZR �UHODWHG� DPSOLWXGHV� |t| DQG |r| ZKHUH

��©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Transmission spectrum

3.1 Topology of Finite Sequences 23

with �
q

being the potential, and k‹ the angle. This is simplified to

W
q

= 1
F

n

(�
q

(F
N

) ≠ �
q

(0)) = b
q

. (3.25)

Hence the b
q

s define our winding numbers (see Fig. 3.1).
Another way to observe windings, is to normalize the � (q, r) matrices to set

the range to [0, 1) by dividing by F
n

K (q, r) = ≠q r
F

n≠2

F
n

(mod 1). (3.26)

Define the winding number w as

r = wF
n≠1

. (3.27)

Therefore
K (q, w) = ‘

q w

F
n

(mod 1). (3.28)

with ‘ = ±1 resulting from F
n≠1

F
n≠2

= ±1 (mod F
n

). This is true for the
Fibonacci sequence, and under several conditions to other sequences as well.

3.1.5 Experimental Endeavor

An experimental realization of a winding number in a polaritonic quasicrystal
was realized by Baboux et al. [10]. Here a 2 letter Fibonacci quasicrystal was
realized with a laterally modulated 1D cavity, where the letters a and b cor-
respond to a di�erent width of the cavity. The phason „ was realized with a
characteristic function

‰
j

(„) = sign [cos (2fij/· + „) ≠ cos (fi/·)] , (3.29)

with j = 1 . . . F
n

such that N = F
n

a Fibonacci number. The two values ±1
of the characteristic function ‰

j

correspond to the two letters a and b. This
creates an N -length word

≠æw
N

(„) = ‰
1

‰
2

. . . ‰
N

. (3.30)

The winding number was identified with a location of an edge state. The edge
state was realized by concatenating a word with its mirror opposite Ω≠w

N

(„) =
‰

N

. . . ‰
2

‰
1

such that the structure
Ωæw

N

(„) © ≠æw
N

(„) Ω≠w
N

(„) (3.31)

was considered. The density of states was calculated using scattering matrix
S (k) analysis described above.

This double-Fibonacci word creates a Fabry-Pérot like interface, so that one
needs to inspect the round-trip phase ◊

cav

as explained above. Using Eq. (3.8),
one finds the winding number to be [10]

W = 2q, q œ Z. (3.32)

The integer q œ Z corresponds to the q in the GLT of Bellissard. The factor 2 in
2q corresponds to the edge state moving 2 ◊ q times in the gap when changing
„ from 0 to 2fi.

Several remarks about the winding number found.

= 2 −1+1
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Gaps for transmission experiment:  

The relation to physics: 

k 
)LJXUH ����� $ UHFLSURFDO VSDFH DQG VFDWWHULQJ DQDO\VLV RI WKH )LERQDFFL FKDLQ S10.
7KH UHODWLRQV EHWZHHQ WKH VSDWLDO IUHTXHQF\ RI REVHUYDEOH GLIIUDFWLRQ SHDNV �D��
DQG WKH IUHTXHQF\ RI WKH VSHFWUDO JDSV LQ WKH WUDQVPLVVLRQ VSHFWUXP �E�� ZKHUH WKH
FRQWUDVW LV 100��

5HJDUGLQJ WKLV HTXLYDOHQFH� ZH QRWH WKDW WKH GLIIUDFWLRQ VSHFWUXP DULVHV IURP
SXUHO\ VWUXFWXUDO SURSHUWLHV� ZKLOH WKH VFDWWHULQJ RI ZDYHV LQYROYHV SDUDPHWHUV VXFK
DV GLHOHFWULF FRQWUDVW� FRQWUROOLQJ WKH ZLGWK RI WKH JDSV� ,Q FKDSWHU � WKLV UHODWLRQ
ZLOO EHFRPH YHU\ XVHIXO LQ H[SODLQLQJ WKH WRSRORJLFDO SURSHUWLHV RI TXDVLSHULRGLF
VWUXFWXUHV� HVSHFLDOO\ ZLWK UHJDUGV WR WKH TXHVWLRQ RI WKHLU RULJLQ DQG WKH UROH RI WUXH
LUUDWLRQDOLW\�

)XUWKHUPRUH� WKURXJK WKH JDS ODEHOLQJ WKHRUHP JLYHQ LQ ������� OHQGV WRSRORJLFDO
PHDQLQJ WR p, q LQ H[SUHVVLRQ �������

��� ,QGHSHQGHQW SKDVHV RI WKH VFDWWHULQJ PDWUL[

,Q WKLV VHFWLRQ ZH UHLWHUDWH VRPH XQGHUVWDQGLQJV UHJDUGLQJ WKH SURSHUWLHV RI WKH
VFDWWHULQJ PDWUL[ LQ RUGHU WR SURYLGH D QHZ ODQJXDJH FRQVLGHULQJ WKH LQGHSHQGHQW
SKDVHV RI WKH VFDWWHULQJ PDWUL[ DQG WKHLU UHODWLRQV WR REVHUYDEOH SURSHUWLHV� 7KLV QHZ
GHILQLWLRQ ZLOO EHDU PHDQLQJ LQ WKH DQDO\VLV RI WRSRORJLFDO SURSHUWLHV RI TXDVLSHULRGLF
FKDLQV �WR EH GLVFXVVHG LQ FKDSWHU ��� EXW ZH EHOLHYH WKLV GHILQLWLRQ LV XQLYHUVDO� L�H
LW LV DSSOLFDEOH WR RWKHU VFDWWHULQJ SUREOHPV�

����� 7ZR LQGHSHQGHQW SKDVHV

7KH VFDWWHULQJ PDWUL[ S RI DQ\ FKDLQ ����� FRQWDLQV IRXU HOHPHQWV� 7KHVH IRXU
HOHPHQWV FRQVLVWV RI RQO\ WZR �UHODWHG� DPSOLWXGHV� |t| DQG |r| ZKHUH
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with �
q

being the potential, and k‹ the angle. This is simplified to

W
q

= 1
F

n

(�
q

(F
N

) ≠ �
q

(0)) = b
q

. (3.25)

Hence the b
q

s define our winding numbers (see Fig. 3.1).
Another way to observe windings, is to normalize the � (q, r) matrices to set

the range to [0, 1) by dividing by F
n

K (q, r) = ≠q r
F

n≠2

F
n

(mod 1). (3.26)

Define the winding number w as

r = wF
n≠1

. (3.27)

Therefore
K (q, w) = ‘

q w

F
n

(mod 1). (3.28)

with ‘ = ±1 resulting from F
n≠1

F
n≠2

= ±1 (mod F
n

). This is true for the
Fibonacci sequence, and under several conditions to other sequences as well.

3.1.5 Experimental Endeavor

An experimental realization of a winding number in a polaritonic quasicrystal
was realized by Baboux et al. [10]. Here a 2 letter Fibonacci quasicrystal was
realized with a laterally modulated 1D cavity, where the letters a and b cor-
respond to a di�erent width of the cavity. The phason „ was realized with a
characteristic function

‰
j

(„) = sign [cos (2fij/· + „) ≠ cos (fi/·)] , (3.29)

with j = 1 . . . F
n

such that N = F
n

a Fibonacci number. The two values ±1
of the characteristic function ‰

j

correspond to the two letters a and b. This
creates an N -length word

≠æw
N

(„) = ‰
1

‰
2

. . . ‰
N

. (3.30)

The winding number was identified with a location of an edge state. The edge
state was realized by concatenating a word with its mirror opposite Ω≠w

N

(„) =
‰

N

. . . ‰
2

‰
1

such that the structure
Ωæw

N

(„) © ≠æw
N

(„) Ω≠w
N

(„) (3.31)

was considered. The density of states was calculated using scattering matrix
S (k) analysis described above.

This double-Fibonacci word creates a Fabry-Pérot like interface, so that one
needs to inspect the round-trip phase ◊

cav

as explained above. Using Eq. (3.8),
one finds the winding number to be [10]

W = 2q, q œ Z. (3.32)

The integer q œ Z corresponds to the q in the GLT of Bellissard. The factor 2 in
2q corresponds to the edge state moving 2 ◊ q times in the gap when changing
„ from 0 to 2fi.

Several remarks about the winding number found.

= 2 −1+1
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Gaps for transmission experiment:  

The relation to physics: 

K Wq ,N( ) = FN−1Wq

FN
mod FN( )

Locations of the gaps are given by 
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theory methods. The heights of the gaps of the normalized integrated density
of states were found to be given by the K

0

group [31].
Here we wish to relate our results to the K

0

group but for a finite system of
length F

N

. More specifically, the corresponding limit of the set {Ũ
q

}F

N

q=1

yields
K

0

. For this we shall examine several examples and show that there is one to
one correspondence between our previous results and the gap labelling theorem.

The first example that we consider is the Fibonacci substitution. The cor-
responding K

0

group is given by [31]

K
0

= {IDOS(gap)} = (Z + ·Z) fl [0, 1] = ·Z fl [0, 1]. (4.3.1)

On the other hand from Eq. (4.2.21), the location of the gaps in the k-axis
(k = q/F

N

) is given by

k(W
q

, N) = F
N≠1

W
q

mod (F
N

)
F

N

(4.3.2)

with W
q

= 1, ..., F
N

. Using that F

N≠1
F

N

¥ · implies that

k(W
q

, N) ¥ ·(Z/F
N

Z) fl [0, 1] . (4.3.3)

with the corresponding group K(W
q

, N) ¥ ·(Z/F
N

Z). In the limit of N æ
Œ, the ratio F

N≠1
F

N

¥ · becomes exact and (Z/F
N

Z) æ Z, therefore, for the
Fibonacci substitution:

lim
NæŒ

K(W
q

, N) fl [0, 1] = K
0

. (4.3.4)

The next example that we consider is the period doubling substitution given
by

M =
3

1 2
1 0

4
(4.3.5)

It has two eigenvalues ⁄
1,2

= 2, ≠1. The K
0

group is given by [31]

K
0

= {IDOS(gap)} = Z
3 ◊ 2J

fl [0, 1] (4.3.6)

Using Eq. (4.1.10) the generalized Fibonacci numbers are given by

F = 2, 2, 6, 10, 22, 42... (4.3.7)

so that F

N≠1
F

N

¥ 2 = ⁄
1

We define the new matrix K(q, s)

K(q, s, N) = L(q, s)
F

N

. (4.3.8)

Entries of L(q, s) are integers between 1, ..., F
N

so that entries of K(q, s) lies
between [0, 1] and

K(q, s, N) = F
N≠2

qs mod (F
N

)
F

N

. (4.3.9)

66

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

[-1,2]
[4,-6]

[1,-1]

[-2,4]
[3,-4]

[0,1]

[-3,6]
[2,-2]

2nd/O

(Hgap)=p+qW
-1N

N

k 
)LJXUH ����� 1RUPDOL]HG ,'26 IRU WKH )LERQDFFL FKDLQ S10� ZLWK D GLHOHFWULF FRQWUDVW
RI (nhigh− nlow)/nlow = 15�� 7KH ORFDWLRQ RI 8 VHOHFWHG JDSV XVLQJ WKHLU WRSRORJLFDO
QXPEHUV [p, q] DUH LQGLFDWHG LQ DFFRUGDQFH WR �������

EDQG VWUXFWXUHV� 7KH DSSHDUDQFH RI VXFK QXPEHUV LQ WKH VSHFWUXP RI TXDVLSHULRGLF
VWUXFWXUHV VXFK DV WKH )LERQDFFL FKDLQ� PDUNV WKH TXDVLSHULRGLF VWUXFWXUH VSHFWUXP DV
WRSRORJLFDO� 7KH TXDVLSHULRGLF VWUXFWXUH LV WRSRORJLFDO ZLWK QR IXUWKHU PDQLSXODWLRQ
�VXFK DV H[WHUQDO ILHOGV� UHTXLUHG� DV LW RULJLQDWHV IURP D SXUHO\ VWUXFWXUDO SURSHUW\�
+RZHYHU� WKLV VWDWHPHQW VWLOO ODFNV DQ XQGHUVWDQGLQJ UHJDUGLQJ WKH XQGHUO\LQJ V\P�
PHWU\� UHODWLQJ &KHUQ QXPEHUV LQ JDS ODEHOV WR RWKHU NQRZQ WRSRORJLFDO SUREOHPV�
7KH SXUSRVH RI FKDSWHU � LV WR DGGUHVV WKLV SRLQW DQG WR SURSRVH QHZ H[SUHVVLRQV
DQG SRVVLEOH PHDVXUHPHQWV RI &KHUQ QXPEHUV LQ WKHLU PRVW IXQGDPHQWDO GHILQLWLRQ�
D ZLQGLQJ RI D SKDVH GULYHQ E\ VRPH JDXJH ILHOG�

7KH JDS ODEHOLQJ WKHRUHP LV GHILQHG IRU DQ\ VXEVWLWXWLRQ TXDVLFU\VWDO� DOWKRXJK
WKH DPRXQW RI LQWHJHUV UHTXLUHG WR ODEHO HDFK VSHFWUDO JDS LV XVXDOO\ ODUJHU WKDQ 2�

��� 6SHFWUDO JDSV DQG %UDJJ SHDNV

+HUH ZH XVH WKH RSSRVLWH DUJXPHQW WR WKDW JLYHQ LQ ���� 7KH IDFW WKDW WKH TXDVLSHUL�
RGLF FKDLQ VFDWWHULQJ VSHFWUXP LV WRSRORJLFDO �WKURXJK WKH LQWHJHU ODEHOV RI WKH VSHF�
WUDO JDSV� H[WHQGV WR LWV UHFLSURFDO VSDFH SURSHUWLHV� GLVFXVVHG LQ ���� WKURXJK WKH
JHQHUDOL]HG %ORFK WKHRUHP� 7KH VSDWLDO IUHTXHQF\ RI WKH LQILQLWH QXPEHU RI %UDJJ
SHDNV RI WKH LQILQLWH TXDVLSHULRGLF FKDLQ LV GLUHFWO\ UHODWHG WR WKH LQILQLWH QXPEHU RI
VSHFWUDO JDSV LQ WKH VFDWWHULQJ �RU WUDQVPLVVLRQ� VSHFWUXP� )LJXUH ���� VKRZV WKLV
HTXLYDOHQFH KROGV IRU WKH )LERQDFFL FKDLQ S10 H[DPSOH�
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Gap Labeling Theorem (GLT)

theory methods. The heights of the gaps of the normalized integrated density
of states were found to be given by the K

0

group [31].
Here we wish to relate our results to the K

0

group but for a finite system of
length F

N

. More specifically, the corresponding limit of the set {Ũ
q

}F

N

q=1

yields
K

0

. For this we shall examine several examples and show that there is one to
one correspondence between our previous results and the gap labelling theorem.

The first example that we consider is the Fibonacci substitution. The cor-
responding K

0

group is given by [31]

K
0

= {IDOS(gap)} = (Z + ·Z) fl [0, 1] = ·Z fl [0, 1]. (4.3.1)

On the other hand from Eq. (4.2.21), the location of the gaps in the k-axis
(k = q/F

N

) is given by

k(W
q

, N) = F
N≠1

W
q

mod (F
N

)
F

N

(4.3.2)

with W
q

= 1, ..., F
N

. Using that F

N≠1
F

N

¥ · implies that

k(W
q

, N) ¥ ·(Z/F
N

Z) fl [0, 1] . (4.3.3)

with the corresponding group K(W
q

, N) ¥ ·(Z/F
N

Z). In the limit of N æ
Œ, the ratio F

N≠1
F

N

¥ · becomes exact and (Z/F
N

Z) æ Z, therefore, for the
Fibonacci substitution:

lim
NæŒ

K(W
q

, N) fl [0, 1] = K
0

. (4.3.4)

The next example that we consider is the period doubling substitution given
by

M =
3

1 2
1 0

4
(4.3.5)

It has two eigenvalues ⁄
1,2

= 2, ≠1. The K
0

group is given by [31]

K
0

= {IDOS(gap)} = Z
3 ◊ 2J

fl [0, 1] (4.3.6)

Using Eq. (4.1.10) the generalized Fibonacci numbers are given by

F = 2, 2, 6, 10, 22, 42... (4.3.7)

so that F

N≠1
F

N

¥ 2 = ⁄
1

We define the new matrix K(q, s)

K(q, s, N) = L(q, s)
F

N

. (4.3.8)

Entries of L(q, s) are integers between 1, ..., F
N

so that entries of K(q, s) lies
between [0, 1] and

K(q, s, N) = F
N≠2

qs mod (F
N

)
F

N

. (4.3.9)

66

K Wq ,N( ) = FN−1Wq

FN
mod FN( )

N ε = EQp ,q 2( ) = p + qτ −1

k 
)LJXUH ����� $ UHFLSURFDO VSDFH DQG VFDWWHULQJ DQDO\VLV RI WKH )LERQDFFL FKDLQ S10.
7KH UHODWLRQV EHWZHHQ WKH VSDWLDO IUHTXHQF\ RI REVHUYDEOH GLIIUDFWLRQ SHDNV �D��
DQG WKH IUHTXHQF\ RI WKH VSHFWUDO JDSV LQ WKH WUDQVPLVVLRQ VSHFWUXP �E�� ZKHUH WKH
FRQWUDVW LV 100��

5HJDUGLQJ WKLV HTXLYDOHQFH� ZH QRWH WKDW WKH GLIIUDFWLRQ VSHFWUXP DULVHV IURP
SXUHO\ VWUXFWXUDO SURSHUWLHV� ZKLOH WKH VFDWWHULQJ RI ZDYHV LQYROYHV SDUDPHWHUV VXFK
DV GLHOHFWULF FRQWUDVW� FRQWUROOLQJ WKH ZLGWK RI WKH JDSV� ,Q FKDSWHU � WKLV UHODWLRQ
ZLOO EHFRPH YHU\ XVHIXO LQ H[SODLQLQJ WKH WRSRORJLFDO SURSHUWLHV RI TXDVLSHULRGLF
VWUXFWXUHV� HVSHFLDOO\ ZLWK UHJDUGV WR WKH TXHVWLRQ RI WKHLU RULJLQ DQG WKH UROH RI WUXH
LUUDWLRQDOLW\�

)XUWKHUPRUH� WKURXJK WKH JDS ODEHOLQJ WKHRUHP JLYHQ LQ ������� OHQGV WRSRORJLFDO
PHDQLQJ WR p, q LQ H[SUHVVLRQ �������

��� ,QGHSHQGHQW SKDVHV RI WKH VFDWWHULQJ PDWUL[

,Q WKLV VHFWLRQ ZH UHLWHUDWH VRPH XQGHUVWDQGLQJV UHJDUGLQJ WKH SURSHUWLHV RI WKH
VFDWWHULQJ PDWUL[ LQ RUGHU WR SURYLGH D QHZ ODQJXDJH FRQVLGHULQJ WKH LQGHSHQGHQW
SKDVHV RI WKH VFDWWHULQJ PDWUL[ DQG WKHLU UHODWLRQV WR REVHUYDEOH SURSHUWLHV� 7KLV QHZ
GHILQLWLRQ ZLOO EHDU PHDQLQJ LQ WKH DQDO\VLV RI WRSRORJLFDO SURSHUWLHV RI TXDVLSHULRGLF
FKDLQV �WR EH GLVFXVVHG LQ FKDSWHU ��� EXW ZH EHOLHYH WKLV GHILQLWLRQ LV XQLYHUVDO� L�H
LW LV DSSOLFDEOH WR RWKHU VFDWWHULQJ SUREOHPV�

����� 7ZR LQGHSHQGHQW SKDVHV

7KH VFDWWHULQJ PDWUL[ S RI DQ\ FKDLQ ����� FRQWDLQV IRXU HOHPHQWV� 7KHVH IRXU
HOHPHQWV FRQVLVWV RI RQO\ WZR �UHODWHG� DPSOLWXGHV� |t| DQG |r| ZKHUH
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theory methods. The heights of the gaps of the normalized integrated density
of states were found to be given by the K

0

group [31].
Here we wish to relate our results to the K

0

group but for a finite system of
length F

N

. More specifically, the corresponding limit of the set {Ũ
q

}F

N

q=1

yields
K

0

. For this we shall examine several examples and show that there is one to
one correspondence between our previous results and the gap labelling theorem.

The first example that we consider is the Fibonacci substitution. The cor-
responding K

0

group is given by [31]

K
0

= {IDOS(gap)} = (Z + ·Z) fl [0, 1] = ·Z fl [0, 1]. (4.3.1)

On the other hand from Eq. (4.2.21), the location of the gaps in the k-axis
(k = q/F

N

) is given by

k(W
q

, N) = F
N≠1

W
q

mod (F
N

)
F

N

(4.3.2)

with W
q

= 1, ..., F
N

. Using that F

N≠1
F

N

¥ · implies that

k(W
q

, N) ¥ ·(Z/F
N

Z) fl [0, 1] . (4.3.3)

with the corresponding group K(W
q

, N) ¥ ·(Z/F
N

Z). In the limit of N æ
Œ, the ratio F

N≠1
F

N

¥ · becomes exact and (Z/F
N

Z) æ Z, therefore, for the
Fibonacci substitution:

lim
NæŒ

K(W
q

, N) fl [0, 1] = K
0

. (4.3.4)

The next example that we consider is the period doubling substitution given
by

M =
3

1 2
1 0

4
(4.3.5)

It has two eigenvalues ⁄
1,2

= 2, ≠1. The K
0

group is given by [31]

K
0

= {IDOS(gap)} = Z
3 ◊ 2J

fl [0, 1] (4.3.6)

Using Eq. (4.1.10) the generalized Fibonacci numbers are given by

F = 2, 2, 6, 10, 22, 42... (4.3.7)

so that F

N≠1
F

N

¥ 2 = ⁄
1

We define the new matrix K(q, s)

K(q, s, N) = L(q, s)
F

N

. (4.3.8)

Entries of L(q, s) are integers between 1, ..., F
N

so that entries of K(q, s) lies
between [0, 1] and

K(q, s, N) = F
N≠2

qs mod (F
N

)
F

N

. (4.3.9)
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0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

[-1,2]
[4,-6]

[1,-1]

[-2,4]
[3,-4]

[0,1]

[-3,6]
[2,-2]

2nd/O

(Hgap)=p+qW
-1N

N

k 
)LJXUH ����� 1RUPDOL]HG ,'26 IRU WKH )LERQDFFL FKDLQ S10� ZLWK D GLHOHFWULF FRQWUDVW
RI (nhigh− nlow)/nlow = 15�� 7KH ORFDWLRQ RI 8 VHOHFWHG JDSV XVLQJ WKHLU WRSRORJLFDO
QXPEHUV [p, q] DUH LQGLFDWHG LQ DFFRUGDQFH WR �������

EDQG VWUXFWXUHV� 7KH DSSHDUDQFH RI VXFK QXPEHUV LQ WKH VSHFWUXP RI TXDVLSHULRGLF
VWUXFWXUHV VXFK DV WKH )LERQDFFL FKDLQ� PDUNV WKH TXDVLSHULRGLF VWUXFWXUH VSHFWUXP DV
WRSRORJLFDO� 7KH TXDVLSHULRGLF VWUXFWXUH LV WRSRORJLFDO ZLWK QR IXUWKHU PDQLSXODWLRQ
�VXFK DV H[WHUQDO ILHOGV� UHTXLUHG� DV LW RULJLQDWHV IURP D SXUHO\ VWUXFWXUDO SURSHUW\�
+RZHYHU� WKLV VWDWHPHQW VWLOO ODFNV DQ XQGHUVWDQGLQJ UHJDUGLQJ WKH XQGHUO\LQJ V\P�
PHWU\� UHODWLQJ &KHUQ QXPEHUV LQ JDS ODEHOV WR RWKHU NQRZQ WRSRORJLFDO SUREOHPV�
7KH SXUSRVH RI FKDSWHU � LV WR DGGUHVV WKLV SRLQW DQG WR SURSRVH QHZ H[SUHVVLRQV
DQG SRVVLEOH PHDVXUHPHQWV RI &KHUQ QXPEHUV LQ WKHLU PRVW IXQGDPHQWDO GHILQLWLRQ�
D ZLQGLQJ RI D SKDVH GULYHQ E\ VRPH JDXJH ILHOG�

7KH JDS ODEHOLQJ WKHRUHP LV GHILQHG IRU DQ\ VXEVWLWXWLRQ TXDVLFU\VWDO� DOWKRXJK
WKH DPRXQW RI LQWHJHUV UHTXLUHG WR ODEHO HDFK VSHFWUDO JDS LV XVXDOO\ ODUJHU WKDQ 2�

��� 6SHFWUDO JDSV DQG %UDJJ SHDNV

+HUH ZH XVH WKH RSSRVLWH DUJXPHQW WR WKDW JLYHQ LQ ���� 7KH IDFW WKDW WKH TXDVLSHUL�
RGLF FKDLQ VFDWWHULQJ VSHFWUXP LV WRSRORJLFDO �WKURXJK WKH LQWHJHU ODEHOV RI WKH VSHF�
WUDO JDSV� H[WHQGV WR LWV UHFLSURFDO VSDFH SURSHUWLHV� GLVFXVVHG LQ ���� WKURXJK WKH
JHQHUDOL]HG %ORFK WKHRUHP� 7KH VSDWLDO IUHTXHQF\ RI WKH LQILQLWH QXPEHU RI %UDJJ
SHDNV RI WKH LQILQLWH TXDVLSHULRGLF FKDLQ LV GLUHFWO\ UHODWHG WR WKH LQILQLWH QXPEHU RI
VSHFWUDO JDSV LQ WKH VFDWWHULQJ �RU WUDQVPLVVLRQ� VSHFWUXP� )LJXUH ���� VKRZV WKLV
HTXLYDOHQFH KROGV IRU WKH )LERQDFFL FKDLQ S10 H[DPSOH�
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Gap Labeling Theorem (GLT)

theory methods. The heights of the gaps of the normalized integrated density
of states were found to be given by the K

0

group [31].
Here we wish to relate our results to the K

0

group but for a finite system of
length F

N

. More specifically, the corresponding limit of the set {Ũ
q

}F

N

q=1

yields
K

0

. For this we shall examine several examples and show that there is one to
one correspondence between our previous results and the gap labelling theorem.

The first example that we consider is the Fibonacci substitution. The cor-
responding K

0

group is given by [31]

K
0

= {IDOS(gap)} = (Z + ·Z) fl [0, 1] = ·Z fl [0, 1]. (4.3.1)

On the other hand from Eq. (4.2.21), the location of the gaps in the k-axis
(k = q/F

N

) is given by

k(W
q

, N) = F
N≠1

W
q

mod (F
N

)
F

N

(4.3.2)

with W
q

= 1, ..., F
N

. Using that F

N≠1
F

N

¥ · implies that

k(W
q

, N) ¥ ·(Z/F
N

Z) fl [0, 1] . (4.3.3)

with the corresponding group K(W
q

, N) ¥ ·(Z/F
N

Z). In the limit of N æ
Œ, the ratio F

N≠1
F

N

¥ · becomes exact and (Z/F
N

Z) æ Z, therefore, for the
Fibonacci substitution:

lim
NæŒ

K(W
q

, N) fl [0, 1] = K
0

. (4.3.4)

The next example that we consider is the period doubling substitution given
by

M =
3

1 2
1 0

4
(4.3.5)

It has two eigenvalues ⁄
1,2

= 2, ≠1. The K
0

group is given by [31]

K
0

= {IDOS(gap)} = Z
3 ◊ 2J

fl [0, 1] (4.3.6)

Using Eq. (4.1.10) the generalized Fibonacci numbers are given by

F = 2, 2, 6, 10, 22, 42... (4.3.7)

so that F

N≠1
F

N

¥ 2 = ⁄
1

We define the new matrix K(q, s)

K(q, s, N) = L(q, s)
F

N

. (4.3.8)

Entries of L(q, s) are integers between 1, ..., F
N

so that entries of K(q, s) lies
between [0, 1] and

K(q, s, N) = F
N≠2

qs mod (F
N

)
F

N

. (4.3.9)
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K Wq ,N( ) = FN−1Wq

FN
mod FN( )

N ε = EQp ,q 2( ) = p + qτ −1 Winding numbers

How to observe these 
topological winding numbers  ?
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A structural degree of freedom 

Is there a symmetry of the Fibonacci chain probed 	
when scanning the phase over a period ? 

A single structural  
change for each 
value of Δφ



Cut & Project method 

Very active branch in maths of tiling, dynamical systems	

E. Pelantová et al. / Quasicrystals 7

Figure 3. Voronoi tiling of the cut-and-project set shown in Figure 2.

Figure 4. The tiles appearing in the Voronoi tiling of Figure 3.

V2 : y = ηx, ε ̸= η. If we choose vectors x⃗1 = 1
ε−η (1, ε) and x⃗2 = 1

η−ε(1, η) then
for any point of the lattice Z2 we have

(p, q) = (q − pη)x⃗1︸ ︷︷ ︸
π1(p,q)

+ (q − pε)x⃗2︸ ︷︷ ︸
π2(p,q)

.

Let us recall that the construction by cut and projection requires that the projection π1

restricted to the lattice L is one-to-one, and that the set π2(L) is dense in V2.
If η and ε are irrational numbers, then these conditions are satisfied. The projection

of the lattice L = Z2 on the straight lines V1 and V2 are written using additive abelian
groups

Z[η] := {a + bη | a, b ∈ Z} ,

Z[ε] := {a + bε | a, b ∈ Z} .

These groups are obviously isomorphic; the isomorphism ⋆ : Z[η] → Z[ε] is given by
the prescription

x = a + bη %→ x⋆ = a + bε .

The cut-and-project scheme can then be illustrated by the following diagram.

Duneau & Katz	
Moody, Meyer	

Pinsner, Voiculescu	
Mendes-France, Allouche	

Bombieri, Taylor,	
Kellendonk, Grimm,	

Queffelec, Bellissard, ……	

Generate both periodic and quasi-periodic (quasicrystals) structures.	
 	
             A brief tutorial for practical implementation.



▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

y = bx+const

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

ABB A B AAB AA A

Cut and Project quasicrystals and the Fibonacci chain

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

ABB A B AAB AA A

Cut and Project quasicrystals and the Fibonacci chain

Start from a 2D periodic lattice L = !2



▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

y = bx+const

Start from a 2D lattice L = !2



▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

y = bx+const

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain
Start from a 2D lattice L = !2
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constbxy � 
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y = bx+const

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

Start from a 2D lattice L = !2



▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

y = bx+const

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

ABB A B AAB AA A

Cut and Project quasicrystals and the Fibonacci chain

Start from a 2D lattice L = !2



▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

y = bx+const

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

ABB A B AAB AA A

Cut and Project quasicrystals and the Fibonacci chain

Generate only 2 	
possible distances

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

ABB A B AAB AA A

Cut and Project quasicrystals and the Fibonacci chain

Start from a 2D lattice L = !2



For a rational slope : periodic superlattice

▪ The C&P method defines 
crystals and quasicrystals.
▪ Rational slope

constxy � 3
2

B AA B AA B AA

Periodic 
superlattice

Cut and Project quasicrystals and the Fibonacci chain



For a rational slope : periodic superlattice

▪ The C&P method defines 
crystals and quasicrystals.
▪ Rational slope

constxy � 3
2

B AA B AA B AA

Periodic 
superlattice

Cut and Project quasicrystals and the Fibonacci chain

For an irrational slope : quasi-periodic structure
▪ The C&P method defines 

crystals and quasicrystals.
▪ Rational slope
▪ Irrational slopes

▪ A famous C&P quasicrystal 
example –The Fibonacci chain.

Leonardo Pisano
(Fibonacci)

)51( ; 2
11 � � � WW constxy

ABB A A BB AAB A AA

Cut and Project quasicrystals and the Fibonacci chain

▪ The C&P method defines 
crystals and quasicrystals.
▪ Rational slope
▪ Irrational slopes

▪ A famous C&P quasicrystal 
example –The Fibonacci chain.

Leonardo Pisano
(Fibonacci)

)51( ; 2
11 � � � WW constxy

ABB A A BB AAB A AA

Cut and Project quasicrystals and the Fibonacci chain

y = τ −1x+const

τ =
1+ 5( )

2
golden mean
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Characteristic function

χn = sign cos 2πnτ −1+φ( )−cos π τ −1( )⎡⎣ ⎤⎦

φ    is an innocuous and thus 	
     ignored modulation phase.	
!
For an infinite Fibonacci chain : 

φ∞ = 3πσ = 3π τ −1

Define instead

C&P method

χn = sign cos 2πnτ −1+φ∞ + Δφ( )− cos πτ −1( )⎡⎣ ⎤⎦

Is it possible to give a meaning 	
to the phase      within the C&P method ?Δφ

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

y = τ −1x+const

τ =
1+ 5( )

2
golden mean
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Characteristic function

χn = sign cos 2πnτ −1+φ( )−cos π τ −1( )⎡⎣ ⎤⎦

φ

φ∞ = 3πσ = 3π τ −1

Define instead

C&P method

χn = sign cos 2πnτ −1+φ∞ + Δφ( )− cos πτ −1( )⎡⎣ ⎤⎦

Is it possible to give a meaning 	
to       using the C&P method ?Δφ

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

y = τ −1x+const

τ =
1+ 5( )

2
golden mean

    is an innocuous and thus 	
     ignored modulation phase.	
!
For an infinite Fibonacci chain : 
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Characteristic function

χn = sign cos 2πnτ −1+φ( )−cos π τ −1( )⎡⎣ ⎤⎦

φ

φ∞ = 3πσ = 3π τ −1

Define instead

C&P method

χn = sign cos 2πnτ −1+φ∞ + Δφ( )− cos πτ −1( )⎡⎣ ⎤⎦

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

y = τ −1x+const

τ =
1+ 5( )

2
golden mean

Characteristic function C&P method

(Usually ignored)

� � � �> @11 cos2cos �� �� SWIWSF nsignn

:I The modulation phase

Cut and Project quasicrystals and the Fibonacci chain

In finite structures: 13 � SWIFibo

� � � �> @11 cos2cos �� �'�� SWIIWSF Fibon nsign
S
IW

2
1 '
� � xy

Each I yields a valid 
Fibonacci segmentWe understand the meaning of  Δφ

Δφ

    is an innocuous and thus 	
     ignored modulation phase.	
!
For an infinite Fibonacci chain : 

Is it possible to give a meaning 	
to       using the C&P method ?Δφ
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C&P method - Properties

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

y = τ −1x+const

Characteristic function C&P method

(Usually ignored)

� � � �> @11 cos2cos �� �� SWIWSF nsignn

:I The modulation phase

Cut and Project quasicrystals and the Fibonacci chain

In finite structures: 13 � SWIFibo

� � � �> @11 cos2cos �� �'�� SWIIWSF Fibon nsign
S
IW

2
1 '
� � xy

Each I yields a valid 
Fibonacci segment

Δφ

• Each value of  the phase        accounts for an existing 	
segment of the infinite Fibonacci chain.	
!
•       is      -periodic. 	
!
•      corresponds to a translation (along the chain) cycle 	
!
 	

!

Δφ

Δφ

Δφ = 2πτ −1 Δn

Δφ

2π

▪ The C&P method defines 
crystals and quasicrystals.
▪ Rational slope
▪ Irrational slopes

▪ A famous C&P quasicrystal 
example –The Fibonacci chain.

Leonardo Pisano
(Fibonacci)

)51( ; 2
11 � � � WW constxy

ABB A A BB AAB A AA

Cut and Project quasicrystals and the Fibonacci chain
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▪ The C&P method defines 
crystals and quasicrystals.
▪ Rational slope
▪ Irrational slopes

▪ A famous C&P quasicrystal 
example –The Fibonacci chain.

Leonardo Pisano
(Fibonacci)

)51( ; 2
11 � � � WW constxy

ABB A A BB AAB A AA

Cut and Project quasicrystals and the Fibonacci chain

How a change of phase is implemented along the chain ?

Δφ
2π

▪ The C&P method defines 
crystals and quasicrystals

constbxy � 

Cut and Project quasicrystals and the Fibonacci chain

y = τ −1x+const

Characteristic function C&P method

(Usually ignored)

� � � �> @11 cos2cos �� �� SWIWSF nsignn

:I The modulation phase

Cut and Project quasicrystals and the Fibonacci chain

In finite structures: 13 � SWIFibo

� � � �> @11 cos2cos �� �'�� SWIIWSF Fibon nsign
S
IW

2
1 '
� � xy

Each I yields a valid 
Fibonacci segment

Δφ

▪ The C&P method defines 
crystals and quasicrystals.
▪ Rational slope
▪ Irrational slopes

▪ A famous C&P quasicrystal 
example –The Fibonacci chain.

Leonardo Pisano
(Fibonacci)

)51( ; 2
11 � � � WW constxy

ABB A A BB AAB A AA

Cut and Project quasicrystals and the Fibonacci chain
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Characteristic function C&P method

(Usually ignored)

� � � �> @11 cos2cos �� �� SWIWSF nsignn

:I The modulation phase

Cut and Project quasicrystals and the Fibonacci chain

In finite structures: 13 � SWIFibo

� � � �> @11 cos2cos �� �'�� SWIIWSF Fibon nsign
S
IW

2
1 '
� � xy

Each I yields a valid 
Fibonacci segment

▪ The C&P method defines 
crystals and quasicrystals.
▪ Rational slope
▪ Irrational slopes

▪ A famous C&P quasicrystal 
example –The Fibonacci chain.

Leonardo Pisano
(Fibonacci)

)51( ; 2
11 � � � WW constxy

ABB A A BB AAB A AA

Cut and Project quasicrystals and the Fibonacci chain

▪ The C&P method defines 
crystals and quasicrystals.
▪ Rational slope
▪ Irrational slopes

▪ A famous C&P quasicrystal 
example –The Fibonacci chain.

Leonardo Pisano
(Fibonacci)

)51( ; 2
11 � � � WW constxy

ABB A A BB AAB A AA

Cut and Project quasicrystals and the Fibonacci chain

Characteristic function

(Usually ignored)

� � � �> @11 cos2cos �� �� SWIWSF nsignn

:I The modulation phase

Cut and Project quasicrystals and the Fibonacci chain

In finite structures: 13 � SWIFibo

� � � �> @11 cos2cos �� �'�� SWIIWSF Fibon nsign

I has a translation cycle
'I=2SW-1'n

Δφ
2π periodicity

How a change of phase is implemented along the chain ?
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Characteristic function C&P method

(Usually ignored)

� � � �> @11 cos2cos �� �� SWIWSF nsignn

:I The modulation phase

Cut and Project quasicrystals and the Fibonacci chain

In finite structures: 13 � SWIFibo

� � � �> @11 cos2cos �� �'�� SWIIWSF Fibon nsign
S
IW

2
1 '
� � xy

Each I yields a valid 
Fibonacci segment

▪ The C&P method defines 
crystals and quasicrystals.
▪ Rational slope
▪ Irrational slopes

▪ A famous C&P quasicrystal 
example –The Fibonacci chain.

Leonardo Pisano
(Fibonacci)

)51( ; 2
11 � � � WW constxy

ABB A A BB AAB A AA

Cut and Project quasicrystals and the Fibonacci chain

▪ The C&P method defines 
crystals and quasicrystals.
▪ Rational slope
▪ Irrational slopes

▪ A famous C&P quasicrystal 
example –The Fibonacci chain.

Leonardo Pisano
(Fibonacci)

)51( ; 2
11 � � � WW constxy

ABB A A BB AAB A AA

Cut and Project quasicrystals and the Fibonacci chain

Δφ
2π

Characteristic function

(Usually ignored)

� � � �> @11 cos2cos �� �� SWIWSF nsignn

:I The modulation phase

Cut and Project quasicrystals and the Fibonacci chain

In finite structures: 13 � SWIFibo

� � � �> @11 cos2cos �� �'�� SWIIWSF Fibon nsign

I has a translation cycle
'I=2SW-1'n

Translation

How a change of phase is implemented along the chain ?
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A structural degree of freedom 

Is there a symmetry of the Fibonacci chain probed 	
when scanning the phase over a period ? 

A single structural  
change for each 
value of Δφ

!
!
Fibonacci quasi-crystal :	

Is it possible to define a non trivial structure such as the 

group of magnetic translations in the Harper model ?	

Is there a quantity playing the role of a magnetic field ?



Palindrome ?
So what happens when we scan the modulation phase?

Properties of finite C&P quasicrystals and the Fibonacci chain

▪ Scanning  I triggers a train of identical 
structural changes.

▪ Each resultant structure is a finite 
segment of an infinite Fibonacci.

▪ The structural change staircase is not 
equally spaced. Step length depends on 
the structure length and the value of  I.

▪ Scanning  I drives the structure 
through a palindromicity cycle

Palindrome

Scanning the phase      drives the chain through a palindromic cycle. Δφ



Palindrome
Scanning the phase      drives the chain through a palindromic cycle. Δφ

η Δφ( ) ≡ 1
N

χ j Δφ( )− χN− j Δφ( )
j=0

N−1
2

⎡
⎣⎢

⎤
⎦⎥

∑



Remarks :

• Palindromic symmetry is (almost ?) ubiquitous 
in C&P quasicrystals. !

• Counterexamples for non C&P cases : non 
Pisot substitutions are not palindromic.!

• The phason    cannot be defined for non C&P 
quasicrystals.!

• But the Gap Labeling theorem and associated 
Chern numbers are well defined.

φ



Fibonacci chains generated using substitution or concatenation 	
are “almost” palindromic.

They correspond to	
!
and a length equal to a Fibonacci number  

Δφ = 0 ⇔ φ = φ∞ = 3π τ −1

NF

An infinite chain contains arbitrary long palindromic substructures

Scanning the phase      drives the chain through a palindromic cycle. Δφ
Palindromicity



The deviation from palindromicity saturates. 	

76.3%

The saturation value depends on the C&P slope, i.e., 	
on type of quasi-periodic potential.



The deviation from palindromicity saturates. 	

For the Fibonacci chain, the saturation corresponds to the occurrence 	
of [AA] doublets, knowing that [BB] doublets are forbidden.

76.3%

The saturation value depends on the C&P slope, i.e., 	
on type of quasi-periodic potential.

23.7%



Are there spectral consequences 	
of these structural properties ?

No !

Almost No…



Almost No…

We have already calculated and measure the spectrum in details

Are there spectral consequences 	
of these structural properties ?
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Scaled finite size Fibonacci chains

Density of modes

Integrated Density of 
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Scaled finite size Fibonacci chains

Density of modes

Integrated Density of 

Independent of the phase  Δφ



Integrated Density of States-Gap Labeling

N ω gap( ) = p + qτ −1 within a          gapp,q[ ]
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1+ 5( )

2
golden mean



N ω gap( ) = p + qτ −1 within a          gapp,q[ ]

p,q( ) ∈!

τ =
1+ 5( )

2
golden mean



Integrated Density of States-Gap Labeling

N ω gap( ) = p + qτ −1 within a          gapp,q[ ]

p,q( ) ∈!

τ =
1+ 5( )

2
golden mean
Independent of the phase  φ



Integrated Density of States-Gap Labeling

N ω gap( ) = p + qτ −1 within a          gapp,q[ ]

              are topological invariants (Chern numbers). 
Independent of the potential strength, inhomogeneity, ...
p,q( ) ∈!

τ =
1+ 5( )

2
golden mean
Independent of the phase  Δφ



Integrated Density of States-Gap Labeling

N ω gap( ) = p + qτ −1 within a          gapp,q[ ]

              are topological invariants (Chern numbers). 
Independent of the potential strength, inhomogeneity, ...
p,q( ) ∈!

τ =
1+ 5( )

2
golden mean

Existence of Chern numbers is independent of the 
palindromic symmetry and of the phason   Δφ



How do we obtain the gap labeling theorem ?

All these characteristics are independent of the phase  Δφ

Using the substitution matrix approach



How do we obtain the gap labeling theorem ?

Using the substitution matrix approach

Spectral characteristics are independent of the phase  

Quasicrystals spectra

▪ We obtain the following spectral properties

Transmission 

Density of 
states

Transmission spectrum

Density of modes

φ



How do we obtain the gap labeling theorem ?

Using the substitution matrix approach

Spectral characteristics are independent of the phase  Δφ

Quasicrystals spectra

▪ We obtain the following spectral properties

Transmission 

Density of 
states

Transmission spectrum

Density of modes

Independent of the phase  φ
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The modulation phase I
Sf

N=89
I =0

The modulation phase I
Sf

N=89
I =0.1

The modulation phase I
Sf

N=89
I =0.15The modulation phase I

Sf

N=89
I =0.2

Each sequence has exactly the same spectrum.



How do we obtain the gap labeling theorem ?

Using the substitution matrix approach

Spectral characteristics are independent of the phase  

Quasicrystals spectra

▪ We obtain the following spectral properties

Transmission 

Density of 
states

Transmission spectrum

Density of modes
Independent of the phase  

To see that : scattering formalism

φ

φ
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Fibonacci chain embedded between free spaces:        

δ k( ) = θt (k)+ π
2 is independent of the modulation phase 

November 2, 2012 0:32 PSP Review Volume - 9.75in x 6.5in Panbook-GD-10-22-2012

6

From the definition of the phase of the transmission amplitude, t ⇥ |t|ei �, and from
(1.21), we obtain the relation ⇥(k) = �(k) + ⌅/2. A simple and elegant relation
exists between the phase shift ⇥(k) and the change of density of states ⇧(k):

⇧(k)� ⇧0(k) =
1

2⌅
Im

⌥

⌥k
ln det S(k) (1.22)

where ⇧0(k) is the density of states for the free system, namely with zero potential
for the Schrödinger equation in (1.3), or ⇤(x) = ⇤0 for the Helmholtz equation (1.2).

The source of scattering in either Schrödinger or Helmholtz equations is the
potential V(x) (or the varying refractive index n(x)). Should they vanish, the S-
matrix reduces to the identity. Now assume that they decrease fast enough so that
we can enclose the scattering system (the “black box” in Fig. 1.1.) inside a region
of size L, much larger than the support of the scattering potential. Apply periodic
boundary conditions, ⌃(0) = ⌃(L) and ⌃⌅(0) = ⌃⌅(L), at the boundary of the
large box, noting that for large enough L, the physics is independent of the precise
boundary conditions. For large enough L,

⌃(0) = ⌃(L) ⇤ iL + oL = oReikL + iRe�ikL

⌃⌅(0) = ⌃⌅(L) ⇤ ik(iL � oL) = ik(oReikL � iRe�ikL) . (1.23)

These algebraic relations may be written as a spectral condition:

det
�

1 � eikL
�

0 1
1 0

⇥
S(k)

⇥
= 0 . (1.24)

Solving for S, leads to the following relation between the total phase shift defined
in (1.21) and the possible wave vectors:

kn(L) =
⌅n
L

� ⇥(kn)
L

(1.25)

Noting that k(0)n (L) = ⌅n/2L are the eigenmodes in the absence of scattering po-
tential, namely for ⇥(k) = 0, we can rewrite (1.25) for two consecutive values of n
under the form,

(kn+1 � kn)

�
L +

d⇥(k)
dk

⇥
= ⌅ (1.26)

Defining the density of states, or density of modes (DOM) as ⇧(k) = 1/(kn+1 � kn)
leads to (1.22):

⇧(k)� ⇧0(k) =
1
⌅

d⇥(k)
dk

(1.27)

Recalling the definition in (1.9) of the counting function, N (k) =
⇤ k ⇧(k⌅)dk⌅, and

its relation to the DOM in (1.10), we obtain:

⇥(k) = ⌅�N(k) = ⌅ (N(k)� N0(k)) (1.28)

which relates the total phase shift of the S-matrix to a spectral quantity. Both (1.22)
and (1.28) are rather remarkable (and well-known) results since they express the
fact that a measurement of the scattering data from a black box allows one to re-
trieve its spectral information provided it is coupled to the external environment.
Some further details are given in the next section.
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φ
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But…since the phase      measures the deviation from palindromicity, 	
it should show up in the difference between the 2 scattering configurations, 

Δφ

r
!
= r
"
eiα

α should depend on the structural phaseΔφ
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r
!
= r
"
eiα

α depends on the structural phase ΔφThe chiral angleα depends on the structural phase ΔφThe chiral angle

Since      measures the deviation from a palindrome, it should show up 
in the difference between the 2 scattering configurations, 

Δφ
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r
!
= r
"
eiα

α depends on the structural phase ΔφThe chiral angle

Since      measures the deviation from a palindrome, it should show up 
in the difference between the 2 scattering configurations, 

Δφ
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r
!
= r
"
eiα

α depends on the structural phase ΔφThe chiral angle

Since      measures the deviation from a palindrome, it should show up 
in the difference between the 2 scattering configurations, 

Δφ

α

 its dependence on the structural phase Δφ
How to observe the chiral angle    ,



Impose a closed boundary

mirror

How to create edge states and relate them to the 	
scattering formalism ?
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r
!
= r
"
eiα

α depends on the structural phase ΔφThe chiral angle

Since      measures the deviation from a palindrome, it should show up 
in the difference between the 2 scattering configurations, 

Δφ

α

 its dependence on the structural phase Δφ
How to observe the chiral angle    ,

On edge states since scattering states are 	
independent of the structural phase  Δφ
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Relation between Chern numbers and 	
the scattering matrix

r
!
= r
"
eiα

α q ω ,φ( ) =θ
!
q −θ
!
q



Winding number of                

The Chern number q is the winding number of the chiral 
phase                      :           

r
!
= r
"
eiα

α q ω ,φ( ) =θ
!
q −θ
!
q

W α q( ) ≡ 1
4π

dφ
dα q ω ,φ( )

dφ
= q

0

2π

∫

α q ω ,φ( )

α q ω ,φ( )



Impose a closed boundary

mirror

How to create edge states and relate them to the 	
scattering formalism ?
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Impose a closed boundary

mirror

Equivalent to

F
!"

N F
#!

N

How to create edge states and relate them to the 	
scattering formalism ?
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Impose a closed boundary

mirror

F
!"

N F
#!

N

can be studied as a 

scattering system!

Equivalent to

How to create edge states and relate them to the 	
scattering formalism ?



Edge states of F
!"

N F
#!

N

Δφ

• This structure isn’t  Fibonacci : it displays additional modes in the gaps	
!
• Gap locations remain unchanged w.r.t. the original structure	
!
• Frequencies of the gap modes depend on the structural 	
       modulation phase 

Spatial structure 
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!
• Gap locations remain unchanged w.r.t. the original structure	
!
• Frequencies of the gap modes depend on the structural 	
       modulation phase Δφ



Edge states of F
!"

N F
#!

N

• This structure isn’t  Fibonacci : it displays additional modes in the gaps	
!
• Gap locations remain unchanged w.r.t. the original structure	
!
• Frequencies of the gap modes depend on the structural 	
       modulation phase Δφ



Creating edge modes

• Edge modes show up in most finite superlattices at gap frequencies 	
      which depend on boundary conditions:	
!

A. Boundary states due to a “closed” boundary condition (e.g., mirror)	
B. Interface modes	
C. Defect modes	

!
• Edge modes have the same origin and are of topological nature. 



Relation to the palindromic cycle



Relation to the palindromic cycle

No edge states 	
at a structural palindrome

for all gaps



Relation to gap labelling and Chern numbers

Δφ
π

N ω ( p,q)gap( ) = p + qτ −1



Relation to gap labelling and Chern numbers

Δφ
π

Chern numbers [p,q] describe the topological behaviour of 	
edge states in the gaps when changing the structural 	

phase angle     Δφ



Relation to gap labelling and Chern numbers

Δφ
π

Chern numbers [p,q] describe the topological behaviour of 	
edge states in the gaps when changing the structural 	

phase angle     Δφ

Edge states traverse the gaps	
with a period π q
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r
!
= r
"
eiα

α depends on the structural phase ΔφThe chiral phase

α q ω ,φ( ) =θ
!
q −θ
!
q

For edge state in a gap with Chern number     : q



defines the spectral deviation from a palindrome

It depends on : 	
!
• the Chern number q in a gap	
!
• the frequency      in the gap	
!
• the structural phase	

!

ω

φ

α q ω ,φ( )



Winding number of                

The Chern number q is half the winding number of the 
chiral phase                      :           

α q ω ,φ( )

α q ω ,φ( )

W α q( ) ≡ 1
2π

dφ
dα q ω ,φ( )

dφ
= 2q

0

2π

∫



Winding number of                

The Chern number q is half the winding number of the 
chiral phase                      :           

α q ω ,φ( )

α q ω ,φ( )

W α q( ) ≡ 1
2π

dφ
dα q ω ,φ( )

dφ
= 2q

0

2π

∫



This factor 2 is important : it accounts for the 
underlying palindromic symmetry.

W α q( ) ≡ 1
2π

dφ
dα q ω ,φ( )

dφ
= 2q

0

2π

∫

C&P quasicrystal : phason degree of freedom + underlying 
palindromic symmetry - reflects in the additional factor 2 
when expressing Chern numbers as the winding of a 
phase. 



A Hofstadter butterfly for Fibonacci 

|D|/S

K(
I)

T(k)

)LJXUH ���� &RORUPDS� |α (φ, k) | IRU −→F N ; N = 89� 2Q WRS� 7KH WUDQVPLWWDQFH
VSHFWUXP IRU WKH VWUXFWXUH� 2Q WKH OHIW� WKH VWUXFWXUDO SDOLQGURPLF V\PPHWU\ F\FOH�

)LJXUH ���� �D� 7KH FRORUPDS RI ILJXUH ���� DW k YDOXHV LQVLGH WKH JDS q = −1� �E� $
FXW WKURXJK WKH FRORUPDS LQ �D� DW PLG�JDS �EOXH FLUFOHV�� FRPSDUHG WKH VWUXFWXUDO
SDOLQGURPLF V\PPHWU\ F\FOH �JUHHQ OLQH��

VWUXFWXUH DV PHDVXUHG LQ WKH GLIIHUHQFH EHWZHHQ WKH WZR H[SHULPHQWV LQ ILJXUH ���F�
7KH YDQLVKLQJ RI α �LGHQWLFDOO\� IRU SDOLQGURPLF YDOXHV RI φ PDNHV LW D FDQGLGDWH IRU
D VSHFWUDO FRXQWHUSDUW RI WKH VWUXFWXUDO GHYLDWLRQ IURP SDOLQGURPLF V\PPHWU\ η(φ)�

$ QXPHULFDO FDOFXODWLRQ RI WKH FKLUDO SKDVH 0 ≤ |α (φ, k) | ≤ π IRU WKH VHW
{−→
F 89(φ)

}

GHILQHG LQ ����� \LHOGV D EHDXWLIXO EXWWHUIO\�OLNH PDS ZLWK D VWURQJ GHSHQGHQFH XSRQ
φ DV ZHOO DV XSRQ k �VHH ILJXUH ����� $ FORVHU ORRN UHYHDOV WKDW ZLWKLQ HDFK RI
WKH JDSV� |α (φ, k) | LV D YHU\ UHJXODU IXQFWLRQ RI φ� HVVHQWLDOO\ LQVHQVLWLYH WR k �VHH
FORVH�XSV LQ ILJXUHV ���D� ���D DQG ����� 7KH SXUHO\ VWUXFWXUDO VWDLUFDVH RI SKDVRQ�
IOLSV DLGHG GHSHQGHQFH RQ φ� LV HTXLYDOHQW WR PXOWLYDOXHG WUDQVODWLRQ� EXW DOVR GULYHV
YDULRXV VWUXFWXUDO SURSHUWLHV VXFK DV IUDFWLRQDO WUDQVODWLRQ� IUDFWLRQDO LQYHUVLRQ� DQG
WKH GHYLDWLRQ IURP D SHUIHFW SDOLQGURPH� WKURXJK D UHJXODU GHSHQGHQFH XSRQ φ �VHH
����� +HUH� ZH VKRZ WKDW LW LV PDSSHG WR D UHJXODU ZLQGLQJ RI WKH VFDWWHULQJ FKLUDO
SKDVH DV D IXQFWLRQ RI φ�

���



Experimental observation using 
cavity polaritons 

F. Baboux, E. Levy, J. Bloch, E.A, 2016



Recently measured using cavity polaritons
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Δφ
π

F. Baboux, E. Levy, J. Bloch, E.A, 2016
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Note the factor 2 !



Measuring Chern numbers directly on the 
wave function
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Measuring Chern numbers directly on the 
wave function
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Note the factor 2 !



defines the spectral deviation from a palindromeα q ω ,Δφ( )

It depends on : 	
!
• the Chern number q in a gap	
!
• the frequency      in the gap	
!
• the structural phase angle	

!
Δφ

ω



A diffraction measurement of winding numbers

A. Dareau, E. Levy, E.A, F. Gerbier and J. Beugnon, 2016

The modulation phase I
Sf

N=89
I =0

Fibonacci finite string

ZKHUH WKH &KHUQ QXPEHUV RI TXDVLSHULRGLF VWUXFWXUHV DUH GLUHFWO\ GHWHUPLQHG E\ WKH
WUDGLWLRQDO FU\VWDOORJUDSKLF DSSURDFK� :H GHPRQVWUDWH WKDW DOO WKH SRVVLEOH &KHUQ
QXPEHUV IRU D ILQLWH�OHQJWK )LERQDFFL FKDLQ FDQ EH REVHUYHG GLUHFWO\ LQ WKHLU GLIIUDF�
WLRQ SDWWHUQ� XVLQJ D TXDVLSHULRGLF GLIIUDFWLRQ JUDWLQJ HTXLYDOHQW WR D TXDVLSHULRGLF
PXOWL�VOLW <RXQJ¼V H[SHULPHQW� )LQDOO\� ZH DOVR GHPRQVWUDWH TXDQWLWDWLYHO\ WKH VWD�
ELOLW\ RI WKHVH WRSRORJLFDO LQYDULDQWV ZLWK UHVSHFW WR VWUXFWXUDO GLVRUGHU� :H UHDOL]HG
D VLPSOH RSWLFDO VHWXS ZKLFK DOORZV XV WR JHQHUDWH DQ\ ILQLWH�OHQJWK )LERQDFFL FKDLQ�
7KH FRUUHVSRQGLQJ &KHUQ QXPEHUV q LQ ���� DSSHDU DV ZLQGLQJ FOHDUO\ YLVLEOH LQ WKH
GLIIUDFWLRQ SDWWHUQV� 0RUHRYHU WKLV QHZ DSSURDFK DOORZHG XV WR REWDLQ D ¾WRSRORJLFDO
PDS¿ RI WKHVH FKDLQV DQG WR PHDVXUH� LQ D VLPSOH VHWXS� DOO DYDLODEOH &KHUQ QXPEHUV�
:H PHDVXUHG KLJK &KHUQ QXPEHUV XS WR |q| = 44 IRU D VWUXFWXUH RI N = 89 HOHPHQWV�
2XU PHWKRG SURYLGHV D QHZ DQG RULJLQDO H[SHULPHQWDO DSSURDFK WR VWXG\ WRSRORJLFDO
SURSHUWLHV RI PDWWHU� GLIIHUHQW IURP WUDQVSRUW RU VSHFWUDO ERG\ RI ZRUN� 7KH UHVXOWV
LQ WKLV VHFWLRQ LPSO\ WKDW &KHUQ QXPEHUV DOVR FKDUDFWHUL]H D IXQGDPHQWDO� SXUHO\
VWUXFWXUDO DVSHFW RI TXDVLSHULRGLF VWUXFWXUHV� 7KHVH LPSOLFDWLRQV ZLOO EH GLVFXVVHG DW
GHWDLO LQ ���

(a)

(c)

(b)

CCD

)LJXUH ����� ([SHULPHQWDO VHWXS� �D� $ VNHWFK RI WKH RSWLFDO VHWXS� $ FROOLPDWHG
ODVHU EHDP DW D ZDYHOHQJWK RI 532nm GLIIUDFWV RII D JUDWLQJ SURJUDPPHG RQ D 'LJLWDO
0LUURU 'HYLFH �'0'�� 7KH IDU�ILHOG GLIIUDFWLRQ SDWWHUQ LV PHDVXUHG RQ D &&' FDPHUD�
�E� $ VNHWFK RI WKH '0' PLUURUV� �F� :KHQ WKH JUDWLQJ LV VWUXFWXUHG IROORZLQJ D
)LERQDFFL VHTXHQFH DORQJ WKH KRUL]RQWDO x GLUHFWLRQ �DQG XQLIRUP DORQJ WKH YHUWLFDO y
GLUHFWLRQ�� ZH REVHUYH GLIIUDFWLRQ SHDNV FKDUDFWHULVWLF RI WKH TXDVL�SHULRGLF VWUXFWXUH
RI WKH FKDLQ�

,Q RXU H[SHULPHQW� ZH UHDOL]HG )LERQDFFL FKDLQV XVLQJ D 'LJLWDO 0LFURPLUURU
'HYLFH �'0'�� L�H� DQ DUUD\ RI DERXW RQH PLOOLRQ PLFURQ�VL]HG PLUURUV �¾SL[HOV¿�
RI VL]H a× a� (DFK PLUURU FDQ EH LQGHSHQGHQWO\ VZLWFKHG EHWZHHQ D UHIOHFWLYH �B�
DQG D QRQ�UHIOHFWLYH �A� VWDWH �VHH ILJXUH ����E�� :H LOOXPLQDWHG WKH JUDWLQJ ZLWK
PRQRFKURPDWLF OLJKW VRXUFH� DQG REVHUYHG WKH IDU�ILHOG GLIIUDFWLRQ SDWWHUQ RQ D &&'
FDPHUD �VHH ILJXUH ���� DQG DOVR �������

$V D SUHOLPLQDU\ H[SHULPHQW� ZH SURJUDPPHG DORQJ WKH x�D[LV D )LERQDFFL JUDWLQJ

���



Optical setup 
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Laser @ 532 nm Digital Micromirror Device (DMD)
– mirror (“pixel”) size a ~ 14 µm
– 1024 × 768 pixels

Fibonacci encoding :

DMD front view

Fibonacci chain
outside
(OFF)

outside
(OFF)

...
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A
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A diffraction measurement of winding numbers

A. Dareau, E. Levy, E.A, F. Gerbier and J. Beugnon, 2016

The modulation phase I
Sf

N=89
I =0

Fibonacci finite string

Figure 1: Experimental setup. (A) Sketch of the optical setup (28). A collimated laser beam at
a wavelength of 532 nm diffracts off a grating programmed on a Digital Mirror Device (DMD).
The far-field diffraction pattern is measured on a CCD camera. (B) When the grating is struc-
tured following a Fibonacci sequence along the horizontal x direction (and uniform along the
vertical y direction), we observe diffraction peaks characteristic of the quasi-periodic structure
of the chain.

8

Related to the transmission	
 spectrum ?

Topological quasicrystals spectra
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Gap labeling theorem,
Bellissard, 1982



Edge states topological fingerprint

▪ Consider a multi-slit quasiperiodic Young’s experiment

Diffraction pattern

Transmission spectrum



A (diffraction) Young-slit measurement of 
(topological) winding numbers



  

Fibonacci Experiment – 02/12/2015

55 letter artificially « palindromized » 34 letter artificially « palindromized »

Scanning the phason (2)

41

DMD Pattern Diffraction pattern

q=1q=-1q=2 q=4
89 letters

There is an effect of the phason φ

Need to create edge states !

Juxtaposition of 2 identical Fibonacci chains
Scanning the phason (1)

40

DMD Pattern Diffraction pattern

No effect from the scan of the phason !

89 letters

No effect of φ

  

Fibonacci Experiment – 02/12/2015

55 letter artificially « palindromized » 55 letter NON « palindromized »
A Young-slit interference experiment



  

Fibonacci Experiment – 02/12/2015

55 letter artificially « palindromized » 34 letter artificially « palindromized »

Scanning the phason (1)

40

DMD Pattern Diffraction pattern

No effect from the scan of the phason !

89 letters

  

Fibonacci Experiment – 02/12/2015

55 letter artificially « palindromized » 55 letter NON « palindromized »

Scanning the phason (2)

41

DMD Pattern Diffraction pattern

q=1q=-1q=2 q=4
89 letters

There is an effect of the phason φ

No effect of φ



Scanning the phason (2)

43

DMD Pattern Diffraction pattern

q=1q=-1q=2 q=4

q=1q=4

Cuts at a given

89 letters

A Young-slit  measurement of windings



Scanning the phason (2)

43

DMD Pattern Diffraction pattern

q=1q=-1q=2 q=4

q=1q=4

Cuts at a given

89 letters

Split of the diffraction peak 	
oscillates with a period π q

A Young-slit  measurement of windings



K(I)

q=1q=-1 q=-4q=4 q=-2q=2 q=3q=-3

)LJXUH ����� *UD\VFDOH PDS� PHDVXUHG GLIIUDFWLRQ SDWWHUQ IRU WKH VWUXFWXUH P ≡−→
F N
←−
F N ; N = 89� (DFK φ YDOXH FRUUHVSRQGV WR D GLIIHUHQW GLIIUDFWLRQ H[SHULPHQW�

7KH JOREDO SDWWHUQ� VKRZLQJ D GHSHQGHQFH RQ φ� LV FRPSDUHG WR WKH WUDQVPLVVLRQ
RI DQ −→F N GLHOHFWULF VWUXFWXUH �DERYH� FDOFXODWHG XVLQJ VFDWWHULQJ DQDO\VLV RI FKDS�
WHU �� DQG WR WKH SXUHO\ VWUXFWXUDO SDOLQGURPLF V\PPHWU\ F\FOH RI FKDSWHU � �RQ
WKH ULJKW�� &KHUQ QXPEHUV ODEHOLQJ WKH WUDQVPLVVLRQ JDSV �DQG GLIIUDFWLRQ SHDNV�
WKURXJK ������ DUH LQGLFDWHG DERYH�

DVVRFLDWHG ZLWK WKH VFDQQLQJ RI WKH SKDVRQ �VHH ����� 7KH GLUHFWLRQ RI WKH VWULDWLRQ
�ZKLFK DSSHDUV DV D WUDYHUVH RI D VLQJOH GDUN VSRW VSOLWWLQJ WKH GLIIUDFWLRQ SHDN
LQ WZR� LV GHWHUPLQHG E\ WKH VLJQ RI q �ILJXUHV ���� DQG ������ )RU SDOLQGURPLF
YDOXHV RI φ� QDPHO\ φ = 0,π, 2π� QR GLIIUDFWLRQ SHDN LV VSOLW� ZKLFK LV XQGHUVWDQGDEOH
EHFDXVH WKH UHOHYDQW VWUXFWXUHV DUH HTXLYDOHQW WR WKH VWUXFWXUH −→F N

−→
F N �

6SHFLILFDOO\� WKH LQWHQVLWLHV PHDVXUHG DW WKH RULJLQDO ORFDWLRQ RI WKH GLIIUDFWLRQ
SHDNV kq � YDU\ VLQXVRLGDOO\ ZLWK φ� ZLWK D SHULRG WKDW ZH LGHQWLI\ DV π/|q| DV WKH
q�KDUPRQLF RI WKH SDOLQGURPLF V\PPHWU\ F\FOH�

7KLV EHKDYLRU LV LQ FRPSOHWH HTXLYDOHQFH WR WKH WKHRUHWLFDO DQG H[SHULPHQWDO
UHVXOWV LQ WKH FRPSOHWHO\ GLIIHUHQW V\VWHP RI WKH WRSRORJLFDO HGJH VWDWHV LQ )LERQDFFL
VFDWWHULQJ GLHOHFWULF� GLVFXVVHG LQ ��� DQG ���� 7KLV FRQVWLWXWHV D QRYHO PHWKRG
WR PHDVXUH WKH &KHUQ QXPEHUV ODEHOLQJ WKH VSHFWUDO JDSV DQG GLIIUDFWLRQ SHDNV LQ
TXDVLSHULRGLF FKDLQV WKURXJK WKH ZLQGLQJ RI WKH VSOLW LQ WKH GLIIUDFWLRQ SHDN kq DV D
IXQFWLRQ RI WKH JDXJH ILHOG φ� 7KLV PHWKRG JLYHV D SXUHO\ VWUXFWXUDO PHDQLQJ WR WKH
JDS ODEHOLQJ &KHUQ QXPEHUV�

,Q D WKLUG H[SHULPHQW� IROORZLQJ D SURSRVDO LQ ��� VKRZQ LQ ILJXUH ����� ZH
UHSHDWHG WKH H[SHULPHQW ZLWK WKH VWUXFWXUH −→F N

←−
F N
−→
F N � ,Q D FRPSOHWH DQDORJ\

WR WKH VSHFWUDO FDOFXODWLRQV� WKH PHDVXUHG GLIIUDFWLRQ SDWWHUQ QRZ VKRZV D GRXEOH
VWULDWLRQ ZLWK RSSRVLWH GLUHFWLRQV �VHH ILJXUH ������

,Q D IRUWK H[SHULPHQW� ZH XVHG WKH HQWLUH 2D PDS
{−→
F N (φ)

}
�GHILQHG LQ ���� DQG

���



A Young-slit  measurement of windings

To summarize 



A Young-slit  measurement of windings



We can do better ! 
Single shot experiment for all winding 

numbers



A. Dareau, E.Levy*, M. Bosch Aguilera, R. Bouganne, 
E. Akkermans*, F. Gerbier, J. Beugnon

Direct measurement of Chern numbers in the
diffraction pattern of a Fibonacci chain

1

Laboratoire Kastler Brossel, Collège de France, Paris
* Technion Israel Institute of Technology, Israel

2D diffraction experiment

Instead of 

The modulation phase I
Sf

N=89
I =0

Consider all the realisations for all values of        in a period  Δφ
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Direct measurement of Chern numbers in the
diffraction pattern of a Fibonacci chain
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Instead of 

The modulation phase I
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N=89
I =0

Consider all the realisations for all values of        in a period  Δφ



2D Diffraction experiment

50

DMD Pattern Diffraction pattern

y axis is associated with )

q=46

Diffraction peaks appear for the same as the 1D grating
But for different values

The       value is directly proportionnal to the Chern number

q=48q=49

  

Fibonacci Experiment – 02/12/2015

55 letter artificially « palindromized » 55 letter NON « palindromized »



Figure 4.1.3: 2d structure created using the direct approach

(a) Fourier amplitude for ‘ = 0.5 (b) Fourier amplitude for ‘ = 1

(c) Fourier amplitude for ‘ = 1.5

Figure 4.1.4: Fourier images for di�erent values of ‘
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2D Diffraction experiment
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DMD Pattern Diffraction pattern

y axis is associated with )
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Diffraction peaks appear for the same as the 1D grating
But for different values

The       value is directly proportionnal to the Chern number
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2D Diffraction experiment
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DMD Pattern Diffraction pattern

y axis is associated with )

q=46

Diffraction peaks appear for the same as the 1D grating
But for different values

The       value is directly proportionnal to the Chern number
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Fibonacci Experiment – 02/12/2015

55 letter artificially « palindromized » 55 letter NON « palindromized »



Structural origin of Chern numbers

For a chain of size N, there exist N values of the Chern 
numbers - all visible in the diffraction experiment



Structural origin of Chern numbers

For a chain of size N, there exist N values of the Chern 
numbers - all visible in the diffraction experiment

kx
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=C

20

-20

-40

40

)LJXUH ����� *UD\VFDOH PDS� PHDVXUHG 2D GLIIUDFWLRQ SDWWHUQ �LQ D VLQJOH PHD�
VXUHPHQW� IRU

{−→
F N (φ)

}
; N = 89� 7KH D[HV DUH FDOLEUDWHG WR GLUHFWO\ GLVSOD\ WKH

GLIIUDFWLRQ SDWWHUQ DV D IXQFWLRQ RI kx DQG ky = kφ� :H REVHUYH SHDNV DW WKH kxYDOXHV
REH\LQJ ������ EXW VKLIWHG DORQJ WKH YHUWLFDO D[LV WR kφ = q×2π/aN � 7KH DV\PPHWU\
EHWZHHQ WKH LQWHQVLW\ RI WKH GLIIUDFWLRQ SHDNV IRU SRVLWLYH DQG QHJDWLYH kφ YDOXHV LV
GXH WR WKH HQYHORSH RI WKH GLIIUDFWHG LQWHQVLW\ IURP WKH '0'� RULJLQDWHV IURP WKH
IRUP IDFWRU RI WKH PLFURPLUURUV�

WR D UDQGRP FKDLQ �VHH DOVR ������� 7KH UHVXOWLQJ GLIIUDFWLRQ SDWWHUQ ZDV DYHUDJHG
RYHU PDQ\ UHDOL]DWLRQV RI WKH QRLVH�

,Q ILJXUH ����� ZH VKRZ KRZ WKH GLIIUDFWLRQ SDWWHUQ HYROYHV ZLWK LQFUHDVLQJ µ�
$V H[SHFWHG� SHDNV DUH ZDVKHG RXW ZKHQ LQFUHDVLQJ WKH IUDFWLRQ µ� :H VHOHFW WKUHH
VSHFLILF YDOXHV RI µ DQG VKRZ WKH HYROXWLRQ RI WKH GLIIUDFWLRQ SDWWHUQ ZKHQ VFDQQLQJ
WKH SKDVRQ� (YHQ IRU YHU\ ZHDN SHDN VLJQDOV� WKH PRGXODWLRQ RI WKH SHDN DPSOLWXGH
LV DOZD\V SUHVHQW DQG NHHSV WKH VDPH IUHTXHQF\ DQG GLUHFWLRQ� 7KLV GHPRQVWUDWHV H[�
SOLFLWO\ WKH H[SHFWHG UREXVWQHVV RI WKH WRSRORJLFDO SURSHUWLHV RI WKH )LERQDFFL FKDLQV
FDSWXUHG E\ WKH ZLQGLQJ �DQG WKH ZLQGLQJ QXPEHU� RI WKH GLIIUDFWLRQ SHDN DPSOLWXGH
DV D IXQFWLRQ RI φ�

7R VXPPDUL]H� LQ WKLV VHFWLRQ ZH KDYH GHPRQVWUDWHG D VLPSOH ZD\ WR PHDVXUH
WRSRORJLFDO LQYDULDQWV DVVRFLDWHG ZLWK TXDVLSHULRGLF VWUXFWXUHV� 7KH WKHRUHWLFDO DQDO�
\VLV RI WKHVH UHVXOWV �VHH ���� KDG JUHDWO\ FODULILHG WKH VWUXFWXUDO RULJLQ RI &KHUQ
QXPEHUV LQ TXDVLSHULRGLF VWUXFWXUHV� $OWKRXJK ZH KDYH ZRUNHG ZLWK WKH VLPSOHVW
H[DPSOH� WKH )LERQDFFL FKDLQ� RXU PHWKRG LV QRW OLPLWHG WR LW DQG FRXOG EH DSSOLHG
WR PDQ\ RWKHU FKDLQV�

���

Chern numbers appear in pairs (-q,q)



Quasi-Brillouin zone

UHFLSURFDO ODWWLFH ZLWK UHVSHFW WR WKH (kx, kφ) D[HV LV VWLOO GHVFULEHG E\ WDQϕ� 7R EXLOG
WKH WRUXV 4%=N LQ WKH (kx, kφ) UHFLSURFDO VSDFH� ZH IROORZ WKH VDPH JXLGHOLQHV DV
WKH VWUXFWXUDO FR�QXPEHULQJ DSSURDFK �VHH ����� :H VHW DQ RULJLQ (kx, kφ) = (0, 0)

DW VRPH SRLQW DQG ODEHO WKHP ZLWK WKH ODWWLFH FRRUGLQDWHV >m = 0�n = 0@� 7KH
QH[W VWHS LV WR LGHQWLI\ WKH WKUHH RWKHU FRUQHUV RI WKH 4%=N � XVLQJ ������� WR EH
>m = ql�n = −pl@ ZKHUH (kx, kφ) = (ql FRVϕ + pl VLQϕ, 0)�>m = pl�n = ql@ ZKHUH
(kx, kφ) = (0, pl VLQϕ+ql FRVϕ)� DQG >m = ql+pl�n = ql−pl@ ZKHUH (kx, kφ) = (pl VLQϕ+
ql FRVϕ, pl VLQϕ + ql FRVϕ)� 7KHVH 4 SRLQWV GHILQH WKH WRUXV 4%=N DV UHSUHVHQWHG RQ
)LJ������ ,W H[DFWO\ HQFORVHV N SRLQWV�

(a) (b)
I

)LJXUH ����� 6WUXFWXUDO SURSHUWLHV RI WKH 2D VHW
{−→
F N (φ)

}
IRU N = 89� �D� 7KH

VWUXFWXUDO x − φ PDS FUHDWHG WKURXJK WKH &XW 	 3URMHFW PHWKRG IRUPV D WLOWHG 2D
FU\VWDO ZLWK D 2D XQLW FHOO LQGLFDWHG E\ UHG DQG EOXH VTXDUHV� 7KH IDFW WKDW pl : ql =
5 : 8 LV HDV\ WR GHGXFH� 7KLV PDS LV D WRUXV REWDLQHG E\ ZUDSSLQJ WKH PDS DORQJ
ERWK D[HV� VR WKDW WKH IRXU EOXH VTXDUHV FRLQFLGH� �E� $Q LOOXVWUDWLRQ RI WKH UHVXOWLQJ
WRUXV�

:H QRZ GLVFXVV WKH QRUPDOL]DWLRQ RI WKH UHFLSURFDO VSDFH WRUXV FRRUGLQDWHV� 7KH
kx FRRUGLQDWHV PD\ EH QRUPDOL]HG E\ (pl VLQϕ+ ql FRVϕ)−1 = 1/

√
p2l + q2l VR WKDW

kx ∈ [0, 1]� $IWHU WKLV QRUPDOL]DWLRQ� WKH N SRLQWV DW ZKLFK F (kx, kφ) ̸= 0 FRUUHVSRQG
WR DOO N SRVVLEOH �DSSUR[LPDWH� %UDJJ SHDNV YDOXHV kq� $V IRU QRUPDOL]DWLRQ DORQJ
WKH φ�D[LV� LW LV REWDLQHG IURP WKH UHFLSURFDO ODWWLFH SRLQW ZLWK kφ = δkφ� WKH VPDOOHVW
QRQ]HUR YDOXH RI kφ� 7KH �WRURLGDO� YHFWRU EHWZHHQ WKH RULJLQ DQG WKLV ODWWLFH SRLQW�
(δkx, δkφ)� LV LQVWUXPHQWDO WR ILQG DOO SRLQWV ZLWKLQ WKH 4%=N WRUXV DFFRUGLQJ WR WKH
FR�QXPEHULQJ DOJRULWKP �VHH ����� 7KH N SRLQWV DUH IRXQG WKURXJK WKH UHFXUUHQW
YHFWRULDO DGGLWLRQ �DQG ZLQGLQJ� RI WKLV YHFWRU VLPLODU WR WKH FR�QXPEHULQJ JHQHUDWRU
�VHH )LJ������� 7KLV VLQJOH IXQGDPHQWDO ODWWLFH SRLQW LV REWDLQHG XVLQJ RQH RI WKH WZR
WKH SUHGHFHVVRU DSSUR[LPDQWV RI WKH VORSH WDQϕ = pl/ql LQ ������ GHSHQGLQJ RQ WKH
SDULW\ RI l� 7KLV SRLQW KDV EHHQ SURYHQ LQ ��� XVLQJ WKH 9DMGD LGHQWLW\ >9DM��@� ,W LV
JLYHQ E\ WKH SRLQW [m = ql−1, n = −pl−1] IRU HYHQ l� RU WKH SRLQW [m = ql−2, n = −pl−2]

���

Real space

Reciprocal 
space



Robustness of topological features 
against noise.

Chern numbers are advertised as topological invariants, i.e. 
rather insensitive against disorder. 

Make it  more quantitative



Diffraction peaks-Finite chains

UHODWHG WR WKH %UDJJ SHDNV RI WKH LQILQLWH FKDLQ� 7KH PDLQ GLIIHUHQFH LQ WKDW VHQVH
ZKLFK VHWV TXDVLSHULRGLF VWUXFWXUHV DSDUW IURP SHULRGLF FU\VWDOV LV WKH ODUJH DPRXQW
RI SHDNV� WKH YDULDEOH LQWHQVLW\ RI WKH SHDNV� DQG WKH IDFW WKDW LQ JHQHUDO WKH VSDWLDO
IUHTXHQF\ RI WKH GLIIUDFWLRQ SHDNV GRHV QRW FRLQFLGH ZLWK WKDW RI WKH LQILQLWH FKDLQ
%UDJJ SHDNV�

7KH GLIIUDFWLRQ VSHFWUXP RI WKH LQILQLWH )LERQDFFL FKDLQ LV FRPSRVHG RI VKDUS
SHDNV� DW WKH VSDWLDO IUHTXHQFLHV JLYHQ E\

kq = p+ qτ−1 ������

ZKHUH τ ≡ (1+
√
5)/2 LV WKH JROGHQ PHDQ� DQV p, q ∈ Z� 7KH ORFDWLRQV DQG SURSHUWLHV

RI WKH GLIIUDFWLRQ SHDNV PD\ EH DQDO\]HG XVLQJ WKH &	3 >='��@ DQG WKH &	3 EDVHG
FR�QXPEHULQJ >90��@ DSSURDFK� DIWHU SURSHU QRUPDOL]DWLRQ� )LJXUH ���� VKRZV D
QXPHULFDO FDOFXODWLRQ RI WKH GLIIUDFWLRQ SDWWHUQ IRU )LERQDFFL FKDLQV RI WZR OHQJWKV�
7KH SUHGLFWLRQ RI ������ LQ GHWHUPLQLQJ WKH UHVRQDQW VSDWLDO IUHTXHQFLHV kq VHHP WR
EH D YHU\ JRRG ILW� UDSLGO\ LPSURYLQJ DV D IXQFWLRQ RI VWUXFWXUH OHQJWK�

7KH UHFLSURFDO VSDFH YLHZSRLQW LV LPSRUWDQW WR WKLV ZRUN EHFDXVH WKH JHQHUDOL]HG
%ORFK WKHRUHP FRQQHFWV WKH %UDJJ SHDN VSDWLDO IUHTXHQF\ DQG WKH VSHFWUDO JDSV
REWDLQHG E\ WKH LQWHUURJDWLRQ RI WKH VWUXFWXUH E\ WKH VFDWWHULQJ RI ZDYHV� ,Q FKDSWHU
� WKLV UHODWLRQ ZLOO EHFRPH YHU\ XVHIXO LQ H[SODLQLQJ WKH WRSRORJLFDO SURSHUWLHV RI
TXDVLSHULRGLF VWUXFWXUHV� HVSHFLDOO\ ZLWK UHJDUGV WR WKH TXHVWLRQ RI WKHLU RULJLQ DQG
WKH UROH RI WUXH LUUDWLRQDOLW\�

(a)

(b)

)LJXUH ����� 7KH 'LIIUDFWLRQ SDWWHUQ RI D )LERQDFFL FKDLQV �JHQHUDWHG E\ VXEVWLWX�
WLRQ�FRQFDWHQDWLRQ� S10 �D� DQG S14�E�� LQ EOXH VROLG OLQHV� 7KH VSDWLDO IUHTXHQF\
D[LV LV QRUPDOL]HG DV GHVFULEHG LQ FKDSWHU �� 5HG GRWWHG OLQHV PDUN SRVVLEOH YDOXHV
IRU WKH GLIIUDFWLRQ SHDNV kq SUHGLFWHG E\ �������

��

S∞ kq = p + qτ −1For the infinite Fibonacci chain      Bragg peaks are at  

S10

S14



Wannier diagram

����� 7KH UROH RI LUUDWLRQDOLW\ LQ UHFLSURFDO VSDFH

$ UHSHDWLQJ TXHVWLRQ UHJDUGLQJ WKH WRSRORJLFDO DQG RWKHU SURSHUWLHV RI TXDVLSHULRGLF
VWUXFWXUHV LV WKH IROORZLQJ� LI ZH DUH DOZD\V GHDOLQJ ZLWK D ILQLWH FKDLQ� WKHQ ZK\
GR ZH QHHG WR XVH DQ LUUDWLRQDO &	3 VORSH� DQG KRZ GRHV WKH SURSHUWLHV RI WKH ILQLWH
FKDLQ UHODWH WR WKRVH RI WKH LQILQLWH FKDLQ�

)URP D SXUHO\ VWUXFWXUDO SRLQW RI YLHZ DV GHYHORSHG KHUH� ZH SORW WKH GLIIUDFWLRQ
VSHFWUXP RI D &	3 VWUXFWXUH DV D IXQFWLRQ RI WKH &	3 VORSH LQ D FRORUPDS �VHH ILJXUH
������ 7KLV SORW LV LGHQWLFDO WR WKDW RI :DQQLHU >:DQ��@ IRU WKH FDVH RI %ORFK HOHFWURQV
LQ PDJQHWLF ILHOG� ZKHUH WKH VSDWLDO IUHTXHQF\ LV UHSODFHG E\ PDJQHWLF ILHOG� DQG WKH
&	3 VORSH LV UHSODFHG E\ WKH HOHFWURQ GHQVLW\� )ROORZLQJ WKH DQDO\VLV E\ :DQQLHU�
ZH ODEHO WKH OLQHV ZLWK WKH LQWHJHUV [q, p] VXFK WKDW HDFK OLQH HTXDWLRQ LV y = qx + p

ZLWK (x, y) FRUUHVSRQGLQJ WR &	3 VORSH DQG VSDWLDO IUHTXHQF\ UHVSHFWLYHO\� )LJXUH
���� GHSLFWV VRPH RI WKRVH ODEHOV� ,Q WKH )LERQDFFL FDVH WKHVH ODEHOV FRUUHVSRQG WR
WKRVH RI ������� DV GHSLFWHG LQ ILJXUH �����

spatial frequency
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Summary-Further directions
• Demonstrate the fractal structure of the energy spectrum 

using polaritons in a Fibonacci cavity. 
• Topological features quasi-periodic chains is associated to a 

palindromic symmetry.	
• Gap Chern numbers are the winding numbers of the chiral 

reflection phase. 	
• Gap traversing of edge states is completely determined by 

corresponding gap Chern numbers.	
• Scattering theory gives a simple way to calculate/measure Chern 

numbers.	
• Never underestimate the information contained in 2x2 matrices.	
• Topological Chern numbers are also contained in structural data of 

the quasi-crystals. They can be retrieved from a Young-slit 
diffraction experiment. This approach allows for a measurement of 
high numbers even for short chains. 	
!
!
!
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Summary
• Complete characterisation of the fractal spectrum of 

quasi-periodic systems.	

• Given a topological meaning to the integers labelling 
the gaps of the fractal spectrum.	

• Proposed a complete algebraic structure to account 
for the topological integers (Abelian group structure 
isomorphic to	

• This Abelian group is isomorphic to the cohomology 
group         defined on (Bratelli) graphs associated to 
the quasi periodic structures.   

2 4 1 3 0
4 3 2 1 0
1
3
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𝑠 = 0,5 

𝑠 = 1 

𝑠 = 3 
𝑠 = 2 

𝑠 = 4 

We have a discrete unit circle ⇒ ℤ/𝐹ேℤ 

H (1)
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Name Substitution Substitution on Doublets Self Properties Cohomology Zeta Function Gap Labeling Theorem Properties

Rule ‡1 Occurrence M1 Rule ‡2 Occurrence M2 Eigenvalue Char. Polynomial H0 (G) H1 (G) ’(z) Pisot char. Periodicity

Fibonacci

0 ‘æ 01
1 ‘æ 0 ( 1 1

1 0 ) a ‘æ bc
b ‘æ bc
c ‘æ a

1 0 1 1
0 1 1
1 0 0

2
· ⁄2 ≠ ⁄ ≠ 1 = 0 Z1 Z2 1 ≠ z

1 ≠ z ≠ z2 p + q · · p, q œ Z Pisot quasiperiodic

Cantor Set

0 ‘æ 010
1 ‘æ 111 ( 2 1

0 3 ) a ‘æ aba
b ‘æ ccb
c ‘æ ccc

1 2 1 0
0 1 2
0 0 3

2
3 ⁄2 ≠ 5⁄ + 6 = 0 Z1 Z3 1 ≠ z

(1 ≠ 2z) (1 ≠ 3z)
k

3N
k, N œ Z not primitive limit-quasiperiodic

Non-Pisot

0 ‘æ 0001
1 ‘æ 011 ( 3 1

1 2 )
a ‘æ aabc
b ‘æ aabc
c ‘æ bdc
d ‘æ bdc

3 2 1 1 0
2 1 1 0
0 1 1 1
0 1 1 1

4
· + 2 ⁄2 ≠ 5⁄ + 5 = 0 Z1 Z3 1 ≠ z

1 ≠ 5z + 5z2
p + q · ·

5N
p, q, N œ Z non-Pisot limit-quasiperiodic

Periodic

0 ‘æ 01
1 ‘æ 01 ( 1 1

1 1 ) a ‘æ ab
b ‘æ ab ( 1 1

1 1 ) 2 ⁄2 ≠ 2⁄ = 0 Z1 Z1 1 ≠ z

1 ≠ 2z

k

2 k œ Z Pisot periodic

Thue-Morse

0 ‘æ 01
1 ‘æ 10 ( 1 1

1 1 )
a ‘æ bc
b ‘æ bd
c ‘æ ca
d ‘æ cb

3 0 1 1 0
0 1 0 1
1 0 1 0
0 1 1 0

4
2 ⁄2 ≠ 2⁄ = 0 Z1 Z3 1 ≠ z

(1 ≠ 2z) (1 + z)
k

3 · 2N
k, N œ Z Pisot aperiodic

SierpiÒski

0 ‘æ 01010
1 ‘æ 11 ( 3 2

0 2 ) a ‘æ ababa
b ‘æ cb
c ‘æ cc

1 3 2 0
0 1 1
0 0 2

2
3 ⁄2 ≠ 5⁄ + 6 = 0 Z1 Z4 1 ≠ z

(1 ≠ 2z) (1 ≠ 3z)
k

3N
k, N œ Z not primitive limit-quasiperiodic

Degen. SierpiÒski

0 ‘æ 0001
1 ‘æ 1112
2 ‘æ 1112

1 3 1 0
0 3 1
0 3 1

2
a ‘æ aabc
b ‘æ aabd
c ‘æ ddef
d ‘æ ddeg
e ‘æ ddeg
f ‘æ ddef
g ‘æ ddeg

Q

ca

2 1 1 0 0 0 0
2 1 0 1 0 0 0
0 0 0 2 1 1 0
0 0 0 2 1 0 1
0 0 0 2 1 0 1
0 0 0 2 1 1 0
0 0 0 2 1 0 1

R

db 4 ⁄3 ≠ 7⁄2 + 12⁄ = 0 Z1 Z3 1 ≠ z

(1 ≠ 3z) (1 ≠ 4z)
k

4N
k, N œ Z not primitive aperiodic

Period Doubling

0 ‘æ 01
1 ‘æ 00 ( 1 1

2 0 ) a ‘æ bc
b ‘æ bc
c ‘æ aa

1 0 1 1
0 1 1
2 0 0

2
2 ⁄2 ≠ ⁄ ≠ 2 = 0 Z1 Z3 1 ≠ z

(1 ≠ 2z) (1 + z)
k

3 · 2N
k, N œ Z non-Pisot limit-quasiperiodic

Circle Sequence

0 ‘æ 202
1 ‘æ 02202
2 ‘æ 01202

1 1 0 2
2 0 3
2 1 2

2 a ‘æ dbd
b ‘æ dbd
c ‘æ bedbd
d ‘æ acdbe
e ‘æ acdbd

A 0 1 0 2 0
0 1 0 2 0
0 2 0 2 1
1 1 1 1 1
1 1 1 2 0

B
·3 ⁄3 ≠ 3⁄2 ≠ 5⁄ ≠ 1 = 0 Z1 Z3 1 ≠ z

(1 + z) (1 ≠ 4z ≠ z2)
1
2 (p + q · ·) p, q œ Z Pisot quasiperiodic

Rudin-Shapiro

0 ‘æ 02
1 ‘æ 32
2 ‘æ 01
3 ‘æ 31

3 1 0 1 0
0 0 1 1
1 1 0 0
0 1 0 1

4
a ‘æ bf
b ‘æ be
c ‘æ he
d ‘æ hf
e ‘æ ac
f ‘æ ad
g ‘æ gd
h ‘æ gc

Q

ca

0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0

R

db 2 ⁄4 ≠ 2⁄3 ≠ 2⁄2 + 4⁄ = 0 Z1 Z9 1 ≠ z

(1 ≠ 2z) (1 ≠ 2z2) (1 + z)
k

2N
k, N œ Z non-Pisot aperiodic

Skau Example #1

0 ‘æ 001
1 ‘æ 0101 ( 2 1

2 2 ) a ‘æ abc
b ‘æ abc
c ‘æ bcbc

1 1 1 1
1 1 1
0 2 2

2 Ô
2 + 2 ⁄2 ≠ 4⁄ + 2 = 0 Z1 Z3 1 ≠ z

1 ≠ 4z + 2z2
p + q

Ô
2

2N
p, q, N œ Z Pisot limit-quasiperiodic

Skau Example #2

0 ‘æ 010
1 ‘æ 01 ( 2 1

1 1 ) a ‘æ bca
b ‘æ bca
c ‘æ bc

1 1 1 1
1 1 1
0 1 1

2
· + 1 ⁄2 ≠ 3⁄ + 1 = 0 Z1 Z2 1 ≠ z

1 ≠ 3z + z2 p + q · · p, q œ Z Pisot quasiperiodic

Skau Example #3

0 ‘æ 001
1 ‘æ 10 ( 2 1

1 1 )
a ‘æ abc
b ‘æ abd
c ‘æ ca
d ‘æ cb

3 1 1 1 0
1 1 0 1
1 0 1 0
0 1 1 0

4
· + 1 ⁄2 ≠ 3⁄ + 1 = 0 Z1 Z5 1 ≠ z

(1 + z) (1 ≠ 3z + z2)
p + q · ·

5 p, q œ Z Pisot quasiperiodic

Skau Example #4

0 ‘æ 010
1 ‘æ 1001 ( 2 1

2 2 ) a ‘æ bca
b ‘æ bcb
c ‘æ cabc

1 1 1 1
0 2 1
1 1 2

2 Ô
2 + 2 ⁄2 ≠ 4⁄ + 2 = 0 Z1 Z2 1 ≠ z

1 ≠ 4z + 2z2
p + q

Ô
2

2N
p, q, N œ Z Pisot limit-quasiperiodic

Chacon

0 ‘æ 0010
1 ‘æ 1 ( 3 1

0 1 )
a ‘æ abca
b ‘æ abcb
c ‘æ c

1 2 1 1
1 2 1
0 0 1

2
3 ⁄2 ≠ 4⁄ + 3 = 0 Z1 Z3 1

1 ≠ 3z

k

3N
k, N œ Z not primitive limit-quasiperiodic

Golden Mean Squared

0 ‘æ 100
1 ‘æ 10 ( 2 1

1 1 ) a ‘æ cab
b ‘æ cab
c ‘æ cb

1 1 1 1
1 1 1
0 1 1

2
· + 1 ⁄2 ≠ 3⁄ + 1 = 0 Z1 Z2 1 ≠ z

1 ≠ 3z + z2 p + q · ⁄1 p, q œ Z Pisot quasiperiodic

Silver Mean Squared

0 ‘æ 1001000
1 ‘æ 100 ( 5 2

2 1 ) a ‘æ cabcaab
b ‘æ cabcaab
c ‘æ cab

1 3 2 2
3 2 2
1 1 1

2
2
Ô

2 + 3 ⁄2 ≠ 6⁄ + 1 = 0 Z1 Z2 1 ≠ z

1 ≠ 6z + z2 p + q · ⁄1 p, q œ Z Pisot quasiperiodic

Copper Mean Squared

0 ‘æ 1000100010000
1 ‘æ 1000 ( 10 3

3 1 )
a ‘æ caabcaabcaaab
b ‘æ caabcaabcaaab
c ‘æ caab

1 7 3 3
7 3 3
2 1 1

2 3
Ô

13
2 + 11

2 ⁄2 ≠ 11⁄ + 1 = 0 Z1 Z2 1 ≠ z

1 ≠ 11z + z2 p + q · ⁄1 p, q œ Z Pisot quasiperiodic

Luck Ternary #1

0 ‘æ 01
1 ‘æ 02
2 ‘æ 012

1 1 1 0
1 0 1
1 1 1

2 a ‘æ ac
b ‘æ ac
c ‘æ be
d ‘æ be
e ‘æ ade

A 1 0 1 0 0
1 0 1 0 0
0 1 0 0 1
0 1 0 0 1
1 0 0 1 1

B
2.247 ⁄3 ≠ 2⁄2 ≠ ⁄ + 1 = 0 Z1 Z3 1 ≠ z

1 ≠ 2z ≠ z2 + z3 p + q · ⁄1 + r · ⁄2
1 p, q, r œ Z Pisot quasiperiodic

Luck Ternary #2

0 ‘æ 2
1 ‘æ 0
2 ‘æ 12

1 0 0 1
1 0 0
0 1 1

2 a ‘æ c
b ‘æ a
c ‘æ be
d ‘æ bc
e ‘æ bd

A 0 0 1 0 0
1 0 0 0 0
0 1 0 0 1
0 1 1 0 0
0 1 0 1 0

B
1.4656 ⁄3 ≠ ⁄2 ≠ 1 = 0 Z1 Z3 1 ≠ z

1 ≠ z ≠ z3 p + q · ⁄1 + r · ⁄2
1 p, q, r œ Z Pisot quasiperiodic

Periodic 1-2

0 ‘æ 011
1 ‘æ 011 ( 1 2

1 2 ) a ‘æ acb
b ‘æ acb
c ‘æ acb

1 1 1 1
1 1 1
1 1 1

2
3 ⁄2 ≠ 3⁄ = 0 Z1 Z1 1 ≠ z

1 ≠ 3z

k

3 k œ Z Pisot periodic

Periodic 1-3

0 ‘æ 0111
1 ‘æ 0111 ( 1 3

1 3 ) a ‘æ accb
b ‘æ accb
c ‘æ accb

1 1 1 2
1 1 2
1 1 2

2
4 ⁄2 ≠ 4⁄ = 0 Z1 Z1 1 ≠ z

1 ≠ 4z

k

4 k œ Z Pisot periodic

Periodic 1-4

0 ‘æ 01111
1 ‘æ 01111 ( 1 4

1 4 ) a ‘æ acccb
b ‘æ acccb
c ‘æ acccb

1 1 1 3
1 1 3
1 1 3

2
5 ⁄2 ≠ 5⁄ = 0 Z1 Z1 1 ≠ z

1 ≠ 5z

k

5 k œ Z Pisot periodic

Periodic 2-3

0 ‘æ 00111
1 ‘æ 00111 ( 2 3

2 3 )
a ‘æ abddc
b ‘æ abddc
c ‘æ abddc
d ‘æ abddc

3 1 1 1 2
1 1 1 2
1 1 1 2
1 1 1 2

4
5 ⁄2 ≠ 5⁄ = 0 Z1 Z1 1 ≠ z

1 ≠ 5z

k

5 k œ Z Pisot periodic

Periodic 2-5

0 ‘æ 0011111
1 ‘æ 0011111 ( 2 5

2 5 )
a ‘æ abddddc
b ‘æ abddddc
c ‘æ abddddc
d ‘æ abddddc

3 1 1 1 4
1 1 1 4
1 1 1 4
1 1 1 4

4
7 ⁄2 ≠ 7⁄ = 0 Z1 Z1 1 ≠ z

1 ≠ 7z

k

7 k œ Z Pisot periodic

Golden Mean

0 ‘æ 10
1 ‘æ 0 ( 1 1

1 0 ) a ‘æ cb
b ‘æ ca
c ‘æ b

1 0 1 1
1 0 1
0 1 0

2
· ⁄2 ≠ ⁄ ≠ 1 = 0 Z1 Z2 1 ≠ z

1 ≠ z ≠ z2 p + q · ⁄1 p, q œ Z Pisot quasiperiodic

Silver Mean

0 ‘æ 100
1 ‘æ 0 ( 2 1

1 0 ) a ‘æ cab
b ‘æ caa
c ‘æ b

1 1 1 1
2 0 1
0 1 0

2 Ô
2 + 1 ⁄2 ≠ 2⁄ ≠ 1 = 0 Z1 Z2 1 ≠ z

1 ≠ 2z ≠ z2 p + q · ⁄1 p, q œ Z Pisot quasiperiodic

Copper Mean

0 ‘æ 1000
1 ‘æ 0 ( 3 1

1 0 )
a ‘æ caab
b ‘æ caaa
c ‘æ b

1 2 1 1
3 0 1
0 1 0

2 Ô
13
2 + 3

2 ⁄2 ≠ 3⁄ ≠ 1 = 0 Z1 Z2 1 ≠ z

1 ≠ 3z ≠ z2 p + q · ⁄1 p, q œ Z Pisot quasiperiodic

Marginal

0 ‘æ 001
1 ‘æ 011 ( 2 1

1 2 )
a ‘æ abc
b ‘æ abc
c ‘æ bdc
d ‘æ bdc

3 1 1 1 0
1 1 1 0
0 1 1 1
0 1 1 1

4
3 ⁄2 ≠ 4⁄ + 3 = 0 Z1 Z3 1

1 ≠ 3z

k

2 · 3N
k, N œ Z non-Pisot limit-quasiperiodic

Luck non-Pisot

0 ‘æ 0001
1 ‘æ 110 ( 3 1

1 2 )
a ‘æ aabc
b ‘æ aabd
c ‘æ dca
d ‘æ dcb

3 2 1 1 0
2 1 0 1
1 0 1 1
0 1 1 1

4
· + 2 ⁄2 ≠ 5⁄ + 5 = 0 Z1 Z5 1 ≠ z

(z + 1) (1 ≠ 5z + 5z2)
p + q · ·

11 · 5N
p, q, N œ Z non-Pisot limit-quasiperiodic

Binary non-Pisot

0 ‘æ 01
1 ‘æ 000 ( 1 1

3 0 ) a ‘æ bc
b ‘æ bc
c ‘æ aaa

1 0 1 1
0 1 1
3 0 0

2 Ô
13
2 + 1

2 ⁄2 ≠ ⁄ ≠ 3 = 0 Z1 Z3 1 ≠ z

1 ≠ z ≠ 3z2
p + q · ⁄1

3N
p, q, N œ Z non-Pisot limit-quasiperiodic

Ternary non-Pisot

0 ‘æ 2
1 ‘æ 0
2 ‘æ 101

1 0 0 1
1 0 0
1 2 0

2
a ‘æ e
b ‘æ f
c ‘æ b
d ‘æ a
e ‘æ cad
f ‘æ cac

Q

a
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
1 0 1 1 0 0
1 0 2 0 0 0

R

b 1.5214 ⁄3 ≠ ⁄ ≠ 2 = 0 Z1 Z6 1
1 ≠ z2 ≠ 2z3

p + q · ⁄1 + r · ⁄2
1

2N
p, q, r, N œ Z non-Pisot limit-quasiperiodic



Name Substitution Substitution on Doublets Self Properties Cohomology Zeta Function Gap Labeling Theorem Properties

Rule ‡1 Occurrence M1 Rule ‡2 Occurrence M2 Eigenvalue Char. Polynomial H0 (G) H1 (G) ’(z) Pisot char. Periodicity

Fibonacci

0 ‘æ 01
1 ‘æ 0 ( 1 1

1 0 ) a ‘æ bc
b ‘æ bc
c ‘æ a

1 0 1 1
0 1 1
1 0 0

2
· ⁄2 ≠ ⁄ ≠ 1 = 0 Z1 Z2 1 ≠ z

1 ≠ z ≠ z2 p + q · · p, q œ Z Pisot quasiperiodic

Cantor Set

0 ‘æ 010
1 ‘æ 111 ( 2 1

0 3 ) a ‘æ aba
b ‘æ ccb
c ‘æ ccc

1 2 1 0
0 1 2
0 0 3

2
3 ⁄2 ≠ 5⁄ + 6 = 0 Z1 Z3 1 ≠ z

(1 ≠ 2z) (1 ≠ 3z)
k

3N
k, N œ Z not primitive limit-quasiperiodic

Non-Pisot

0 ‘æ 0001
1 ‘æ 011 ( 3 1

1 2 )
a ‘æ aabc
b ‘æ aabc
c ‘æ bdc
d ‘æ bdc

3 2 1 1 0
2 1 1 0
0 1 1 1
0 1 1 1

4
· + 2 ⁄2 ≠ 5⁄ + 5 = 0 Z1 Z3 1 ≠ z

1 ≠ 5z + 5z2
p + q · ·

5N
p, q, N œ Z non-Pisot limit-quasiperiodic

Periodic

0 ‘æ 01
1 ‘æ 01 ( 1 1

1 1 ) a ‘æ ab
b ‘æ ab ( 1 1

1 1 ) 2 ⁄2 ≠ 2⁄ = 0 Z1 Z1 1 ≠ z

1 ≠ 2z

k

2 k œ Z Pisot periodic

Thue-Morse

0 ‘æ 01
1 ‘æ 10 ( 1 1

1 1 )
a ‘æ bc
b ‘æ bd
c ‘æ ca
d ‘æ cb

3 0 1 1 0
0 1 0 1
1 0 1 0
0 1 1 0

4
2 ⁄2 ≠ 2⁄ = 0 Z1 Z3 1 ≠ z

(1 ≠ 2z) (1 + z)
k

3 · 2N
k, N œ Z Pisot aperiodic

SierpiÒski

0 ‘æ 01010
1 ‘æ 11 ( 3 2

0 2 ) a ‘æ ababa
b ‘æ cb
c ‘æ cc

1 3 2 0
0 1 1
0 0 2

2
3 ⁄2 ≠ 5⁄ + 6 = 0 Z1 Z4 1 ≠ z

(1 ≠ 2z) (1 ≠ 3z)
k

3N
k, N œ Z not primitive limit-quasiperiodic

Degen. SierpiÒski

0 ‘æ 0001
1 ‘æ 1112
2 ‘æ 1112

1 3 1 0
0 3 1
0 3 1

2
a ‘æ aabc
b ‘æ aabd
c ‘æ ddef
d ‘æ ddeg
e ‘æ ddeg
f ‘æ ddef
g ‘æ ddeg

Q

ca

2 1 1 0 0 0 0
2 1 0 1 0 0 0
0 0 0 2 1 1 0
0 0 0 2 1 0 1
0 0 0 2 1 0 1
0 0 0 2 1 1 0
0 0 0 2 1 0 1

R

db 4 ⁄3 ≠ 7⁄2 + 12⁄ = 0 Z1 Z3 1 ≠ z

(1 ≠ 3z) (1 ≠ 4z)
k

4N
k, N œ Z not primitive aperiodic

Period Doubling

0 ‘æ 01
1 ‘æ 00 ( 1 1

2 0 ) a ‘æ bc
b ‘æ bc
c ‘æ aa

1 0 1 1
0 1 1
2 0 0

2
2 ⁄2 ≠ ⁄ ≠ 2 = 0 Z1 Z3 1 ≠ z

(1 ≠ 2z) (1 + z)
k

3 · 2N
k, N œ Z non-Pisot limit-quasiperiodic

Circle Sequence

0 ‘æ 202
1 ‘æ 02202
2 ‘æ 01202

1 1 0 2
2 0 3
2 1 2

2 a ‘æ dbd
b ‘æ dbd
c ‘æ bedbd
d ‘æ acdbe
e ‘æ acdbd

A 0 1 0 2 0
0 1 0 2 0
0 2 0 2 1
1 1 1 1 1
1 1 1 2 0

B
·3 ⁄3 ≠ 3⁄2 ≠ 5⁄ ≠ 1 = 0 Z1 Z3 1 ≠ z

(1 + z) (1 ≠ 4z ≠ z2)
1
2 (p + q · ·) p, q œ Z Pisot quasiperiodic

Rudin-Shapiro

0 ‘æ 02
1 ‘æ 32
2 ‘æ 01
3 ‘æ 31

3 1 0 1 0
0 0 1 1
1 1 0 0
0 1 0 1

4
a ‘æ bf
b ‘æ be
c ‘æ he
d ‘æ hf
e ‘æ ac
f ‘æ ad
g ‘æ gd
h ‘æ gc

Q

ca

0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0

R

db 2 ⁄4 ≠ 2⁄3 ≠ 2⁄2 + 4⁄ = 0 Z1 Z9 1 ≠ z

(1 ≠ 2z) (1 ≠ 2z2) (1 + z)
k

2N
k, N œ Z non-Pisot aperiodic

Skau Example #1

0 ‘æ 001
1 ‘æ 0101 ( 2 1

2 2 ) a ‘æ abc
b ‘æ abc
c ‘æ bcbc

1 1 1 1
1 1 1
0 2 2

2 Ô
2 + 2 ⁄2 ≠ 4⁄ + 2 = 0 Z1 Z3 1 ≠ z

1 ≠ 4z + 2z2
p + q

Ô
2

2N
p, q, N œ Z Pisot limit-quasiperiodic

Skau Example #2

0 ‘æ 010
1 ‘æ 01 ( 2 1

1 1 ) a ‘æ bca
b ‘æ bca
c ‘æ bc

1 1 1 1
1 1 1
0 1 1

2
· + 1 ⁄2 ≠ 3⁄ + 1 = 0 Z1 Z2 1 ≠ z

1 ≠ 3z + z2 p + q · · p, q œ Z Pisot quasiperiodic

Skau Example #3

0 ‘æ 001
1 ‘æ 10 ( 2 1

1 1 )
a ‘æ abc
b ‘æ abd
c ‘æ ca
d ‘æ cb

3 1 1 1 0
1 1 0 1
1 0 1 0
0 1 1 0

4
· + 1 ⁄2 ≠ 3⁄ + 1 = 0 Z1 Z5 1 ≠ z

(1 + z) (1 ≠ 3z + z2)
p + q · ·

5 p, q œ Z Pisot quasiperiodic

Skau Example #4

0 ‘æ 010
1 ‘æ 1001 ( 2 1

2 2 ) a ‘æ bca
b ‘æ bcb
c ‘æ cabc

1 1 1 1
0 2 1
1 1 2

2 Ô
2 + 2 ⁄2 ≠ 4⁄ + 2 = 0 Z1 Z2 1 ≠ z

1 ≠ 4z + 2z2
p + q

Ô
2

2N
p, q, N œ Z Pisot limit-quasiperiodic

Chacon

0 ‘æ 0010
1 ‘æ 1 ( 3 1

0 1 )
a ‘æ abca
b ‘æ abcb
c ‘æ c

1 2 1 1
1 2 1
0 0 1

2
3 ⁄2 ≠ 4⁄ + 3 = 0 Z1 Z3 1

1 ≠ 3z

k

3N
k, N œ Z not primitive limit-quasiperiodic

Golden Mean Squared

0 ‘æ 100
1 ‘æ 10 ( 2 1

1 1 ) a ‘æ cab
b ‘æ cab
c ‘æ cb

1 1 1 1
1 1 1
0 1 1

2
· + 1 ⁄2 ≠ 3⁄ + 1 = 0 Z1 Z2 1 ≠ z

1 ≠ 3z + z2 p + q · ⁄1 p, q œ Z Pisot quasiperiodic

Silver Mean Squared

0 ‘æ 1001000
1 ‘æ 100 ( 5 2

2 1 ) a ‘æ cabcaab
b ‘æ cabcaab
c ‘æ cab

1 3 2 2
3 2 2
1 1 1

2
2
Ô

2 + 3 ⁄2 ≠ 6⁄ + 1 = 0 Z1 Z2 1 ≠ z

1 ≠ 6z + z2 p + q · ⁄1 p, q œ Z Pisot quasiperiodic

Copper Mean Squared

0 ‘æ 1000100010000
1 ‘æ 1000 ( 10 3

3 1 )
a ‘æ caabcaabcaaab
b ‘æ caabcaabcaaab
c ‘æ caab

1 7 3 3
7 3 3
2 1 1

2 3
Ô

13
2 + 11

2 ⁄2 ≠ 11⁄ + 1 = 0 Z1 Z2 1 ≠ z

1 ≠ 11z + z2 p + q · ⁄1 p, q œ Z Pisot quasiperiodic

Luck Ternary #1

0 ‘æ 01
1 ‘æ 02
2 ‘æ 012

1 1 1 0
1 0 1
1 1 1

2 a ‘æ ac
b ‘æ ac
c ‘æ be
d ‘æ be
e ‘æ ade

A 1 0 1 0 0
1 0 1 0 0
0 1 0 0 1
0 1 0 0 1
1 0 0 1 1

B
2.247 ⁄3 ≠ 2⁄2 ≠ ⁄ + 1 = 0 Z1 Z3 1 ≠ z

1 ≠ 2z ≠ z2 + z3 p + q · ⁄1 + r · ⁄2
1 p, q, r œ Z Pisot quasiperiodic

Luck Ternary #2

0 ‘æ 2
1 ‘æ 0
2 ‘æ 12

1 0 0 1
1 0 0
0 1 1

2 a ‘æ c
b ‘æ a
c ‘æ be
d ‘æ bc
e ‘æ bd

A 0 0 1 0 0
1 0 0 0 0
0 1 0 0 1
0 1 1 0 0
0 1 0 1 0

B
1.4656 ⁄3 ≠ ⁄2 ≠ 1 = 0 Z1 Z3 1 ≠ z

1 ≠ z ≠ z3 p + q · ⁄1 + r · ⁄2
1 p, q, r œ Z Pisot quasiperiodic

Periodic 1-2

0 ‘æ 011
1 ‘æ 011 ( 1 2

1 2 ) a ‘æ acb
b ‘æ acb
c ‘æ acb

1 1 1 1
1 1 1
1 1 1

2
3 ⁄2 ≠ 3⁄ = 0 Z1 Z1 1 ≠ z

1 ≠ 3z

k

3 k œ Z Pisot periodic

Periodic 1-3

0 ‘æ 0111
1 ‘æ 0111 ( 1 3

1 3 ) a ‘æ accb
b ‘æ accb
c ‘æ accb

1 1 1 2
1 1 2
1 1 2

2
4 ⁄2 ≠ 4⁄ = 0 Z1 Z1 1 ≠ z

1 ≠ 4z

k

4 k œ Z Pisot periodic

Periodic 1-4

0 ‘æ 01111
1 ‘æ 01111 ( 1 4

1 4 ) a ‘æ acccb
b ‘æ acccb
c ‘æ acccb

1 1 1 3
1 1 3
1 1 3

2
5 ⁄2 ≠ 5⁄ = 0 Z1 Z1 1 ≠ z

1 ≠ 5z

k

5 k œ Z Pisot periodic

Periodic 2-3

0 ‘æ 00111
1 ‘æ 00111 ( 2 3

2 3 )
a ‘æ abddc
b ‘æ abddc
c ‘æ abddc
d ‘æ abddc

3 1 1 1 2
1 1 1 2
1 1 1 2
1 1 1 2

4
5 ⁄2 ≠ 5⁄ = 0 Z1 Z1 1 ≠ z

1 ≠ 5z

k

5 k œ Z Pisot periodic

Periodic 2-5

0 ‘æ 0011111
1 ‘æ 0011111 ( 2 5

2 5 )
a ‘æ abddddc
b ‘æ abddddc
c ‘æ abddddc
d ‘æ abddddc

3 1 1 1 4
1 1 1 4
1 1 1 4
1 1 1 4

4
7 ⁄2 ≠ 7⁄ = 0 Z1 Z1 1 ≠ z

1 ≠ 7z

k

7 k œ Z Pisot periodic

Golden Mean

0 ‘æ 10
1 ‘æ 0 ( 1 1

1 0 ) a ‘æ cb
b ‘æ ca
c ‘æ b

1 0 1 1
1 0 1
0 1 0

2
· ⁄2 ≠ ⁄ ≠ 1 = 0 Z1 Z2 1 ≠ z

1 ≠ z ≠ z2 p + q · ⁄1 p, q œ Z Pisot quasiperiodic

Silver Mean

0 ‘æ 100
1 ‘æ 0 ( 2 1

1 0 ) a ‘æ cab
b ‘æ caa
c ‘æ b

1 1 1 1
2 0 1
0 1 0

2 Ô
2 + 1 ⁄2 ≠ 2⁄ ≠ 1 = 0 Z1 Z2 1 ≠ z

1 ≠ 2z ≠ z2 p + q · ⁄1 p, q œ Z Pisot quasiperiodic

Copper Mean

0 ‘æ 1000
1 ‘æ 0 ( 3 1

1 0 )
a ‘æ caab
b ‘æ caaa
c ‘æ b

1 2 1 1
3 0 1
0 1 0

2 Ô
13
2 + 3

2 ⁄2 ≠ 3⁄ ≠ 1 = 0 Z1 Z2 1 ≠ z

1 ≠ 3z ≠ z2 p + q · ⁄1 p, q œ Z Pisot quasiperiodic

Marginal

0 ‘æ 001
1 ‘æ 011 ( 2 1

1 2 )
a ‘æ abc
b ‘æ abc
c ‘æ bdc
d ‘æ bdc

3 1 1 1 0
1 1 1 0
0 1 1 1
0 1 1 1

4
3 ⁄2 ≠ 4⁄ + 3 = 0 Z1 Z3 1

1 ≠ 3z

k

2 · 3N
k, N œ Z non-Pisot limit-quasiperiodic

Luck non-Pisot

0 ‘æ 0001
1 ‘æ 110 ( 3 1

1 2 )
a ‘æ aabc
b ‘æ aabd
c ‘æ dca
d ‘æ dcb

3 2 1 1 0
2 1 0 1
1 0 1 1
0 1 1 1

4
· + 2 ⁄2 ≠ 5⁄ + 5 = 0 Z1 Z5 1 ≠ z

(z + 1) (1 ≠ 5z + 5z2)
p + q · ·

11 · 5N
p, q, N œ Z non-Pisot limit-quasiperiodic

Binary non-Pisot

0 ‘æ 01
1 ‘æ 000 ( 1 1

3 0 ) a ‘æ bc
b ‘æ bc
c ‘æ aaa

1 0 1 1
0 1 1
3 0 0

2 Ô
13
2 + 1

2 ⁄2 ≠ ⁄ ≠ 3 = 0 Z1 Z3 1 ≠ z

1 ≠ z ≠ 3z2
p + q · ⁄1

3N
p, q, N œ Z non-Pisot limit-quasiperiodic

Ternary non-Pisot

0 ‘æ 2
1 ‘æ 0
2 ‘æ 101

1 0 0 1
1 0 0
1 2 0

2
a ‘æ e
b ‘æ f
c ‘æ b
d ‘æ a
e ‘æ cad
f ‘æ cac

Q

a
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
1 0 1 1 0 0
1 0 2 0 0 0

R

b 1.5214 ⁄3 ≠ ⁄ ≠ 2 = 0 Z1 Z6 1
1 ≠ z2 ≠ 2z3

p + q · ⁄1 + r · ⁄2
1

2N
p, q, r, N œ Z non-Pisot limit-quasiperiodic



Sierpinski gasket



Thank you for your attention.


