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AbstractTopological properties of finite quasiperiodic tilings are examined. We study twospecific physical quantities: (a) the structure factor related to the Fourier transformof the structure; (b) spectral properties (using scattering matrix formalism) of thecorresponding quasiperiodic Hamiltonian. We show that both quantities involve aphase, whose windings describe topological numbers. We link these two phases,thus establishing a “Bloch theorem” for specific types of quasiperiodic tilings.
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1D Tilings
Substitutions and Atomic DistributionsDefine a binary substitution rule by

σ (a) = aαbβ
σ (b) = aγbδ ⇐⇒ a 7→ aαbβ

b 7→ aγbδ

Associate occurrence matrix: M = ( α βγ δ )Consider only primitive matrices:
• Largest eigenvalue λ1 > 1 (Perron-Frobenius)
• Left and right first eigenvectors are strictly positiveDistribution of letters underlies distribution of atoms:

x0• a x1• b x2• b x3• a x4• b x5• a x6• b x7• . . .
Define atomic density

ρ (x) =∑
k
δ (x − xk )

with distances for a and b given by δk = xk+1 − xk = da,b.Let d̄ be the mean distance and uk the deviations from the mean. Define
xk = d̄ k + δ uk , δ ≡ da − db

Let g (ξ) = ∑
k e−iξxk be the diffraction pattern, and S (ξ) = |g (ξ)|2 the structurefactor. Bragg peaks are located at [1]

ξm,N = 2π
d̄
m
λN1 .We consider the following families:

Pisot. The second eigenvalue |λ2|<1.
Non-Pisot. The second eigenvalue |λ2| ≥ 1. Fluctuations uk are unbounded [2];there are no Bragg peaks [3].

Examples
Fibonacci. a 7→ ab , b 7→ a. It is Pisot, M = ( 1 11 0 ),

λ1 = (√5 + 1)/2 ≡ τ the golden ratio and λ2 = −τ−1.Bragg peaks: ξp,q = (p+ qτ) 2π/d̄.

Thue-Morse. a 7→ ab , b 7→ ba. Here it is Pisot, M = ( 1 11 1 ),
λ1 = 2 and λ2 = 0. Bragg peaks: ξm,N = m 2−N (2π/d̄).

The Phason – Structural PhaseAnother way to define a tiling is by using a characteristic function. We considerthe following choice [4, 5]:
χ (n,φ) = sign [cos (2πnλ−11 + φ)− cos (πλ−11 )]

with n = 0 . . . FN − 1 and [0, 2π] 3 φ → φ` = 2πF−1
N ` . The phase φ—called aphason—accounts for the freedom to choose the origin.Let s0 (n) = χ (n, 0). Let T [s0 (n)] = s0 (n+ 1) be the translation operator. Define

Σ0 = ( s0
T [s0 ]
···

T FN−1 [s0 ]
) =⇒ Σ0 (n, `) = T ` [s0 (n)]

Consider now a row permuted Σ1
Σ1 (n, `) = T m(`) [s0 (n)] , m (`) = ` F−1

N−1 (mod FN ).
Lemma. For φ` = 2π`/FN with n, ` = 0 . . . FN − 1 one has χ (n,φ` ) = Σ1 (n, `).
Corollary. This defines a discrete phason φ` for the structure.The discrete Fourier transform of Σ1 reads

G (ξ, `) ≡∑FN−1
n=0 ω−ξn Σ1 (n, `) = ωm(`)ξ ς0 (ξ) .

The structure factor S (ξ, φ) = |ς0 (ξ)|2 is φ-independent. The phase of G (ξ, `)reads Θ (ξ, `) ≡ argωm(`)ξ = φ` ξ/FN−1 (mod 2π).
Corollary. For any ξq = qFN−1 one has the (discrete) winding number at ξq,

Θ (ξq) = 2π
FN
` q =⇒ Wξq = 12π

∫ 2π
0

∂Θ(ξ = ξq, φ
)

∂φ dφ = q.

Spectral Properties of TilingsConsider a 1D discrete tight-binding equation,
− (ψk+1 +ψk−1) + Vkψk = 2Eψk

The gaps in the integrated density of states are given by [6]
Nm,N = 1

c
m
λN1 (mod 1), m,N ∈ Z.

Here, c is the gcd of λ1 and its corresponding eigenvectors in both M and thecollared M2.

Scattering MatrixSpectral properties are also accessible from the continuous wave equation,
−d2ψdx2 − k20 v (x)ψ (x) = k20ψ (x)

with scattering boundary conditions.

The scattering S-matrix is defined by ( −→o←−o ) = ( −→r (k) t(k)
t(k) ←−r (k)

)( −→ı←−ı ) ≡ S( −→ı←−ı ), with
−→r = −→R ei−→θ and ←−r = −→R ei←−θ . It is unitary and can be diagonalized to

S 7→
( eiφ1 00 eiφ2

)
so that detS = e2iδ(k) with δ (k) = (φ1 (k) + φ2 (k)) /2 and α (k) = −→θ (k)−←−θ (k).Using the Krein-Schwinger formula [7] allows to relate the change of density ofstates to the scattering data,

ρ (k)− ρ0 (k) = 12π Im ddk ln detS (k) .
So that the integrated density of states is

N (k)−N0 (k) = δ (k) /π.
The total phase shift δ (k) is independent of the phason φ unlike the chiral phase
α (k, φ), whose winding for values of k inside the gaps is given by [8],

Wαg = 12π
∫ 2π

0
∂α
(
ν = νp,q, φ

)
∂φ dφ = 2q.

Both the winding numbers Wξ0 previously found and Wαg are topological. As such,they are robust against perturbations.
Cut and Project SchemeYet another method to build quasiperiodic tilings is by the Cut & Project. Theprocedure is as follows [9].
Cut. 1. Start with an n-dimensional space R = Rn.2. Insert “atoms” on the integer lattice Z = Zn.3. Divide R into the physical space E and the internal space E⊥ such that

E ⊕ E⊥ = R and E ∩ E⊥ = ∅.4. To resolve ambiguity for E, choose an initial location c ∈ R such that Epasses through c. There is no such requirement for E⊥.
Project.1. Inspect the hypercube In = [−0.5, 0.5)n.2. The window is its projection on the internal space W = π⊥ (In).3. The strip is the product with the physical space S = W ⊗E.4. Choose only the points inside the strip S ∩ Z , and project them onto thephysical space, Y = π (S ∩ Z ).5. The atomic density is given by ρ (x) ≡ ρc (x) = ∑y∈Y δ (x − y) with x ∈ E.Note the implicit dependency of Y on c.

For the 1D systems we consider all along, define the phason
φ = 2π b/W b ∈ E⊥,

where W is the window above. The slope s is given by 1/s = 1 + cotα .

Relation between Phases: A “Bloch theorem”The windings of the structural phase Θ (ν, φ), where ν = ξ/FN the normalizedwavenumber, correspond to the Bragg peak locations given by
νp,q = p+ qλ1 =⇒ Wνp,q = q.

Note also, that the integrated density of states of the corresponding Hamiltonianhas gap locations given by the Gap-labeling theorem [6] expressed by
τ∗ [K0 (ΩT )] = Np,q = p+ qλ1 (mod 1).

Drawing the integrated density of states on top the structural phase shows therelation between the winding Θ (ν, φ) and the integer q in the integrated densityof states (red line),

Now, consider the spectral (chiral) phase α (ν, φ). Its winding Wαg = 2q can bedirectly read by the following graph, which is analogous to the figure above. Itdirectly shows the relation between the two phases Θ (ν, φ) and α (ν, φ).

Here, we used FN = 233 sites, nA = 1 and nB = 1.15 for better discernment.We view this result as a Bloch-like theorem for quasiperiodic tilings [10].
Useful ToolsUnlike the case of periodic structures, for aperiodic tilings topological numberscannot be simply expressed as Chern numbers, since the notion of Brillouin zonedoes not exist any longer. We are thus led to use other set of tools.
• Tiling space T (dependent on λ1) and its hull ΩT .
• Čech cohomology Ȟ1 (ΩT ), simplicial cohomology H1 (Γn)and Bratteli graphs [11, 12].
• K -theory, K0 (ΩT ) group and the abstract Gap-labeling theorem [6, 13]

µ∗ [K0 (C (ΩT ))] = τ∗ [K0 (C∗ (ΩT ,Rn))] .
• Pattern-equivariant functions fPE and cohomology H1PE (ΩT ) [14].

Conclusions

• We have defined two types of phases—a structural and spectral one—whosewindings unveil topological features of quasiperiodic tilings.
• We found a relation between these two phases, which can be interpreted asa Bloch-like theorem.
• We have considered here a subset of tilings, which are known as Sturmian(C&P) words. Our results can be extended to a broader families of tilings inone dimension, and to tiles in higher dimensions (D > 1).
• All these features have been observed experimentally [4, 5].
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