Interplay between topology and discrete scaling
symmetry : Fibonacci quasi-crystals

A topological system without magnetic field
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Enseigner la recherche en train de se faire




A spectral rather than geometric
perspective of fractals as 1n the first
lecture




Today’s program

® Spontaneous emission from a vacuum with a
discrete scaling symmetry (fractal)

® Experimental study of the Fibonacci spectrum
(polaritons)

® Some wanderings
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A large variety of problems are conveniently described
using the existing classification in spectral classes

absolutely continuous
singular-continuous

point spectrum



A large variety of problems are conveniently described
in terms of spectral classes

( absolutely continuous / singular-continuous / point spectrum):

» Anderson localisation
» Quantum and classical wave diffusion

» Random magnetism
>



A LARGE VARIETY OF PROBLEMS ARE CONVENIENTLY
DESCRIBED IN TERMS OF SPECTRAL CLASSES

absolutely continuoi«



Part 1

An 1interesting problem to warm
up...



Spontaneous emission from a fractal QED
cavity/spectrum

) E
hw
|8)

(courtesy of J. Gabelli)



Spontaneous emission for different QED vacua
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Discrete scaling symmetry




Fractal spectrum - an example

A quasi-periodic stack of dielectric layers of two types (n,,ng)
Fibonacci sequence: S]>2 [S S ], S =B, S =4
AeABaABAaABAAB%ABAABABA%. .

The den3|ty of modes ,o( ) :
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Discrete scaling symmetry: formal description
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Counting function: N, (Aw) = f p(w"dw' = (# of states in [w, w+Aw))
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| N_(FAw) = a’N_(Aw), pEZ

b,a - fixed scaling factors

Discrete scaling
symmetry
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Testing the discrete scaling symmetry

Scaling equation

W+A®

N, (b"Aw)=a’N_ (Am), N (A®) = j 0(®")dw'
has the following general solution (dimensionless w):
InA® ]
N, (A®) = (A®)” X F ‘ ‘ : azﬂ, F(x+1)=F(x)
Inb Inb
- fractal exponent (absolutely continuous : , pure-point : )
Similarly for the convolution of p(w) with a window function g(x) ﬂ |1
N (Aw) = | ((”"‘” )3(0) Yo' = (bwy x F, [ BA — /\ -
® =8 ZS(D g Inb ? p ‘/QX/ \J<>v
- J -

(Ghez and Vaienti, ‘89: the wavelet transform of fractal measures)
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Testing the discrete scaling symmetry - an example

A quasi-periodic dielectric stack

N (A0 = [ (%2 P o')do

g(x) =

sin(x)
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Summarise

A quasi-periodic dielectric stack 1A AIA AIAIA AIA

does not have a geometric fractal
structure, but...



Summarise

A quasi-periodic dielectric stack

does not have a geometric fractal
structure, but...

1ts spectrum has a fractal structure :

In|Aw
Nw(Aa))z(Aw)“xF( 0| ‘} o = 24

=—7y, F(x+1)=F
Inh np’ L EHD=H)

Spectral fractal dimension d ;



Two-level atom coupled to a continuum of states
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We solve the time-dependent problem: “P(t — ())> — ‘ e,0k>

‘\P(t»:oc(t)e_imat »

g91k>

(%)

‘ density of photonic modes

p.()=lou(t)[" - the excited state probability



Two-level atom coupled to a continuum of states - basics

Probability amplitude

fter a time t : J
state after a time t U,(t)=(e,0,|U(z,0)

e,0k>

lA] (¢,0) evolution operator for the total Hamiltonian H wom TH, +H.



Two-level atom coupled to a continuum of states - basics

Probability amplitude

fter a time t : )
state after a time t U,(t)=(e,0,|U(z,0)

e,0k>

lA] (¢,0) evolution operator for the total Hamiltonian H wom TH, +H.

A

1 c+100 (s—iwe)t
Ud(t) = — / ds—°

2T Jeioe S+ Pels — iwe)

~

d.(s) is the Laplace transform of time correlation function of the field

P (t) = h™*|dge|* (O | E= (r, 1) EX (r, 0)[O)



Two-level atom coupled to a continuum of states - basics

Probability amplitude

fter a time t : )
state after a time t U,(t)=(e,0,|U(z,0)

e,0k>

lA] (¢,0) evolution operator for the total Hamiltonian H wom TH, +H.

A

1 c+100 (s—iwe)t
Ud(t) = — / ds—°

2T Jeioe S+ Pels — iwe)

~

d.(s) is the Laplace transform of time correlation function of the field

P (t) = h™*|dge|* (O | E= (xr, 1) EX (r, 0)[0k)

Note : local quantity 22



Two relevant energy scales for the pb. of spontaneous emission:

1. Strength I'e (we ) of the coupling between emitter and vacuum.

2. Spectral width A of I'e(we)

 Dimensionless coupling parameter :

g="Tc(we)/A.

Strong vs. weak coupling

23



e Weak coupling limit ¢ < 1,

Probability amplitude U, (¢) =<€,0k\l7 (,0)|e,0,) for spont. emission

. . . c+ioo (s—iwe)t
is determined by the pole in ~ .(t) = — / ds——

B 271 — 100 S—I—(i)e(S—Z.we).

—~

s~ —P.(—iwe) —> Wigner-Weisskopf exponential decay



e Weak coupling limit ¢ < 1,

Probability amplitude U, (¢) =<e,0k\l7 (,0)|e,0,) for spont. emission

. . . 1 c+100 (s—iwe)t
1s determined by the pole iIn v, (1) = — / ds—— .
271 c—100 S + (I)e(s — iwe)

~

s~ —P.(—iwe) —> Wigner-Weisskopf exponential decay

At long time, ¢ >T"' (a)e)
pole approx. breaks down (even 1n free space),

For a d-dimensional scalar QED vacuum,  U.(t) ~ 1/t*th.

Driven by the singularity at the edge @ = O of the spectrum



e Weak coupling limit ¢ < 1,

Probability amplitude U, (¢) =<€,0k\l7 (,0)|e,0,) for spont. emission

. . . 1 c+100 (s—iwe)t
1s determined by the pole iIn  v.(t) = — / ds—— .
271 c—100 S + (I)e(s — iwe)

~

s ~ —®.(—twe.) = Wigner-Weisskopf exponential decay
At long time, ¢ >T"' (a)e)
pole approx. breaks down (even 1n free space),

For a d-dimensional scalar QED vacuum,  U(t) ~ 1/t%t1

holds also for structured photonics crystals /

but not achievable for reasonably measurable : :
. Spectral dimension
times ! ( >




e For a fractal vacuum, we have always g > 1 (strong
coupling regime), even for a small

/

Hine = Y (Viag|g)(e] + h.c.)

But the short time limit remains applicable !

27



Short time limit — the Fermi golden rule
revisited



Short-time limit

A standard perturbative treatment:

For short times, such that a(7)=a(0)=1
t
the excited state probability is  |U.(¢)]* ~ 1 — / dt' T.(t),
0

where the differential decay rate I, (t) is given by the
well kKnown expression:

O == [dkp () |V, P




Fermi golden rule

O == [dkp () |V, P

N

SV A ()
Aw=1¢"

Valid for smooth spectrum + long times

' (t)= %Jdkp (k) |V, ['md (0, —®, )=const =T,



Fermi golden rule

O == [dkp () |V, P

/ [
v/\ /\\/ 0)
Aw=1¢"

Valid for smooth spectrum + long times

2
L(=—> | dkp (k) |V, [ (o, —w,) = const =T,
This 1" coincides with the exponential decay rate (Wigner-Weisskopf):

‘Ue(t)‘zzl—ret - § ‘Ue(t)‘z :e—ret




Short time limit - fractal spectrum

C.(0) == [dkp () |V, f

(D
®

Recall that the counting function sati

N®(Aw) = J‘ ((D —s] 12014, w:».;n bmg } T (0 [gsu] 0
\_ k
We immediately conclude that the general form of IS:
( I—o A
_ t In(¢/¢
T (6)=1""%x|— X F (#/1) : F(x+1)=F(x),
T Inb
\_ J
where

O<o<l b - fractal exponent and scaling factor of the spectrum

T,1t, - time scales, specific to the considered problem.



Spontaneous emission and vacuum fractality

In|A®
N¥(A®) = (A®)* X F A0 ,
I Inb

Ams ’ H h |
Py =
3 i " |
5]/ 10° | *
123, 0.45 — o5 055 :
éo | ) [é.u.] |

['(t) |a.u.]

Differential decay rate

dp,(t)
dt

(at small times) 1(7) =




To summarise

Spontaneous emission from a fractal vacuum
to the
Wigner-Weisskopt exponential decay.

The decay probability |Ue(t)|°is given by an algebraic time
decrease modulated by a log-periodic function characteristic
of the discrete scaling symmetry (fractal) of the vacuum,

v =126 ()

The exponent 7 is related to the spectral dimension.

34



Beyond the short time regime-
Strong coupling and
Inhibition of spontaneous
emission



A toy model

C

p (k1) ~ |V, [p(w) = |

1+ A-cos Injo-o,| ,
Inb

1—
ol

incorporates basic ingredients :
e A singularity in the spectrum (power law decrease)
e Mimics the fractal properties
e Reproduces the scaling in the short time limit

 (Can be treated analytically at all time scales

36
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A toy model
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Part 2

Experimental study of a fractal energy spectrum :

Cavity polaritons 1in a Fibonacci quasi-periodic potential



The Fibonacci problem has a long and rich

(theoretical and experimental) history.

(Kohmoto,Luck, Gellerman, Damanik, Bellissard,Simon,...)



The Fibonacci problem has a long and rich

(theoretical and experimental) history.

(Kohmoto,Luck, Gellerman, Damanik, Bellissard,Simon,...)

But still much to be done...



L L AA AAIAIAA A

A B A Fibonacci sequence: b= I:S'—lSj—2:|9 S =B, S =4
A—AB—ABA—ABAAB—-ABAABABA—...

Number of letters of a sequence S j 1s the Fibonacci
number Fj so that Fj = Fj_ == Fj_?

(233 letters)



Basics on cavity polaritons

GaAs/AlGaAs
based structures

5K

Top DBR
Quantum Wells

DBR{
/

(Distributed) Bragg reflectors

Cavity polaritons :

Angle 0 (°)
-20 -10 0 10 20
-\ T T T T T I' T
L Upper 4
olariton / -
\\ P / Photon
\ / i
\\ A ///
AN 34 Exciton

Emission energy (eV)

polariton

2 e
kin-p/ane (“m )

an optical cavity mode and confined excitons (quantum wells)

C. Weisbuch et al. PRL,




Cavity polaritons are described using a d=2 Schrodinger eq.

2
with the effective photon mass m,, = £ E/cz

n = effective refractive index, A, =9d°+ ai

E = Ekz = energy of the fundamental mode of the cavity
n



Cavity polaritons are described using a d=2 Schrodinger eq.

2
with the effective photon mass m,, = L E/cz

n = effective refractive index, A, =9d°+ ai

E = Ekz = energy of the fundamental mode of the cavity
n

Eigenmodes of the d=2 problem —— numerics



Cavity polaritons are described using a d=2 Schrodinger eq.

2
with the effective photon mass m,, = L E/cz

n = effective refractive index, A, =9d°+ ai

E = Ekz = energy of the fundamental mode of the cavity
n

Eigenmodes of the d=2 problem —— numerics

Well controlled d=1 effective model is preferable !

Ep(x)=—" —d—2+V<x> O(x) V(x) ?

2m,, | dx




n | & : 2 213 (W)
Ep(x) —mph _—? + V(X)_ P(x) Vi) /wz(x) T2 <W(X))
Adiabatic l

Non perturbative
approx. ,
correction - unusual !

Steps sharpness

D. Tanese, J. Bloch, E. Gurevich, E.A. PRL, 2014.



Advantages of cavity polaritons :

allow for a
excitations both in real and momentum spaces.

—> Visualisation/imaging of individual eigenmodes

W@ EXPERIMENT

Energy (meV)
o
(o}
AN

1592

S13=... AABABAABAABABAABAABABAABABAABAABABAA ..

— Wave packet dynamics (under study)



Measure of spectral function £(k)intensity maps




Measure of spectral function E(k)intensity maps

GaAs/AlGaAs
based structures

D

5K

Top DBR
Quantum Wellgs




Measure of spectral function £(k)intensity maps

GaAs/AlGaAs
based structures

5K




Effective 1D model
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Effective 1D model

—

=y 4 ~ -
~oar g2 HV@) W) =Ey(x)

where

V(x)= ;Z(G_ln)ub (x — an)

(L O<x<2-0

2GS Characteristic

function

o =*/§+% ~1.62 1s the golden mean



where

—

Effective 1D model

e d°

—

= 2M dx

—+V(x) ly(x)=Ey(x)

V(x)= ;Z(G_ln)ub (x — an)

xX(x)=+

rl,
0, 2—-o<x<l1

O<x<2-0

Shape of each letter

Characteristic

function

o =*/§+% ~1.62 1s the golden mean




Energy (meV)

\ EXPERIMENT
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Energy (meV)

\ EXPERIMENT

\ [1.-1]
[3.-4] \

[-2,4] | ™

o) [-1,2]

%

-
[-4.7]
[4.-6]

n? . 43 (w’(x))2

w(x)

l

Non perturbative
correction -
unusual !

Steps sharpness



Exact numerical 2D calculation or
1D with the non perturbative term

=i ()

1577

1576 1576
1575 1575
3 1574 1574
£
L
1573 1573
1572 1572

1571




Energy (meV)

Labeling the gaps...

\ EXPERIMENT
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\ EXPERIMENT Ml THEORY

Labeling the gaps...
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Calculating the integrated density of states (IDOS)
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Integrated density of states (IDOS)-Gap labeling

where
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V(k)=u,(k)x Y x, 6(ka-2r[p+0q))

P-4

Each pair{ p,q| of integers defines a unique Bragg
peak (O 1s irrational).



V(k)=u,(k)x Y x. 6(ka—27r[p+0q])

P.q

Each pair{ p,q| of integers defines a unique Bragg
peak (O 1s irrational).

Bragg peaks are dense —

periodic approximants, 9



V(k)=u,(k)x Y x. 6(ka—27r[p+0q])

P.q

Each pair{ p,q| of integers defines a unique Bragg
peak (O 1s irrational).

Bragg peaks are dense —

periodic approximants, 9

A
Fj+l

Periodic crystal ot length a F,,, and potential

Vk)=u,(k)x 2 ¥, 5(’“’—2”1: [Fu PHF, ‘ln
P4

Jj+1



V(k)=u,(k)x Y x. 6(ka—27r[p+0q])

P.q

Each pair{ p,q| of integers defines a unique Bragg
peak (O 1s irrational).

Bragg peaks are dense —

periodic approximants, 9

A
F/'+l

Periodic crystal ot length a F,,, and potential

Vk)=u,(k)x 2 ¥, 5(’\’0—2”1: [Fu PHF, ‘f]j
P4

Jj+1

1

= :
Bragg peaks at values x=0 E;(PH p+F q)—— >;l—(p+qO')




Perturbation theory

g

= 2M dx’

+Vi(x)

y(x)=Ey(x)

small



Perturbation theory

. 2’;"4 ; V) v =Ew)

small

Experimentally, it 1s not the case |



Perturbation theory (small V)

For the (quasi) crystal, a series of gaps open at each
value of the (independent) Bragg peaks (Bloch thm.).

| |
k:Qz;(FJ.H p+F q)—— >a(p+qo)



Perturbation theory (small V)

For the (quasi) crystal, a series of gaps open at each
value of the (independent) Bragg peaks (Bloch thm.).

1 l
k =QE;(F,+1 p+F q)—= >—(p+q0)

To first order in V, each Bragg peak hybridizes
degenerate Bloch waves +%4 and a gap opens at

energles €= E
+0/
=5



Perturbation theory (small V)

For the (quasi) crystal, a series of gaps open at each
value of the (independent) Bragg peaks (Bloch thm.).

k= Q——( P q) — >(ll(p+q0')

To first order in V, each Bragg peak hybridizes
degenerate Bloch waves +%4 and a gap opens at
energies £ = E+Q/

A2

The (normalized) IDOS inside a gap labeled by { p,¢}1is

N(£=EQM/2)=p+qﬁ



Integrated Density of States-Gap Labeling

(@) x10° (c) g x10° L
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Normalized Integrated
Intensity
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N| €= EQM/2 =p+qg0o within a{p,q} gap



Integrated Density of States-Gap Labeling

(a) X 1l05 1 1 1 1 (C) 6 X 1|0-3 1 1 1 !
l3’-5l1[f-31 EXPERIMENT [3:-5] THEORY

= 10° 1,21 1] ' 4- Vo [1,-1]

gz 14779 | 81 Ml teqa]

This result has a much broader range of
validity : Gap labeling theorem (Bellissard,
1982)

Energy (meV) / Energy (meV)

N(£ = EQM/Z) =p+qgo within a{p.q| gap




Integrated Density of States-Gap Labeling

x10°

(a) X 1105 1 1 1 1 (C) 6 1 1 1 1
[3,-512.-3] EXPERIMENT Trfﬂ THEORY

z 10- (1.2 (1] ' 4 (23] [1,-1]

z 14779 | | e

This result has a much broader range of
validity : Gap labeling theorem (Bellissard,
1982)

Energy (meV) / Energy (meV)

N(£ = EQM/Z) =p+qgo within a{p.q| gap

Topological invariants (Chern numbers)
independent of potential strength,

inhomogeneity;, ...
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. . 2 2 / 2
Exact numerical 2D calculation or 1D R n* +3 (w(x)
. . V(x) 2 + 12
with the non perturbative term w?(x) w(x)
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Normalized Integrated
Intensity

1592 1593 1594 1595 1596 1592/ 1593 1594 1595 1596
Energy (meV) Energy (meV)

N(S = EQM/Z) =p+qg0o withina{p.q¢} gap

Topological invariants (Chern numbers)
independent of potential strength,
inhomogeneity,



Energy (meY)
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Integrated Density of States-Log-periodic

oscillations
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Log-periodic oscillating structure is the
indisputable fingerprint of the underlying
fractal structure of the spectrum.
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Imaging the modes 1n real space : spatially and
spectrally resolved emission
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SUMMARY-FURTHER DIRECTIONS

* Coupling of a quantum emitter to a fractal quasi-continuum
leads to an unusual decay dynamics.

e The decay exhibits scaling properties related to the discrete
scaling symmetry of the quasi-continuum.

e The experimental study of a macroscopic coherent polariton
gas in a Fibonacci cavity allows for a quantitative study of a
fractal singular continuous energy spectrum : spectral
function, wave functions and gap labeling.
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continuum fractal spectrum. Log-periodic oscillations.
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FURTHER DIRECTIONS

e Long time dynamics of wave packets with a quasi-
continuum fractal spectrum. Log-periodic oscillations.

e Spontaneous emission : tunnel junction and/or squbit
in a microwave fractal resonator (J. Gabelli, Orsay) :
Notion of photons- counting statistics-zero point
motion with fractal spectra.
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Let us conclude with something a
bit weird...
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A simulator for quantum Einstein
gravity



Quantum gravity

Einstein general relativity based on Einstein-Hilbert action 1s a
highly successtul effective field theory on length scales larger than

G % " ® Newton’s constant:
L, =| —>| =10"cm

3

C _ ~11 _m®_

Is 1t possible to promote it to a fundamental microscopic quantum
theory of the gravitational interaction and space time structure ?

What are the relevant degrees of freedom at the Planck scale?

Which aspects of spacetime are dynamical at the Planck scale:
geometry? topology? dimensionality?



Basic tool : sum over histories

Each path 1s a 4-dimensional, curved space time
7 €_S [8 ] geometry “g” which can be thought of as a 3-dim.,
8 spatial geometry developing in time.

associated with each “g” 1s given by the
corresponding Einstein-Hilbert action S [ g ]
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...) a functional integral over all metrics “g” on a space time.
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The fundamental problem
...) a functional integral over all metrics “g” on a space time.

Non renormalisable in perturbation theory. Very unfortunate !

A hard problem ! Several approaches on the market.
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e Statistical field theory (dynamical
triangulations)

Ambjorn, Jurkewicz, R. Loll.



The Spectral Dimension of the Universe is Scale Dependent
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We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
“self-renormalizing’ at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.

Heat kernel
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The Spectral Dimension of the Universe is Scale Dependent
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More precisely,

Dg(o0) —4.02+0.1as0 — o0, Dg(o) —1.82+0.25as0 — 0



The other option : non perturbative renormalisation group
flow analysis (M. Reuter, F. Saueressig, 2012)

Asymptotic Safety, Fractals,
and Cosmology*

Martin Reuter and Frank Saueressig
Institute of Physics, University of Mainz
Staudingerweg 7, D-55099 Mainz, Germany

reuter@thep.physik.uni-mainz.de
saueressig@thep.physik.uni-mainz.de

Abstract

These lecture notes introduce the basic ideas of the Asymptotic Safety approach
to Quantum Einstein Gravity (QEG). In particular they provide the background for
recent work on the possibly multifractal structure of the QEG space-times. Impli-
cations of Asymptotic Safety for the cosmology of the early Universe are also dis-
cussed.
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Summarise
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1ts spectrum has a fractal structure :
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Summarise

3-volume
A

d=4 space-time manifold

does not have a geometric - -
structure, but...

1ts spectrum has a fractal structure :

In|Aw
Nw(Au))z(Aoo)“xF( 0| ‘} o = 24

=—7y, F(x+1)=F
Inh np’ L EHD=H)

Spectral fractal dimension & —d, =2
99




Is 1t possible to “mimic”
time

dimension

Not so simple to find one with d, =2



Is 1t possible to “mimic”
time

dimension

Not so simple to find one with d, =2

One serious contender : barycentric fractal

d =174

Simulator for quantum Einstein gravity at Planck length -
allows to measure/calculate other physical quantities not
accessible otherwise
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E. Englert proposed a very similar idea back
in 1986.

F. Englert et al. / Metric space-time METRIC SPACE-TIME AS FIXED POINT

OF THE RENORMALIZATION GROUP EQUATIONS

ON FRACTAL STRUCTURES

Fig 10, A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding
to the cuclidean fixed point. Vertices arc labelled according to fig. 4




Thank you tor your attention.



