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Introduction

Fluctuation induced forces (Casimir forces, so called Casimir effect) are ubiquitous [1|, and are caused by the confinement of long-range fluctuations.
Fluctuation induced forces have been first predicted and measured using perfectly conducting plates immersed in the (quantum) QED vacuum [2], then
in classical systems [3],|4| and more recently in out-of-equilibrium hydrodynamic systems |5],|6].

In the later case of a driven diffusive system, the average particle density fluctuates spatially on a long-range scale around a steady-state profile, which
induces a specific behavior of pressure resulting from these fluctuations.

Here, we consider intensity fluctuations of classical light propagating through a scattering medium. In the elastic multiple scattering regime, the average
light intensity behaves diffusively, and can be described using an effective Langevin approach which properly incorporates interferences effects |7]. Light
intensity fluctuations are spatially long-ranged as a result of underlying mesoscopic coherent effects |8]. Their magnitude depends on the dimensionless
conductance g (a parameter that depends on the geometry of the system).

Using the analogy with out-of-equilibrium systems provided by the Langevin equation, we show the emergence of fluctuation induced forces for coherent
diffusive light, which constitutes the first example of a Casimir effect for a mesoscopic system. We give analytical and numerical results for two difterent
geometries and light sources.
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e For weak disorder g > 1, spatially long-ranged
correlations driven by interference processes
survive disorder averaging.
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