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Nontrivial diffraction pattern [2] Nontrivial spectrum [1],[4]

The Fibonacci chain – A 1D quasicrystal archetype [1], [2]

Topological diffraction phases [2]

Topological peak splitting [2]

2D map of allowed Chern numbers [2]

Robustness against imperfections [2]

Topological spectrum? [1]

The scattering approach [1]

Topological edge states [1]

Topological edge states [1], [3]

A complete equivalence
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▪ Topological

Gap labeling theorem, Bellissard (1982)
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Fibonacci potential

q are Chern numbers 
(topological invariants)

▪ Infinite number of gaps for S ▪ Fractal  self similar Classes of structures related by 
continuous deformations

Classification by robust integers: 
topological invariants

Chern numbers in physics?

Quantum Hall effects, topological 
insulators, graphene, Weyl semi-metals

We have none of that here

Result from magnetic fields, A-B flux, 
Dirac structure…

The spectrum is 
topological
just as it is

Objective: describe gap 
labeling Chern numbers as 
the winding of a bulk phase 
with respect to a gauge field
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Topological scattering phase [1]
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Chern numberGauge fieldSpectral winding

Multimode,
Casimir

Diffraction pattern

Transmission spectrum

Diffraction 
chiral 
phase

Waves of wave vector k Spatial frequency kx

Spectral gaps Diffraction peaks

Scattering chiral phase Diffraction chiral phase

Topological edge states Topological peak splitting

Gap labeling theorem Quasi Brillouin zone

• The quasiperiodic spectrum is topological
• The origin of the topology is structural
• When measured as a winding number, Chern numbers 

are related to the palindromic symmetry cycle
• Edge states are predictable using cavity physics
• Results are very general – All 1D quasicrystals. 2D?

2D diffraction 
grating:

kx, k
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