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Introduction
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The additivity principle (AP) is a useful tool to study out-of-equilibrium
systems. However, the range of validity of the AP in open systems is still
under discussion. Here, we study out-of-equilibrium systems within the
macroscopic fluctuation theory (MFT). A condition for the stability of the
AP solution is suggested by an extension of Le Chatelier principle (LCP)
to out-of-equilibrium systems.

Overview

The macroscopic fluctuation theory provides a mathematical framework to
understand the behavior of steady state out-of-equilibrium systems.
However, obtaining an explicit expression for the probability distribution
of e.g. the current [6], proves to be difficult. The AP [2] makes It easier to
evaluate such a probability distribution.

Setup :
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Reservoir Reservoir

Unequal reservoir densities or a bulk field drive induce a diffusion current.
We are interested in the probability that Q particles flow between the
particle densities

Qervoirs during a long time interval.
Consider two reservoirs of particles, with fixed

Pa, Pp, coupled through the system, where a bulk field may also drive the
system. We are interested in P;(Q), the probability that Q particles flow
between the reservoirs during a time t.

Macroscopic Fluctuation Theory

and Additivity Principle

The MFT states that for t — oo, P,(Q)~exp(—tI[J]) , where ] = Q/t. The
behavior of the large deviation function (LDF), I[/], is governed by a
"dominant trajectory" of the current which, in general, is hard to

ﬁle additivity principle: diffusion and mobilim

For p, — p, = 4p K 1, the system is slightly out of equilibrium. Within
the framework of the MFT, we define the macroscopic diffusion
lim (Q*)c/t = a(p)

coefficient D(p) and the mobility o(p) by
(@ = [do r@e
Under the AP assumption, the LDF rewrites

lim (Q)/t = —D(p)4p
(J+ Do,p — oF)*

L=inf |dx
p(x) 20
/ Np <& 1 \
P . p+Ap

steady state current = lim 9 - _p (p) Ap
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mobility = flil)lﬁl(T =0 (p)

A small gradient leads to slightly out of equilibrium current and
fluctuations characterized by the diffusion and mobility coefficients.
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Bertini et al. [1] have shown that convexity in the space of all possible
current trajectories of the LDF implies the validity of the AP, and that
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D" < D'c’ l (1) 5
D'2—D
3 (p)

for any p is a sufficient condition for the AP to be valid.

In the case of a non zero field, the condition becomes

Do" = D'o’ l (2)

Hamiltonian point of view

To understand why the additivity principle is the generic
solution , we propose the following picture. Consider the LDF,

determine. The AP simplifies the problem by assuming that the dominant
trajectory Is the time independent one.

current trajectories and the AP current trajectory \

=AP trajectory
—trajectory 1
—trajectory 2
—trajectory 3

current trajectory
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time

Among all possible current trajectories for the transfer of Q particles,
the AP assumes that the time independent current dominates the LDF.
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I[]], as an action and £ as a Lagrangian. Notice that the usual
role of time Is replaced here by the space coordinate. Since the
Lagrangian does not explicitly depends on space,

the corresponding Hamiltonian is space independent

as well. This implies that the energy of the system
equidistributes in space, which is the scenario we

expect in equilibrium. This is the natural way to think of

a thermodynamical system in equilibrium. Therefore,
considering this mapping, a time independent current is

to be expected in the generic case. ]
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Le Chatelier principle revisited

For a system at equilibrium, the LCP states that a fluctuation will always
bring back to the equilibrium state. This means that thermodynamic
potentials are either convex or concave away from phase transitions.

The LDF may be considered an out-of-equilibrium version of an
equilibrium thermodynamic potential. Therefore, it seems natural to extend
the idea of LCP to non equilibrium. That is, the LDF is stable if it is
convex with respect to current fluctuations.

Periodic vs. open systems
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Implementing the previous idea to periodic systems leads to a stability
criterion, o'’ < 0 [3]. A direct use of LCP in open systems leads to a dead
end. This is due to the fact that in periodic systems the density profile is
constant whereas In open systems it IS never so.

Cumulant Generating function formalism

Full knowledge of the current fluctuations can also be gained using the
cumulant generating function (CGF). The CGF is defined as

u(d) = %ln(ew ), Where the averaging is with respect to P;(Q). One can
show that (e*?) = [ d xdtSg(x, T), where

1
Se(x,7) = (D0xp — E0)Oxp — 5 0(0xp)* — (p — Ax)0yp,
and p, p satisfy the equations of motion
fan — ax(Dax,O —o(E + axp))

1
karp = —D0,xp — EU[(axp)z T ZEaxp]:

p(O, t) = Pa p(l, t) = Pp

Results

and the boundary conditions {

Since the CGF is a Legendre transform of the LDF, the idea of convexity
follows. The AP solution for the CGF is the time independent solution of
the equations of motion. Considering only small perturbations §p, ép, the
equations of motions can be linearized yielding (here E = 0)

1D'c" — Do"”
(0xP)Ep2.

5S* 1 (0,6p)° + =
— 20N OPT T
Clearly, if 625 > 0 the AP is satisfied. So, we recover (1), where now it is
sufficient that ¢'’'D < D'a’ is satisfied only for p that corresponds to the
AP solution. It is also clear why it is just a sufficient condition as the first
term in 645 is positive.
One can generalize these results for E #= 0. In this case, Bertini et al. have
shown that a sufficient condition for the AP to be valid is for Do” = D'c’.
Applying the same method as before, we obtain

1 1D'c" — Do”
5S2 = Ea(axcsp)z +7 - ((0xp)? + 2E0,p)5p?.
Again, the origin of condition (2) of Bertini et al. Is clear . However,
solving the second equation of motion (with added field) for some
arbitrary p(x) yields that (9,,6p)* + 2Ed,.6p = 0 for any E. Therefore,

condition (1) is a sufficient condition for the validity of the AP even for a
nonzero field.

Another useful generalization is in the case of non-conserving dynamics in
the bulk. In that case, the MFT Lagrangian was generalized [4] to

(J + Doyp)?

20
Where @ (k, p) is a given function of the density and k(x, 7), the rate of
matter created in the bulk. The same technigue shows that the AP here is
valid under the same conditions + a requirement on the convexity of .

+ & (k, p),

A class of stable processes for large currents

Consider the general class of energy transport models where D = T™ and
by Einstein relations o = 2T™*2. For high enough temperatures, many
models should exhibit such power law behavior. Scaling arguments

suggest that T~J/™*+1 at high currents. One can infer the scaling of 9,.p
from the equations of motion. Therefore, D'U;DU" (0,p)%2~]~4/1+1 and

o
the positive term in §S# dominates. This implies that for this \
class of models, the AP is stable for high currents.
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The zero range process. A particle hops to
a near neighbor with rate w,, , where n
denotes the number of onsite particles

The symmetric exclusion
process. Each particle hops to
an empty neighbor with rate 1.

Relevance to quantum models

The CGF of electron transport due to a voltage drop in mesoscopic
disordered conductors is identical to the CGF of a classical process, the
symmetric exclusion process, with densities 1,0 at the boundaries. In the
symmetric exclusion process, particle hop between neighboring lattice sites,
provided that the occupancy at each site is restricted to one. It is understood
that the role of the Pauli exclusion is played by the exclusion of one particle
per site, however, an exact mapping was never found.

Bernard and Doyon [5] required a 1d quantum heat transport process between
two thermal baths to have conformal symmetry as well as Gallavoti-Cohen
symmetry. They were able to show that this is a classical process, where each
thermal bath 1njects “photons™ in a Poisson process into the system. The
“photons” are then absorbed in the other reservoir. The “photons” carry
energy taken from the Boltzmann distribution of their respective thermal bath.
The process is inherently ballistic, however, it can be generalized to be a
diffusive process. It was shown microscopically by Kirone Mallick
and macroscopically by the authors that the zero range process yields
the same CGF in the large system size limit.

The two examples lead us to the idea that the CGF of quantum
processes may be calculated using the
macroscopic fluctuations theory and

Conclusions

» The additivity principle is a useful tool to obtain the steady state
probability distribution of the current. However, a necessary and
sufficient criterion for the validity of the AP using explicitly D(p) and
o(p) is still lacking.

» A generalization of the LCP to non equilibrium situations has been
presented. It allows to understand results such as (1) within a more
general framework.

» We have found a sufficient condition for the stability of the AP
solution. This conditions generalizes previous results to accommodate
more models.
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