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Waves and quantum 
physics on fractals :  

!

From continuous to discrete 

scaling symmetry  
!Eric Akkermans 

Physics-Technion 



• General introduction - Photons and Quantum 
Electrodynamics on fractals!

• Interplay between topology and discrete scaling 
symmetry : Quasi-crystals!

• Critical behaviour on fractals : BEC and superfluidity!

• Efimov physics from geometric and spectral 
perspectives

Four lectures
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Part 1: General introduction to 
fractals

• attractive objects - Bear exotic names

Julia sets



Hofstadter butterfly

Anatomy of the Hofstadter butterfly

Energy levels and wave functions of Bloch electrons 
in rational and irrational magnetic fields, 
Douglas Hofstadter, Phys. Rev. B 14 (1976) 2239
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Outline
General features ----- square lattice

Half-flux quantum per unit cell ------- Dirac spectrum

Honeycomb lattice,  graphene, manipulation of Dirac points

Finite systems, edge states

Hofstadter in other contexts
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Anatomy of the Hofstadter butterfly

M. Azbel (1964)

G.H. Wannier

Y. Avron, B. Simon

J. Bellissard, R. Rammal

D. Thouless, Q. Niu

TKNN : Thouless, Kohmoto, Nightingale, den Nijs

Y. Hatsugai

Sierpinski carpet Sierpinski gasket



Figure: Diamond fractals, non-p.c.f., but finitely ramified

Diamond fractals

Convey the idea of highly symmetric objects yet with an 
unusual type of symmetry and a notion of extreme subdivision

Triadic Cantor set
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Sierpinski  gasket

Diamond fractals

 Fractal : Iterative graph structure

Figure: Diamond fractals, non-p.c.f., but finitely ramified

n→∞
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Fractal graph and Euclidean equivalent

Similar graphs but have very distinct properties

d = 1

d = 2

d = ?



Fractal graph and Euclidean equivalent

Similar graphs but have very distinct properties

d = 1

d = 2

d = ?



As opposed to Euclidean spaces 
characterised by translation symmetry, 
fractals possess a dilatation symmetry.

Fractals are self-similar objects



Fractal    ↔    Self-similar

Discrete scaling symmetry



• Euclidean systems are characterised by a 
single integer dimension : d =1,2,3,4,…10 

• We have learned that the dimension d 
can be considered a varying parameter :!

     -expansion (phase transition, statistical 
mechanics, quantum field theory)

ε

Yet, there is a single parameter d which enters 
into all physical quantities

Notion of dimension
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On fractal manifolds, the notion  of 
dimension depends on the measured 

physical quantity. !
!

!

Dimensions are not necessarily 
integers 



To summarise

• Euclidean manifolds : d is a fixed (boring ?) parameter.!

• Fields (Stat. Mech., QFT) on Euclidean manifolds : d may 
be a variable (    -expansion) quantity !

• Underlying essential idea : spontaneous (continuous) 
symmetry breaking.!

• Fractal manifolds : genuine non integer dimension!

• Fields on fractals : d is not variable, but distinct physical 
quantities are characterised by different dimensions.!

• Underlying essential idea : discrete scaling symmetry.

ε



• But generally, not all fractals are obvious, good faith 
geometrical objects.!
!

Sometimes, the fractal structure is not geometrical 
but it is hidden at a more abstract level. 

Exemple : quasi-periodic stack of dielectric layers of 2 types 

Fibonacci sequence : F1 = B; F2 = A; Fj≥3 = Fj−2Fj−1⎡⎣ ⎤⎦

A, B

Defines a cavity whose mode spectrum is fractal.
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Density of modes ρ(ω) : 

Discrete scaling symmetry

Existence of a fractal behaviour (discrete scaling symmetry) 
may be the expression of a genuine specific symmetry (next 

lecture).



Fractals define a very useful testing 
ground for dimensionality dependent 
physical problems since distinct physical 
properties are characterised by different 
(usually non integer) dimensions.

Why studying fractals in physics ?

Fractals or the skill of playing with 
dimensions  
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• Anderson localization phase transition : exists for !

• Bose-Einstein condensation !

• Mermin-Wagner theorem (Superfluidity            )!

• Levy flights-Percolation (quantum and classical)!

• Recurrence properties of random walks!

• Renormalisability           and            special  !

• Quantum and classical phase transitions-Existence of topological 
defects...!

Some examples :

d ≥ 2

d ≥ 2

d = 2 d = 4



The meaning of the critical dependence upon 
dimensionality is not always clear :!

!
Is it a geometric, spectral, transport,… feature ?

In this context, the fractal paradigm is interesting since 
it removes the degenerate role of dimension by 

assigning a different dimension to distinct physical 
properties.  



The meaning of the critical dependence upon 
dimensionality is not always clear :!

!
Is it a geometric, spectral, transport,… feature ?

In this context, the fractal paradigm is interesting since 
it removes the degenerate role of dimension by 

assigning a different dimension to distinct physical 
properties.  



27

Topological aspects
• We have discussed geometrical aspects : dimensions of 

manifolds, spectra,…

• Additional essential information is provided by topological 
properties.!

!
Example: Some d=2 surfaces cannot transform one into another 
by means of continuous transformations. This is expressed by a 
constraint a.k.a a topological invariant.

≠
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Topological aspects
• We have discussed geometrical aspects : dimensions of 

manifolds, spectra,…

• Additional essential information is provided by topological 
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constraint a.k.a a topological invariant.
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h : number of holes

χ S2( ) = 2 χ T2( ) = 0

χ S( ) =V − E + F

V=# of vertices ; E = # of edges and F = # of faces

Euler :

Euler-Poincare characteristics

χ S( ) = 2 1− h( )
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• Although the sphere and the torus have the same 
dimension, these two manifolds have distinguishable 
properties when it comes to topology namely defining 
fields and operators (e.g., the Laplace operator          which 
measure the energy cost to adapt a field to a specific 
manifold). 

−Δ

• General theory of operators defined on manifolds proposes a 
systematic framework to account for the connexion between 
(fields + operators) and topology of a manifold : Chern 
classes/numbers 

• Topology of fractals is at a much earlier stage : difficulty in 
defining operators on fractals. 

• Important progresses : gap labeling theorem 
(Bellissard ’82), aspects of the QHE and 
Quasi-crystals (Lecture 3). χSierpinski →−∞



33

• Although the sphere and the torus have the same 
dimension, these two manifolds have distinguishable 
properties when it comes to topology namely defining 
fields and operators (e.g., the Laplace operator          which 
measure the energy cost to adapt a field to a specific 
manifold). 

−Δ

• General theory of operators defined on manifolds proposes a 
systematic framework to account for the connexion between 
(fields + operators) and topology of a manifold : Chern 
classes/numbers 

• Topology of fractals is at a much earlier stage : difficulty in 
defining operators on fractals. 

• Important progresses : gap labeling theorem 
(Bellissard ’82), aspects of the QHE and 
Quasi-crystals (Lecture 3). χSierpinski →−∞



34

• Although the sphere and the torus have the same 
dimension, these two manifolds have distinguishable 
properties when it comes to topology namely defining 
fields and operators (e.g., the Laplace operator          which 
measure the energy cost to adapt a field to a specific 
manifold). 

−Δ

• General theory of operators defined on manifolds proposes a 
systematic framework to account for the connexion between 
(fields + operators) and topology of a manifold : Chern 
classes/numbers 

• Topology of fractals is at a much earlier stage : difficulty in 
defining operators on fractals. 

• Important progresses : gap labeling theorem 
(Bellissard ’82), aspects of the QHE and 
Quasi-crystals (Lecture 3). χSierpinski →−∞



35

• Although the sphere and the torus have the same 
dimension, these two manifolds have distinguishable 
properties when it comes to topology namely defining 
fields and operators (e.g., the Laplace operator          which 
measure the energy cost to adapt a field to a specific 
manifold). 
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classes/numbers 

• Topology of fractals is at a much earlier stage : difficulty in 
defining operators on fractals. 

• Important progresses : gap labeling theorem 
(Bellissard ’82), aspects of the QHE and 
Quasi-crystals (Lectures 2+3). χSierpinski →−∞



Part 2 :Fractal dimensions

36

A working definition of a fractal
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Hausdorff geometric dimension

Scaling of these dimensionless quantities allows to define a 
(mass) fractal dimension :

At each step     of the iteration, the fractal graph is 
characterised by its length scale                and the  number                
of bonds (mass)                   .!

Ln =2
n L

Mn = 3
nM

dh n→∞⎯ →⎯⎯ lnMn

lnLn
Hausdorff geometric dimension

An iterative structure : Sierpinski  gasket

 ~1.585

n→∞
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Hausdorff geometric dimension

Scaling of these dimensionless quantities allows to define a 
(mass) fractal dimension :

At each step     of the iteration, the fractal graph is 
characterised by its length scale                and the  number                
of bonds (mass)                   .!

Ln =2
n L

Mn = 3
nM

Hausdorff geometric dimension

An iterative structure : Sierpinski  gasket

 ~1.585

n→∞

lnMn

lnLn
n→∞⎯ →⎯⎯ dh

< 2
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The Cantor set (disconnected zero measure)

The mass density observed after a !
magnification by a factor 3 is 

L

2m L
3( ) =m L( )

2m L
3( ) =m L( )⇔2m L( ) =m 3L( )

Alternatively, define the mass density              of the triadic Cantor setm L( )

Mn = 2
nM

Ln = 3
n L

lnMn

lnLn
n→∞⎯ →⎯⎯ dh =

ln2
ln3



42

The Cantor set (disconnected zero measure)

The mass density observed after a !
magnification by a factor 3 is 

L

2m L
3( ) =m L( )

2m L
3( ) =m L( )⇔2m L( ) =m 3L( )

Alternatively, define the mass density              of the triadic Cantor setm L( )

Mn = 2
nM

Ln = 3
n L

lnMn

lnLn
n→∞⎯ →⎯⎯ dh =

ln2
ln3

< 1



43

The Cantor set (disconnected zero measure)

The mass density observed after a !
magnification by a factor 3 is 

L

2m L
3( ) =m L( )

2m L
3( ) =m L( )⇔2m L( ) =m 3L( )

Alternatively, define the mass density              of the triadic Cantor setm L( )

Mn = 2
nM

Ln = 3
n L

lnMn

lnLn
n→∞⎯ →⎯⎯ dh =

ln2
ln3



44

The Cantor set (disconnected zero measure)

The mass density observed after a !
magnification by a factor 3 is 

L

2m L
3( ) =m L( )

2m L
3( ) =m L( )⇔2m L( ) =m 3L( )

Alternatively, define the mass density              of the triadic Cantor setm L( )

Mn = 2
nM

Ln = 3
n L

lnMn

lnLn
n→∞⎯ →⎯⎯ dh =

ln2
ln3



Electric dimension : 

45

Kirchhoff’s laws

ς =
ln5 3
ln2

The electric dimension    is different from ς

ς

dh = ln 3ln2

Scanned by C
am

Scanner

Electric Sierpinski network

Scaling of the equivalent 
electric resistance R(L)

R L( ) ∼ Lς
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On an Euclidean manifold, we write the mean square displacement !
!
!
!
while on a fractal,!
!
!
!
where      is the anomalous walk dimension. !

Another fractal dimension distinct from      and  

Classical diffusion - walk dimension 

dh ς
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On an Euclidean manifold, we write the mean square displacement !
!
!
!
while on a fractal,!
!
!
!
where      is the anomalous walk dimension. !

Another fractal dimension distinct from      and  

Classical diffusion - walk dimension 

dh ς

Related through the Einstein relation
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Continuous vs. discrete scale invariance

In all previous cases, we have found that exponents are 
determined by a scaling relation: 

f a x( ) = b f x( )

If this relation is satisfied                , the system has a 
continuous scale invariance 

∀ a,b( )

General solution (by direct inspection) f x( ) = C xα

Power laws are signature of scale invariance

α = lnb
lnawith (does not need to be an integer)
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Discrete scale invariance !

56

f a x( ) = b f x( ), with fixed a,b( )

for fractals, we have a weaker version of scale invariance, 
discrete scale invariance, i.e.,

whose general solution is f x( ) = xα G ln x
lna

⎛
⎝⎜

⎞
⎠⎟

G u +1( ) = G u( )where                           is a periodic function of period unity

f a x( ) = b f x( ), ∀ a,b( )Instead of 

Generalizes to scaling equations :

f a x( ) = b f x( )+ g x( ), with fixed a,b( )

α = lnb
lnawith (could be integer)

∀b a( )∈!
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f a x( ) = b f x( ), with fixed a,b( )

for fractals, we have a weaker version of scale invariance, 
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whose general solution is f x( ) = xα G ln x
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Generalizes to scaling equations :
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Relation between the two cases : discrete vs. continuous

a,b( ) = 3,2( )

a,b( ) = 2,3( )

d = 1

d = 2

∀ a,b( )

Both satisfy                              but with fixed                              
for the fractals.

f a x( ) = b f x( ) a,b( )

m 3L( ) = 2m L( )

m 2L( ) = 2 m L( )

m 2L( ) = 3m L( )



62

Relation between the two cases : discrete vs. continuous

a,b( ) = 3,2( )

a,b( ) = 2,3( )

d = 1

d = 2

∀ a,b( )

Both satisfy                              but with fixed                              
for the fractals.

f a x( ) = b f x( ) a,b( )

m 3L( ) = 2m L( )

m 2L( ) = 2 m L( )

m 2L( ) = 3m L( )

∀b a( )∈!



63

Relation between the two cases : discrete vs. continuous

a,b( ) = 3,2( )

a,b( ) = 2,3( )

d = 1

d = 2

∀ a,b( )

Both satisfy                              but with fixed                              
for the fractals.

f a x( ) = b f x( ) a,b( )

m 3L( ) = 2m L( )

m 2L( ) = 2 m L( )

m 2L( ) = 3m L( )

∀b a( )∈!



Complex fractal exponents and oscillations!

64

For a discrete scale invariance,  f x( ) = xα G ln x
lna

⎛
⎝⎜

⎞
⎠⎟

G u +1( ) = G u( )and                         is a periodic function of period unity

Fourier expansion: f x( ) = cn x
α+i2πn

lna

n=−∞

∞

∑

The scaling quantity         is characterised by an infinite 
set of complex valued exponents, 

f x( )

The existence of such an infinite set is sometimes taken as a 
definition of an underlying fractal structure.

dn =α + i 2πn
lna
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A convenient transform more adapted to discrete 
scaling invariance (Fourier/Laplace)

f a x( ) = b f x( )+ g x( ), with fixed a,b( )for the scaling relation

provided         is not a scaling functiong x( )

The behaviour of        is driven by the poles of        , namely,f x( ) ζ f s( )

bas −1= 0⇔ sn = − lnb
lna

+ 2iπn
lna

Inverse Mellin transform gives immediately:

Mellin or   -transform :ζ ζ f s( ) ≡ 1
Γ s( ) dxxs−1 f x( )

0

∞

∫ s∈!

ζ f s( ) = ba
sζ g s( )

bas −1

f x( ) = x
lnb
lnaG ln x

lna
⎛
⎝⎜

⎞
⎠⎟

G u +1( ) = G u( )with
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Part 3: Operators and fields on fractal manifolds
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Operators are often expressed by local differential 
equations relating the space-time behaviour of a field

∂2u
∂t 2

= Δu Ex. Wave equation

Such local equations cannot be defined on a fractal

Figure: Diamond fractals, non-p.c.f., but finitely ramified



But operators are essential !
quantities for physics!

• Quantum transport in fractal structures :!
       e.g., networks, waveguides, ...!
                    electrons, photons!

     dependence on temperature, on external fields (E, B) !
• Density of states!
• Scattering matrix (transmission/reflection)
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• Quantum fields on fractals, e.g., fermions (spin 1/2), 
photons (spin 1) - canonical quantisation (Fourier 
modes) - path integral quantisation : path integrals, 
Brownian motion.!
!

• “curved space QFT” or quantum gravity !
!

• Scaling symmetry (renormalisation group) - critical 
behaviour. !
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But operators are essential !
quantities for physics!
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Intermezzo : heat and waves



From classical diffusion to wave propagation

There is an important relation between classical diffusion 
and wave propagation on a manifold.

It expresses this profound idea that it is possible to 
measure  and characterise a manifold using waves, more 
precisely with the eigenvalue spectrum of the Laplacian 
operator. 

• Generalities on fractals

Many self-similar (fractal) structures in nature and many ways to model them:
A random walk in free space or on a periodic lattice etc.

Fractals provide a useful testing ground to investigate properties of  disordered 
classical or quantum systems, renormalization group and phase transitions, 
gravitational systems and quantum field theory. 

Motivation:

geometry
curvature
volume 

dimension

Spectral data
Heat kernel

Zeta function

Differential operator
“propagating probe”

physically:
Laplacian 

How does it look on a fractal ? Even the simplest question, e.g. dimension, are 
surprisingly different !



Mathematical physics
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Use propagating physical waves/particles to probe geometry!
• spectral information:  density of states, transport, !
           heat kernel, ...!
• geometric information: dimension, volume, !
        boundaries, shape, ...!

1910 Lorentz: why is the Jeans radiation law only dependent on the 
volume ?!
1911 Weyl : relation between asymptotic eigenvalues and dimension/
volume.!
1966 Kac : can one hear the shape of a drum ?!



Important examples
• Heat equation                             !
!

•  Wave equation!
!
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i ∂u
∂t

= Δu

∂u
∂t

= Δu

∂2u
∂t 2

= Δu

Schr. equation.

Pt x, y( ) = xe
−(i ) !x2 dτ

0

t

∫

x 0( )=x,x t( )=y
∫ D Brownian motion

Pt x, y( ) ∼ 1
t
d
2

an (x, y)t
n

n
∑

Pt x, y( ) ∼ #( )
geodesics
∑ e−(i )Sclassical (x,y,t )

Heat kernel expansion

Gutzwiller - instantons

u x,t( ) = dµ y( )Pt x, y( )u y,0( )∫
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Spectral functions
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Small t behaviour of  Z(t)          poles of!ζ Z s( )⇔

Pt x, y( ) = y e−Δt x = ψ λ
∗ (y)

λ
∑ ψ λ (x)e

−λt

ζ Z s( ) ≡ 1
Γ s( ) dtt s−1Z t( )

0

∞

∫ Mellin transform

Heat kernelZ(t) =Tre−Δt = dx x e−Δt x∫ = e−λt
λ
∑

ζ Z s( ) = Tr 1
Δ s =

1
λ s

λ
∑

Weyl 
expansion
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The heat kernel is related to the density of 
states of the Laplacian

There are “Laplace transform” of  each other:

From the Weyl expansion, it is thus possible to obtain the density 
of  states. 
!
                          



How does it work ?

Diffusion (heat) equation in d=1

whose spectral solution is 

Probability of diffusing from x to y in a time t.!
!
In d space dimensions:

access the volume 
of the manifold

Pt x, y( ) = 1
4πDt( )12

e
−
x−y( )2
4Dt

Pt x, y( ) = 1
4πDt( )d 2

e
−
x−y( )2
4Dt

Zd t( ) = ddx
Vol .
∫ Pt x, x( )= Volume

4πDt( )d 2

We can characterise the “spatial geometry” by watching how the heat flows. 
The heat kernel         isZd t( )
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Poisson formula

Weyl expansion!
 (1d)
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Weyl expansion (2d) :

Mark Kac (1966)

Zd=2 (t) ∼
Vol.
4πt

− L
4

1
4πt

+1
6
+…

Boundary terms- Hearing the shape of a drum

Poisson formula
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Weyl expansion (2d) :

Mark Kac (1966)

sensitive to boundarybulk

integral of bound. 
curvature

Zd=2 (t) ∼
Vol.
4πt

− L
4

1
4πt

+1
6
+…

Boundary terms- Hearing the shape of a drum

Poisson formula



-functionZeta function

           has a simple pole at so that,

ζ ζ Z s( ) = Tr 1
Δ s =

1
λ s

λ
∑



How does it work on a fractal ?

Differently…

No access to the eigenvalue spectrum but we know how!
to calculate the Heat Kernel.

Z(t) =Tre−Δt = dx x e−Δt x∫ = e−λt
λ
∑

and thus, the density of states,
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More precisely, we have,

where             is the total length upon iteration of the elementary step              

which has poles at 



More precisely, we have,

where             is the total length upon iteration of the elementary step              

which has poles at 

The whole calculation !



Infinite number of complex poles : complex fractal dimensions. !
They control the behaviour of the heat kernel which exhibits oscillations!
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They control the behaviour of the heat kernel which exhibits oscillations!
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Figure: Diamond fractals, non-p.c.f., but finitely ramified



Another surprise :!
Notion of spectral volume



so that

to compare with
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From the previous expression we obtain Z t( )
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Geometric volume described by the 
Hausdorff dimension is large 

(infinite)

Spectral volume ?

     Spectral volume       !
is the finite volume occupied by the !

modes

Numerical solution of Maxwell eqs. in the Sierpinski gasket 
(courtesy of S.F. Liew and H. Cao, Yale)
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Part 4: Physical application. !
Thermodynamics of photons on fractals

Quantisation of the electromagnetic field in a waveguide fractal structure.

How to measure the spectral volume



physical application: thermodynamics on a fractal

dE

d⇥
= V

T

2�2c3
⇥2

In an enclosure with a perfectly reflecting surface there can form standing electromagnetic waves 
analogous to tones of an organ pipe; we shall confine our attention to very high overtones. Jeans 
asks for the energy in the frequency interval dν ... It is here that there arises the mathematical 

problem to prove that the number of sufficiently high overtones that lies in the interval ν to ν+dν 
is independent of the shape of the enclosure and is simply proportional to its volume. 

H. Lorentz, 1910

Akkermans, GD, Teplyaev, 2010

Blackbody radiation from a fractal or 
thermodynamics without phase space 

usual approach: count modes in momentum space

thermal equilibrium: 
equation of state

P V =
1
d

U

pressure volume internal energy

lnZ(T, V )partition function (generating function)

P =
1
�

⇥ lnZ
⇥V

U = �⇥ lnZ
⇥�

� =
1
T

Equation of state at thermodynamic 
equilibrium relating pressure, volume and 
internal energy:    
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Usual approach : count modes in momentum space

is a dimensionless function

Black-body radiation in a large volume 

Mode decomposition of the field:

d-dimensional integer-valued vector-elementary momentum space cells 

so that

is the photon thermal wavelength.

Mode  decomposition of the field

Calculate the partition (generating)!
 !
function                for a blackbody of !
!
large volume      in dimension 

z T ,V( )
V d

usual approach: count modes in momentum space

thermal equilibrium: 
equation of state

P V =
1
d

U

pressure volume internal energy

lnZ(T, V )partition function (generating function)

P =
1
�

⇥ lnZ
⇥V

U = �⇥ lnZ
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� =
1
T

2π( )d
V

is a dimensionless function

Black-body radiation in a large volume 

Mode decomposition of the field:

d-dimensional integer-valued vector-elementary momentum space cells 

so that

is the photon thermal wavelength.

Lβ ≡ β!cwith

(photon thermal 
wavelength)β = 1

kBT
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is the “spectral volume”.

On a fractal there is no notion of Fourier mode decomposition.!
!

Dimensions of momentum and position spaces are usually 
different : problem with the conventional formulation in terms of 

phase space cells.!
!

Volume of a fractal is usually infinite. !
!

Nevertheless,!
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But we can re-phrase the thermodynamic 
problem in terms of heat kernel and zeta 

function !



Rescale by Lβ ≡ β!c

ln z T ,V( ) = − 1
2
lnDetM×V

∂2

∂τ 2
+ c2Δ⎛

⎝⎜
⎞
⎠⎟

Looks (almost) like a bona fide wave equation                proper time.           but 

This expression does not rely on mode decomposition, but results from the 
thermodynamic equilibrium (Keldysh-Schwinger).!

!

Partition function of quantum radiation at equilibrium- 
General formulation - General geometric shape
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Partition function of quantum radiation at equilibrium- 
General formulation - General geometric shape

Matsubara frequencies
Spatial manifold (fractal)

ln z T ,V( ) = − 1
2
lnDetM×V

∂2

∂u2
+Lβ

2 Δ
⎛
⎝⎜

⎞
⎠⎟

M Lβ ≡ β!c: circle of radius

Thermal equilibrium of photons on a spatial manifold V at 
temperature T is described by the (scaled) wave equation on M ×V
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Thermodynamics measures the spectral volume 

ln z T ,V( ) = 1
2

dτ
τ
f τ( )TrV e−τLβ

2 Δ

0

∞

∫

+ Weyl expansion ln z T ,V( ) ∼ V
Lβ
d⇒



On a fractal…

Z Lβ
2 τ( )∼ Vs

4π Lβ
2 τ( )

ds
2
f lnτ( )

Thermodynamic equation of state for a fractal manifold

Thermodynamics measures the spectral volume and 
the spectral dimension. 
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Something a bit weird…



Looks like, on a fractal, coordinate and momentum 
spaces involve different dimensions…

• Euclidean manifold : coordinate space has dimension  

dh
ds

d

Nothing but the expression of the uncertainty principle (existence of a Fourier 
transform)

• Fractal manifold : coordinate space has dimension!
!

                                 momentum space has dimension 

uncertainty principle ?
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Thank you for your attention.


