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I. ABSTRACT
We consider limit cycle solutions in Efimov physics and
show it is possible to recover these, using specific choices
of tilings. This new and unexpected discovery provides an
opening to study semi-classical solutions of quantum Ein-
stein gravity (QEG).
Can you forsee the relation between these three remote
fields?

II. EFIMOV PHYSICS

Efimov effect [4]: Three
quantum particles inter-
acting via attractive short-
range interactions enjoy an
infinite geometric series of
three-body bound states ac-
cumulating at the ground
state energy E0, when the
interactions are unable to
support pair-wise bound
states (at the limit of low en-
ergy scattering, infinite scat-
tering length).
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𝐸𝑛 ∝ 𝐸0

The effect arises when the range of interaction vanishes
compared to the scattering length, generically E ' 0 (S-
wave with ` = 0). Such systems lack a characteristic length
scale, are independent of direction and precise details of the
interactions, and thus belong to the universal class of Efimov
physics. With a large scattering length, the effective dynam-
ics can be mapped to a radial Schrödinger equation with a
universal potential −ζ/r2, ζ = s20 + 1/4, |s0| ≈ 1.006, whose
d-dimensional generalization is(
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ψ (r) = 0,

where ξ = 2µζ, µ is the reduced mass and r is a function of
the separation between the particles.
A quantum phase transition [1]: When does the −ξ/r2
Schrödinger equation have Efimov bound states solutions?
Since the equation is scale-free, rescaling a bound solution
{E,ψ (r, E)} →

{
E/λ2, ψ

(
λr, E/λ2

)}
still solves the equa-

tion. Therefore, there is no ground state.

We remedy this issue by
regularizing with some ar-
bitrary short range poten-
tial, imposing the continuity
condition

L
ψ′ (L)

ψ (L)
≡ g (L) ,

breaking the continuous scale invariance (CSI) of the equa-
tion at the new characteristic length scale r = L. One can
derive from the Schrödinger equation and continuity condi-
tion a set of renormalization group (RG) flow equations,

L
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= 0, L
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= (2− d) g − g2 − ξ.

The flow has two fixed points,

g± = −
√
ξc ±

√
ξc − ξ,

with ξc = (d− 2)
2
/4. For ξ ≤ ξc these are real fixed points.

At L→∞ the stable fixed point g+ restores the CSI phase of
the system with a single ground state E = 0. However for
ξ > ξc the fixed point are complex and the flow has a limit
cycle [2],

g (L) = g

(
e
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)
,

giving the discrete scale invariant (DSI) Efimov bound
states,

En = E0e
− nπ√

ζ−ζcr .

IV. THE MAPPING

THE MAPPING

To extract substitution steps from the Efimov RG flow, we translate the coupling to tilings
A,B such that g (lnL) ≡ gk = `Ak /`

B
k . Near a fixed point, the steps are small, gk ≈ gk+1. We

define the mapping and find the rule [5]
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The plots visualize mapped sequences alongside the flow of the coupling gk. From begin-
ning (bottom) to end (top), everyAwith length `Ak in the sequence is a line drawn in direction
sign

(
`Ak
)
x̂ and length

∣∣`Ak ∣∣, and the same for B on ŷ.
FIXED POINTS OF FLOW ξ ≤ ξc

Eigenvectors of M satisfy gk′ = gk, ∀k, k′⇒ a sequence mapped from a fixed point is fully
periodic, characterized by CSI:

Fixed points ⇐⇒ Real eigenvalues

LIMIT CYCLE ξ > ξc

Complex conjugate eigenvalues of M imply DSI of gk:

gk = gk′ ⇐⇒ k′ − k =

√
ξcπn√
ξ − ξc

, n = 1, 2 . . .

⇒ A sequence mapped from a limit cycle is a fractal:

For larger values of ξ the sequence is quasi-periodic:

Limit cycle ⇐⇒ Complex conjugate eigenvalues

V. QUANTUM EINSTEIN GRAVITY

Back to our initial question.
QEG as candidate for a quantum field theory of gravity is
unique in two aspects:

1. The quantum action is supressed at low energy scales
by a "mass term"

∆Sk ∼ hRkh,

where h is the metric, Rk2�p2 ∼ k2 and Rk2�p2 ∼
0, and p is the energy scale we probe. This "weight"
narrows the band of momenta contributing to the path
integral.

2. The use of background gauge, which splits

g =

background︷︸︸︷
g +

dynamical︷︸︸︷
h ,

ensures not only gauge covariance (in this case, diffeo-
morphism invariance) but also avoids pre-supposing
a metric – predictions (e.g. causality) are physically
justified results. All observables must be independent
of the choice of g.

The resulting metric solutions 〈hk〉 are scale dependent.
Within QEG one must choose a truncation for the action,
e.g. the Einstein-Hilbert (EH) truncation

S =
1

16πGk

∫
ddx
√
g {−R+ 2Λk} ,

where R is the Ricci curvature, and Gk,Λk are the scale de-
pendent gravitational and cosmological constants, respec-
tively. If one chooses the background metric to be the d-
sphere, R = d (d− 1) /r2 and the equations of motion are
[5] (

D2 − d (d− 1)
2

(d− 4)

r2
− 2Λk

)
tr (h) = 0,

where D2 is the covariant Laplacian. Just like in Efimov
physics, the operator acting on trh scales like 1/r2! Litim
and Satz got this behavior numerically in [6]:

⇒ QEG in the EH truncation with a spherical background
metric (and perhaps a wider variety) belongs in the univer-
sality class of Efimov physics!

III. SUBSTITUTIONS AND FRACTALS
We know periodic chrystals are assembled from repeated fundamental elements. We can think of these basic pieces as

"letters" in an infinite "word". What happens when the distribution of letters is not periodic, but deterministic with
a-periodic rules?

SUBSTITUTIONS

A substitution tiling is defined by [3]

an alphabet (for simplicity, 2 letters):

ℓ𝐵ℓ𝐴

and a substitution rule:

A 7→ AαBβ

B 7→ AγBδ

⇒M ≡
(

α β
γ δ

)
α, β, γ, δ ∈ N

The sequence inflates by replacing the letters repeatedly. Here A is
replaced by α times A and β times B.

M determine the evolution of the densities of A,B in the tiling. After many iterations, the substitution process generates an
infinite periodic/quasi-periodic/fractal sequence,

e.g. periodic tile or a quasi-periodic Fibonacci tile

A generalized substitution [5], with α, β, γ, δ ∈ R , replaces the letters by tiling “potentials”, A,B → VA, VB and fills the
space by a pattern of potentials, on which a "test particle" accumulates work.

FRACTALS

Self similar fractal functions are defined by

f (anx) = bnf (x) for fixed a, b

This definition includes e.g. the Sierpisnki gasket

generated by the substitution [8]:
F 7→ FGFHF

G 7→ GG

H 7→ HH

Efimov bound states are a self similar fractal as well:

…

𝐸𝑛 = 𝐸0exp(
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𝜉𝑐 − 𝜉
) ≡ 𝐸0𝜆

𝑛

𝐸0

𝐸0

…

A RG flow determines the evolution of the couplings similar to how the substitution matrix M determines the evolutions
of the letter densities in the tiling.

Could a substitution process generate the Efimov spectrum?
Yes!


