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Introduction

Fluctuation induced forces (Casimir forces, so called Casimir e�ect) are ubiquitous [1], and are caused by the con�nement of long-range �uctuations.
Fluctuation induced forces have been �rst predicted and measured using perfectly conducting plates immersed in the (quantum) QED vacuum [2], then
in classical systems [3],[4] and more recently in out-of-equilibrium hydrodynamic systems [5],[6].
In the later case of a driven di�usive system, the average particle density �uctuates spatially on a long-range scale around a steady-state pro�le, which
induces a speci�c behavior of pressure resulting from these �uctuations.
Here, we consider intensity �uctuations of classical light propagating through a scattering medium. In the elastic multiple scattering regime, the average
light intensity behaves di�usively, and can be described using an e�ective Langevin approach which properly incorporates interferences e�ects [7]. Light
intensity �uctuations are spatially long-ranged as a result of underlying mesoscopic coherent e�ects [8]. Their magnitude depends on the dimensionless
conductance g (a parameter that depends on the geometry of the system).
Using the analogy with out-of-equilibrium systems provided by the Langevin equation, we show the emergence of �uctuation induced forces for coherent
di�usive light, which constitutes the �rst example of a Casimir e�ect for a mesoscopic system. We give analytical and numerical results for two di�erent
geometries and light sources.

Mesoscopic Interference for

Classical Light - I

The Average Di�usive Light Intensity Sa-
tis�es a Di�usion Equation

• Intensity in the medium : I(r) = 4π
c |E(r)|2

where ∆E(r) + k2(1 + µ(r))E(r) = s0(r)

µ(r) : fluctuating dielectric constant (disorder)
s0(r) : light source distribution.

• Associated light current :

j(r) = ic
2k limR→r∇[E(r)E(R)∗ − c.c.]

Average over
disorder (· · ·):
I(r) = Id(r)

Weak disorder limit (kle � 1 or g � 1) :

Diffusion equation : −D∆Id(r) = s(r)

Green’s function : −D∆Pd(r, r
′) = δ(r− r′)

Fick’s law : jd(r) = −D∇Id(r)

Speckle pattern : ”snaps-
hot” of a granular medium
; the color gradient re-
presents the variation of
the diffused light inten-
sity resulting of coherent
effects (before averaging
over disorder)

Intensity Fluctuations around the
Average are Spatially Long-Ranged

Fluctuations δI(r) = I(r)− Id(r) : speckle pattern (illustrated above).

• For weak disorder g � 1, spatially long-ranged
correlations driven by interference processes
survive disorder averaging.

δI(r)δI(r′)
Id(r)Id(r′)

= C(1)(r, r′)+C(2)(r, r′)+C(3)(r, r′)

(a) C(1)(r, r′) ∝ δ(r− r′) : short-range (incoherent
part)

(b) C(2)(r, r′)=1
gG(r− r′) : long-range (coherent

part); G depends on the geometry and on the boundary
conditions.

(c) C(3)(r, r′) ∝ 1
g2 : Constant ; universal conductance

fluctuation
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Mesoscopic Interference for Classical Light - II

Langevin approach

The above results can be recovered using a
Langevin approach:
start with a generalized Fick’s law for all length
scales and before · · · :

j(r) = −D∇I(r) +√ σ
SL
η(r)

Continuity equation : divj(r) = 0

D = cle
d : diffusion coefficient ;

σ(I) =
2πl2e
3k2 I

2
d(r) : noise strength ;

The fluctuating term η(r) is such that : η(r) = 0, and :

ηα(r)ηβ(r′) = δαβδ(r− r′) +
(

2πc2

k2
√
σ

)2
(K(1)(r, r′) +K(2)(r, r′) +K(3)(r, r′))

(α, β = x, y, z) are the sources giving rise to the intensity fluctuations C(2) and
C(3), and depend explicitly on Id and Pd :

K(1)(r, r′) = δαβδ(r− r′)
∫
vol
dr1P

2
d (r1, r

′)∇Id(r1) · ∇Id(r1)
K(2)(r, r′) = K(3)(r, r′) = P 2

d (r, r
′)∂αId(r)∂βId(r′)

Fluctuation Induced Forces

• Force on the plate p1: difference of the (radiative pressure)
forces on each side:

fp1 = f1 − f2 ∝
∫

p1
dS (j1,+ − j2) · êy

• Force fluctuations on each side j :

δfj = fj − fj = ±
∫

p1
dS

[
−D∂yδIj(r) +

√
σ

SL
ηy,j(r)

]

δfj = 0

δf 2
j =

∑3
i=1

∫
p1×p1 dSdS

′D2
(
∂y∂y′Id,j(r)Id,j(r

′)C(i)
j (r, r′) +

(
2πc2

k2

)
K

(i)
j (r, r′)

)

Finally :

δf 2
p1
/fp1

2 ∼
(
α1
g1
− α2

g2

)

where the αj are dimensionless quantities depending on the solutions for Id
and Pd, i.e. on the boundary conditions and geometry, but not on L1.

The main contribution to the force
fluctuations is due to the long-range

fluctuations C(2)(r, r′), of strength 1
gj

.
g1 = g2 ⇒ δf 2p1/fp1

2
= 0

Point Source

On p1 : δf2/f
2
=

(
α1

g1
− α2

g2

)

︸ ︷︷ ︸
↪→C(2)

+

(
β1
g21

− β2
g22

)

︸ ︷︷ ︸
↪→K(i)

L1
L2

� 1 : δf 2/f
2 ∼ α1

g1
+ β1

g21
=

α′
1

L1
+

β′
1

L2
1

αi, βi are dimensionless quantities depending on

the solution for Id and Pd, but not on L1.

L1/L2

δf2/f
2

Blue: Theoretical prediction

Red: Exact calculation
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Graph : Theoretical prediction (blue)

given by the framed equation and exact

calculation (red). The lengths are norma-

lized by L = 1, and we set
(

2πc2

k2

)2

= 1

and 3π
k2le

= 1.

Point source placed in each of the

three zones, separated by the plates.

Plane Wave

Medium illuminated by plane waves Il,
Il.

Fluctuations emerge as long as the sy-

stem is illuminated, even with Il = Ir
(unlike usual boundary driven out-of-

equilibrium systems).

δf2 =

(
α1

g1
− α2

g2

)

︸ ︷︷ ︸
↪→C(2)

+ r(L1)︸ ︷︷ ︸
↪→K(i)
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Graph : Contribution of K(i) to the fluctuati-

ons.

Conclusion and Perspectives

• We demonstrated the existence of �uctuation induced forces due to spatially long-ranged �uctua-
tions of light, resulting from mesoscopic interferences (mesoscopic Casimir e�ect).
• We highlighted the analogy between the behavior of light in random media and boundary driven
out-of-equilibrium systems of particles di�using between reservoirs of densities ρl and ρr. However,
unlike transport problems where long-range density correlations vanish at equilibrium (ρl = ρr), here
the e�ect is persistent even when illuminating the box from both sides with identical light beams
(Il = Ir). The random medium is out-of-equilibrium as long as it is illuminated. The strength and
sign of the Casimir forces depend on the long-ranged �uctuations (i.e. on the strength of disorder)
and on the geometry, as described by the dimensionless conductances gj .
• This last point could be used to observe the Anderson localization transition: increasing the dis-
order, we expect long-range �uctuations to disappear at the transition and thus �uctuation induced
forces to vanish.
• Similar behavior is expected for quantum out-of-equilibrium systems (e.g. spin polarized electronic
transport in supraconductors).
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