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ABSTRACT

Topological properties of finite quasiperiodic tilings are examined. We study two
specific physical quantities: (a) the structure factor related to the Fourier transform
of the structure; (b) spectral properties (using scattering matrix formalism) of the
corresponding quasiperiodic Hamiltonian. We show that both quantities involve a
phase, whose windings describe topological humbers. We link these two phases,
thus establishing a “Bloch theorem” for specific types of quasiperiodic tilings.

1D TILINGS

Substitutions and Atomic Distributions

Define a binary substitution rule by

a— a®bP
b — a¥b®

a®bP
a¥b®

o(a)
a(b)

Associate occurrence matrix: M = ( y g)
Consider only primitive matrices:

e lLargest eigenvalue Ay > 1 (Perron-Frobenius)
e Left and right first eigenvectors are strictly positive

Distribution of letters underlies distribution of atoms:

X0 a X1 b x2 b X3 a X4 b X5 a X6 b X7
o o ( ] [ ) o { J o e ...

Define atomic density

plx) =) 6(x—x)
k
with distances for a and b given by 0x = xk11 — xxk = dgp.
Let d be the mean distance and u, the deviations from the mean. Define

xk =dk+0douy, o=d,—d,

Let g (&) = Y_, e”'* be the diffraction pattern, and S(&) = |g (E)|2 the structure
factor. Bragg peaks are located at [1]

27T m

Em,/\/ — 7W

We consider the following families:

Pisot. The second eigenvalue |Ay|<1.

Non-Pisot. The second eigenvalue |A;| > 1. Fluctuations uy are unbounded [2];
there are no Bragg peaks [3].

10% ¢

10' ¢

[EnN
o

[=}
Ty

Distance fluctuations, uy
= =
S (e
N N

(U
<
w

(U
<
S

10 10° 10° 10*
Sequence length, k

[E
o
(=}

Examples

Fibonacci. a — ab , b— a. It is Pisot, M = (] 2,)

A = (V5 4+ 1)/2 = 7 the golden ratio and A, = —17".
Bragg peaks: &, , = (p + g T) 27/d.
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THE PHASON — STRUCTURAL PPHASE

Another way to define a tiling is by using a characteristic function. We consider
the following choice [4, 5]:

x (n, @) = sign [cos (271[7 A7+ (/)) — COoS (ﬁ)\1_1 )]

with n = 0...Fy — 1 and [0,27] 3 ¢ — ¢, = 2aFy' ¢. The phase ¢—called a
phason—accounts for the freedom to choose the origin.
Let so(n) = x (n,0). Let 7 [so (n)] = so(n + 1) be the translation operator. Define

S0
o= T | = To(n, o) =T so(n)]
TFN_1[50]

Consider now a row permuted X4

Y1 (n,¢) =T [so(n)], m(¢)=0Fy'; (mod Fy).
Lemma. For ¢y = 270/Fn with n, ¢ =0...Fn — 1 one has x (n, ¢s) = L4 (n, ¢).
Corollary. This defines a discrete phason ¢, for the structure.

The discrete Fourier transform of 21 reads

Fn—1
G(E =) " wE(n =" (3.

n=0

The structure factor S (&, ¢p) = |<,‘0('5)|2
reads

is ¢-independent. The phase of G (<, ¢)

O (& ¢ =argw™™ = ¢y &/Fn_1  (mod 27).

Corollary. For any ¢, = gFn—-1 one has the (discrete) winding number at &,

25t 1
0(&) = F—’N‘eq — W, =

o 7100 (& =4q. )
27T 0 (?(/)

do = q.

Structure Factor, log S(&, @)

Characteristic Function, x(n, ¢)
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SPECTRAL PROPERTIES OF TILINGS

Consider a 1D discrete tight-binding equation,
— (Y1 + Y1) + Vi = 2E i
The gaps in the integrated density of states are given by [6]

T m

Ny = =
m, C)\N

1

(mod 1), m,N € Z.

Here, ¢ is the gcd of A1 and its corresponding eigenvectors in both M and the
collared M. .
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SCATTERING MATRIX

Spectral properties are also accessible from the continuous wave equation,

2
_% — GV (X) g (x) = kG (x)

with scattering boundary conditions.

i:HIMlMHLMZf

(;(Sf)) #(2))(‘_2—)) = 5(;) with

— B0 — 5.9 : : : .
r=Re'Y and r = Re'Y. It is unitary and can be diagonalized to

. . . . H
The scattering S-matrix is defined by (%)
P

0 e®

o (.2

so that detS = €200 with & (k) = (g1 (k) + @5 (k) /2 and a (k) = O (k) — O (k).
Using the Krein-Schwinger formula [7] allows to relate the change of density of

states to the scattering data,

o (k) — oo (k) = 21 Im d

IT dk

IndetS (k).
So that the integrated density of states is
N (k) — Ny (k) = 0 (k) /7.

The total phase shift 0 (k) is independent of the phason ¢ unlike the chiral phase
a (k, ¢), whose winding for values of k inside the gaps is given by [8],

m 1 (% da (v = Vp.q (/))

= — lb = 2q.
T o I do d¢ C/

Both the winding numbers W, previously found and W, are topological. As such,
they are robust against perturbations.

Cut AND PROJECT SCHEME

Yet another method to build quasiperiodic tilings is by the Cut & Project. The
procedure is as follows [9].

Cut.

Start with an n-dimensional space R = R".

Insert “atoms” on the integer lattice Z = Z".

Divide R into the physical space E and the internal space E; such that
EGBEL:RancI EﬂEL:ﬂ.

. To resolve ambiquity for E, choose an initial location ¢ € R such that E
passes through c. There is no such requirement for E; .

Project.
Inspect the hypercube T, =[-0.5,0.5)".
. The window is its projection on the internal space W = s (I,).
. The strip is the product with the physical space S =W ® E.
Choose only the points inside the strip S N Z, and project them onto the
physical space, Y = 7 (5N 2Z).
0 (x —y) with x € E.

. The atomic density is given by p(x) = pc(x) =)
Note the implicit dependency of Y on c.

ycy

1‘2 1‘4 1‘6 1‘8
For the 1D systems we consider all along, define the phason

d=2nb/W beE,,

where W is the window above. The slope s is given by 1/s =1 + cota.
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EXCELLING IN SCIENC

RELATION BETWEEN PPHASES: A “BLOCH THEOREM"

The windings of the structural phase © (v, ¢), where v = &/Fn the normalized
wavenumber, correspond to the Bragg peak locations given by

Vog =P +taqgh = W, =gq.

Note also, that the integrated density of states of the corresponding Hamiltonian
has gap locations given by the Gap-labeling theorem [6] expressed by

T [Ko (A7) = Npg =p+gA (mod 1).

Drawing the integrated density of states on top the structural phase shows the
relation between the winding O (v, ¢) and the integer g in the integrated density
of states (red line),
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Wavenumber, v

Now, consider the spectral (chiral) phase a (v, ¢). Its winding W,, = 2q can be
directly read by the following graph, which is analogous to the figure above. It
directly shows the relation between the two phases O (v, ¢) and a (v, ¢).

0.4 0.5 0.6
Wavenumber, v

Here, we used Fn = 233 sites, ng =1 and ng = 1.15 for better discernment.

We view this result as a Bloch-like theorem for quasiperiodic tilings [10].

UseruL Tools

Unlike the case of periodic structures, for aperiodic tilings topological numbers
cannot be simply expressed as Chern numbers, since the notion of Brillouin zone
does not exist any longer. We are thus led to use other set of tools.

e [iling space T (dependent on A1) and its hull Q7.

Cech cohomology H' (Q7), simplicial cohomology H' (I',,)
and Bratteli graphs [11, 12].

K-theory, Ky (Q7) group and the abstract Gap-labeling theorem [6, 13]

L« [/(0 (C (QT))] — T« [/<0 (C* (QT, Rn))] .

Pattern-equivariant functions fpg and cohomology HE)E (Q7) [14].

CONCLUSIONS

We have defined two types of phases—a structural and spectral one—whose
windings unveil topological features of quasiperiodic tilings.

We found a relation between these two phases, which can be interpreted as
a Bloch-like theorem.

We have considered here a subset of tilings, which are known as Sturmian
(C&P) words. Our results can be extended to a broader families of tilings in
one dimension, and to tiles in higher dimensions (D > 1).

All these features have been observed experimentally [4, 5).
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