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Abstract

This thesis is devoted to a study of the total spin in the ground state of spin 1/2

fermions described by a Hubbard model defined on bipartite lattices with vacancies.

Bipartite lattices are defined as direct sums of two sub lattices A and B so that each

site is connected only to sites of the other sub lattice. The spectrum of single particle

Hamiltonians on such lattices display a symmetry between positive and negative energies

and it may host zero energy states. A vacancy defined by the removal of a single site,

can be either of type A or B. An important result of Lieb (1989) determines the ground

state spin of the Hubbard model on a bipartite lattice with a finite number of sites,

without vacancies and for arbitrary Hubbard interactions.

Using first order perturbation theory, i.e. for weak on-site interactions, we have

found that in the presence of a finite number of vacancies VA and VB, the ground

state retains a finite spin given by S = 1
2 |VA − VB|. This result is independent of the

number of lattice sites (either finite or infinite) and it is a consequence of vacancy-

induced zero modes. These zero modes define a subspace of the total Hilbert space

which stays invariant against Hubbard interactions. This robustness is a consequence of

topological properties of bipartite lattices not anticipated in the literature. We build on

this topological protection of the ground state spin to speculate on the generalisation of

our result beyond perturbation theory and to predict interesting properties of spatially

remote entangled spin states. Graphene is a natural platform for these ideas and it may

be used to give them interesting applications.
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Chapter 1

Introduction

1.1 Bipartite lattices

A lattice is a collection of sites connected to each other by bonds. A lattice is bipartite

if its sites can be divided into two sublattices where sites in one sublattice only interacts

with sites in the other sublattice, e.g., a d dimensions cubic lattice with nearest neighbor

interactions or graphene with nearest neighbor interactions (e.g., Figs. 1.1 and 1.2).

One can also think of some long range interaction with specific exclusion rules that

would also allow the lattice to be bipartite.

Figure 1.1: Examples of lattices. Only lattice (3) satisfies the definition of a bipartite
lattice, where the orange and green sites represent respectively the two sublattices.

We denote A and B the partition into two sublattices and by NA and NB the

respective (finite) number of sites. The adjacency matrix A = {ai,j} is defined as

ai,j = 1 if i, j are connected and ai,j = 0 otherwise. For a bipartite lattice A is of the

form

A =

(
0 D

D† 0

)
, (1.1)

where D is an NA ×NB matrix. Using a tight binding description for free particles (e.g

3



Figure 1.2: Examples of bipartite lattices. From left to right: a two dimensional cubic
lattice and the honeycomb lattice both with nearest neighbor interactions. The orange

and green sites depicts respectively two sublattices.

fermions) on a bipartite lattice the corresponding Hamiltonian is:

H0 =
∑
σ

∑
〈xy〉

txyc
†
xσcyσ (1.2)

where 〈〉 denotes nearest neighbors, tij is a real valued symmetric matrix and c†xσ

(cxσ) are creation (annihilation) fermionic operators at site x with spin σ and satisfy

{cxσ, c†yτ} = δxyδστ . Assuming (for simplicity) that tij = t, H0 coincides with the

adjacency matrix A up to the constant t.

The spectrum of H0 on a bipartite lattice is symmetric around zero energy, and its

number of zero modes is at least |NA −NB|. These zero modes rise from the nontrivial

topological structure of the lattice and have unusual properties, e.g., [Brouwer et al.,

2002] showed that zero modes in the random hopping model can be highly localized or

highly nonlocalized depending on the boundary conditions. The number of zero modes

can be extensive i.e. comparable to the (finite) number of lattice sites and gives rise to a

flat band, i.e., a band of states with the same energy and no dispersion, that can result

in ferromagnetic states [Mielke, 1991b, Lieb, 1989]. We will elaborate on flat bands in

the context of vacancies in the Hubbard model (Section 2.5).

These properties are very general, they apply to different systems (e.g., graphene,

silicene, etc.) and lead to interesting phenomena, e.g., flat bands in silicene [Hatsugai

et al., 2015]. These flat bands have been extended to analogue systems, e.g., photonic

zero modes [Iadecola et al., 2016].

1.2 Hubbard model

An important, yet unsolved problem in the quantum description of fermions moving in

a solid is the existence and origin of a stable magnetic order. A consensual framework

to answer this question is the Hubbard model described by the Hamiltonian,

H ≡ H0 +Hi = H0 + u
∑
x

nx↑nx↓ , (1.3)
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where nxσ ≡ c†xσcxσ is the fermion number operator. The interaction term characterised

by the positive and constant (to simplify) u accounts for the screened Coulomb on

site repulsion. Despite being oversimplified, the Hubbard Hamiltonian displays almost

all interesting observed phenomena : magnetic ordering of any kind, metal-insulator

transition, superconductivity, Tomonaga-Luttinger liquid in one space dimension, and

more. The Hubbard model can thus be viewed as the simplest possible model of

correlated fermions with few independent parameters, the hopping t and the interaction

u energies (more precisely their ratio), the particle density and the nature of the lattice,

an essential property central to this thesis. The bosonic version of the Hubbard model

displays also a very rich phenomenology. Despite its simplicity, only few properties of

this model have been rigorously proven.

A surprising aspect is that both on-site Coulomb repulsion Hi and hopping H0 are

spin-independent hence do not favor magnetic ordering. But their sum gives rise to a

variety of exotic magnetic orders of quantum origin. ([Lieb and Mattis, 1962a, Lieb and

Mattis, 1962b, Nagaoka, 1966, Mielke, 1991a, Mielke, 1991b, Mielke, 1992, Mielke and

Tasaki, 1993]).

For a bipartite lattice txy = 0 if x and y belong to the same sub-lattice. The spin of

the non-degenerate ground state of the repulsive (u > 0) Hubbard model on a bipartite

lattice where the number of electrons equals the number of sites, i.e. half filling, is

S = |NA−NB |
2 ([Lieb, 1989]). Further more, there is a ferrimagnetic long range order for

some bipartite lattices [Shen et al., 1994].

1.3 Vacancies

A vacancy is obtained by the removal of site, i.e., a neutral atom from the lattice. A

vacancy can be created on a finite or an infinite lattice. The creation of vacancies on an

infinite bipartite lattice has some interesting consequences, and we will discuss some of

them in the next chapter (Chapter 2).

Figure 1.3: Vacancies in a bipartite lattice. The orange and green sites are defined as in
Fig. 1.2. The white empty circles represent vacancies, i.e., the removal of a site, and

hence of a neutral atom from the lattice.
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1.4 Graphene

Graphene, a two dimensional system made of carbon atoms in a honeycomb lattice (see

Fig. 1.4), has many interesting properties. It is a bipartite lattice and has a low energy

spectrum, well approximated by a continuum massless Dirac fermions field. Vacancies in

graphene break the sublattice symmetry, leading to the appearance of zero modes that

are spatially localized on the vacancies and induce magnetism. ([Lieb, 1989, Sutherland,

1986, Pereira et al., 2007, Nanda et al., 2012, Liu et al., 2015, Mao et al., 2016, Yazyev

and Helm, 2007, Palacios et al., 2008, Ulybyshev and Katsnelson, 2015, Charlebois

et al., 2015]). Moreover, a local fractional charge is formed around vacancies ([Ovdat

et al., 2018]). A very useful way to mimic the effect of vacancies in graphene is done by

spatting Hydrogen atoms on the graphene lattice as done by [González-Herrero et al.,

2016]. The Hydrogen atoms bound to the Carbon atoms and effectively neutralizes

them. This method is very useful since it allows to use scanning tunneling microscopy

to move the Hydrogen atoms and affect the vacancies locations. Graphene is also a

useful material for the study of quantum information and entangled states [Kindermann,

2009]. Silicene, the silicon equivalent of graphene, is also a potential candidate to show

some of these interesting phenomena [Vogt et al., 2012].

Figure 1.4: Graphene honeycomb lattice.
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Chapter 2

Spin in the ground state of

bipartite lattices

In this chapter we will present some properties and symmetries of the Hubbard model

on bipartite lattices. We will then use these properties and symmetries to find the

ground state of the Hubbard model on a bipartite lattice, and on graphene in particular,

in first order perturbation theory in the Hubbard interaction and show the affect of

vacancies on it. We will then show that the spin of the ground state could be entangled

and try to link our results to the topology of the lattice.

2.1 Properties of bipartite lattices

Consider a bipartite lattice. From now on no further assumptions are needed. Since

the lattice is bipartite, we can divide it into two sublattices, denoted A and B with

respective and finite number of sites NA and NB. The adjacency matrix of a bipartite

lattice is given by equation (1.1).

A single particle quantum Hamiltonian describing free particles on a bipartite lattice

is the adjacency matrix up to a constant t H0 = tA.

Thus, the most general form of the Hamiltonian must be

H0 = t

(
0 D

D† 0

)
(2.1)

where D is an NA × NB matrix. H is an N × N matrix where N = NA + NB, This

Hamiltonian has a number of interesting properties.

Define

σ3 ≡

(
1NA×NA

0

0 −1NB×NB

)
(2.2)
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Note that

H0σ3 = t

(
0 D

D† 0

)(
1NA×NA

0

0 −1NB×NB

)
= t

(
0 −D
D† 0

)
(2.3)

σ3H0 =

(
1NA×NA

0

0 −1NB×NB

)
t

(
0 D

D† 0

)
= t

(
0 D

−D† 0

)
(2.4)

Thus,

{H0, σ3} = 0 (2.5)

Now assume |ψ〉 is an eigenstate of H with energy E i.e. H |ψ〉 = E |ψ〉 Then,

H (σ3|ψ〉) = −σ3H |ψ〉 = −σ3E |ψ〉 = −E (σ3|ψ〉) . (2.6)

σ3 |ψ〉 is thus also an eigenstate of H with energy −E. Thus, the spectrum of a

Hamiltonian on a bipartite lattice is symmetric around zero energy. (see Figs. 2.1 and

2.2).

Figure 2.1: A qualitative example of a symmetric and gapped spectrum around zero
energy.

Moreover, for |ψ〉 =

(
|ψA〉
|ψB〉

)
, σ3 |ψ〉 =

(
|ψA〉
− |ψB〉

)
. Next we wish to look for zero

modes for H0, i.e. states that satisfy H0 |ψ〉 = 0. Namely,(
0 D

D† 0

)(
|ψA〉
|ψB〉

)
= 0. (2.7)

8



Figure 2.2: The spectrum of graphene in the tight binding approximation. The
spectrum is linear near the Dirac points (E ∝ ±|k|) and therefore symmetric around
zero energy. There are six Dirac points that are divided into two equivalence sets of

three points. One can look at one of the Dirac points only since the other one will only
give a degeneracy that will not affect any charge or spin related properties. Taken from

https://pages.shanti.virginia.edu/mirzamonzur/research/ (the Fig. was
altered from the original).

We thus obtain two sets of equations

D |ψB〉 = 0, D
† |ψA〉 = 0. (2.8)

The first (second) set contains NA (NB) equations with NB (NA) unknowns. Assuming

NA > NB, the first set is over constrained and thus the only solution is the trivial

one |ψB〉 = 0. The second set is under constrained so that there will be NA − NB

free parameters and thus NA −NB solutions to the equation D
† |ψA〉 = 0. Hence, we

expect at least NA − NB zero modes of the form

(
|ψA〉

0

)
. For NB > NA, there are

NB − NA zero modes of the form

(
0

|ψB〉 ,

)
. Finally the number of zero modes is at

least |NA −NB|. This number is the index of the Hamiltonian defined as

IndexH = Dim[Ker(D†)]−Dim[Ker(D)]. (2.9)

Recall that the Ker of an operator is the set of states for which the operator sends to

the zero state. For a finite lattice this result is obvious. It is also valid for an infinite

graphene lattice as shown by [Ovdat et al., 2018]. This index satisfies the conditions in

9
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Atiyah Singer index theorem and so it is a topological index.

2.2 Spin Operators

Consider spin 1/2 fermions (e.g., electrons) on a bipartite lattice. The spin operators

are defined as

Sz =
1

2

∑
x

(nx↑ − nx↓) , S+ =
(
S−
)†

=
∑
x

c†x↑cx↓. (2.10)

The total spin operator is given by

S2 = (Sz)2 +
1

2

(
S+S− + S−S+

)
, (2.11)

and has eigenvalues S(S + 1).

2.3 Symmetries of the Hubbard model on a bipartite lat-

tice

We now consider again the Hubbard model on a bipartite lattice. The number of sites is

N = NA +NB and we assume the system is at half filling (N = Ne), where each atom

contributes one conducting electron. Namely,

H0 =
∑
σxy

txyc
†
xσcyσ (2.12)

U = u
∑
x

nx↑nx↓. (2.13)

u > 0 and txy = 0 if x and y belong to the same sub-lattice. The total number operators

are defined as

Nσ =
∑
x

nxσ, (2.14)

with eigenvalues Ne,σ. The spin operators and the total number operators commute

with the Hamiltonian and therefore are good quantum numbers. H0 anti commutes

with σ3. This symmetry is generated by taking

cxσ → ε (x) cxσ , (2.15)

where ε (x) is +1(−1) if x ∈ A(B). This is easily seen by looking at a generic term in

H0,

txyc
†
xσcyσ → ε (x) ε (y) txyc

†
xσcyσ . (2.16)
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Since this term is nonzero only if x and y belong to different sublattices, ε (x) ε (y) must

have different signs, then

txyc
†
xσcyσ → −txyc†xσcyσ , (2.17)

and therefore H0 → −H0. The Hubbard model for fermions however has an additional

particle hole symmetry. Take

cxσ → c†xσ , (2.18)

a generic term in H0 then transforms according to

txyc
†
xσcyσ → txycxσc

†
yσ . (2.19)

Since this term is nonzero only if x and y belong to different sublattices than cxσ and

c†yσ anticommute. Moreover txy is a symmetric matrix, so that

txyc
†
xσcyσ → txycxσc

†
yσ = −txyc†yσcxσ = −tyxc†yσcxσ . (2.20)

When we sum over x, y we obtain:∑
xy

txyc
†
xσcyσ →

∑
xy

−tyxc†yσcxσ = −
∑
xy

txyc
†
xσcyσ . (2.21)

Note that H0 is spin independant, hence the transformation can be done on one of

the spins or both of them. By performing it on both, we obtain that H0 → −H0 This

implies we can implement the transformation

cxσ → ε (x) c†xσ, (2.22)

for one of the spins or both of them, and deduce that H0 → H0. Physically this

transformation means that we can create a particle with energy E or destroy a particle

with energy −E at the same energy cost. This will be shown later. Note that under a

σ3 transformation U remains invariant:

U = u
∑
x

nx↑nx↓ = u
∑
x

c†x↑cx↑c
†
x↓cx↓ → u

∑
x

(ε (x))4 c†x↑cx↑c
†
x↓cx↓ = U, (2.23)

where the last equality results from the fact that (ε (x))2 = 1 for all x. Moreover, under

a particle hole transformation we obtain

nxσ = c†xσcxσ → cxσc
†
xσ = 1− c†xσcxσ = 1− nxσ, (2.24)

so that U is also invariant under particle-hole transformations:

U = u
∑
x

nx↑nx↓ → u
∑
x

(1− nx↑) (1− nx↓) = u
∑
x

(1−Nx) + U, (2.25)
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where Nx = nx↑ + nx↓. Note that∑
x

(1−Nx) = N −Ne . (2.26)

At half filling we have N = Ne and thus U is invariant under the transformation (2.22),

and the symmetry represented by this transformation is not broken. Next we show that

the total spin operator is also invariant under the transformations in equations (2.15)

and (2.18). For σ3 it is obvious since the spin operators in equation (2.10) are quadratic

in creation or annihilation operators on each site, so under σ3 we always obtain a factor

of (ε (x))2 = 1. Under a particle-hole transformation we obtain

Sz =
1

2

∑
x

(nx,↑ − nx,↓)

→ 1

2

∑
x

((1− nx,↑)− (1− nx,↓)) = −1

2

∑
x

(nx,↑ − nx,↓) = −Sz,
(2.27)

S+ =
∑
x

c†x↑cx↓ →
∑
x

cx↑c
†
x↓ = S−. (2.28)

The total spin is also invariant under the transformation (2.22):

S2 = (Sz)2 +
1

2

(
S+S− + S−S+

)
→ (−Sz)2 +

1

2

(
S−S+ + S+S−

)
= (Sz)2 +

1

2

(
S+S− + S−S+

)
= S2.

(2.29)

2.4 A theorem by Lieb

[Lieb, 1989] has proven that the ground state of H = H0 + U at half filling and even

number of sites is non-degenerate, up to the usual SU(2) degeneracy, and it has a finite

spin of

S =
|NA −NB|

2
. (2.30)

The fact that this is the spin value is not surprising. In the u = 0 limit the ground state

is obtained by doubly occupying all the negative energy states and half the zero modes.

The ground state is therefore degenerate but among these states there are some with

maximal spin (2.30). Additionally in the large u limit using second order perturbation

theory in t/u the Heisenberg model is obtained (see [Anderson, 1959]), where the ground

state spin is unique and its value is 2.30. (see [Lieb and Mattis, 1962a]. In his proof,

[Lieb, 1989] first shows that the ground state of the Hubbard model is unique for any

u > 0 using the symmetries mentioned above. He then use continuity argument in u to

say that the spin of the ground state is the same for all u, and in particularly it is the

one obtained in the large u limit, the Heisenberg limit, and so the value of the spin is

2.30.

This finite spin indicates a ferromagnetic order. This is a surprising result as there

12



is no magnetic order in one dimension [Lieb and Mattis, 1962b].

2.5 Vacancies on a bipartite lattice

We now wish to prove that vacancies on a bipartite lattice lead to the existence of zero

modes. They also modify the ground state and its total spin. We show that by creating

VA (VB) vacancies on sublattice A (B), the spin of the ground state of the repulsive

(u > 0) Hubbard model on a bipartite lattice at half filling is S = |VA−VB |
2 . We also

show that the only contribution to the spin density is from the zero modes.

Assuming we can create a vacancy in a bipartite lattice without breaking the σ3

symmetry we can change the number of sites on a finite lattice and influence the

quantity |NA −NB|. This implies we can create or destroy zero modes. If we have a

finite bipartite lattice with NA = NB and create VA (VB) the difference between the

number of sites will be |NA −NB| = |VA − VB|. We assume that we can work with an

infinite bipartite lattice with NA = NB →∞. We claim that the creation of vacancies

allows us to treat the lattice as a finite bipartite lattice, where |NA −NB| is replaced

with |VA − VB|. This is a very non-trivial statement as in principal, creating a vacancy

on an infinite lattice does not change the number of sites. However this was proven for

graphene by [Ovdat et al., 2018] at the continuum limit using the low energy Dirac limit

and nontrivial chiral boundary conditions. [Ovdat et al., 2018] also showed that the

number of zero modes NZM is a topological index using Atiyah–Singer index theorem

and it is given by:

NZM = |VA − VB|. (2.31)

We can create as many vacancies as we want and increase the number of zero modes,

and so a flat band of zero modes can be created.

2.6 Hubbard interaction as a perturbation

2.6.1 No interaction

We first consider the u = 0 case:

H0 =
∑
σxy

txyc
†
xσcyσ (2.32)

and start with an infinite lattice with NA = NB and half filling and create VA (VB)

vacancies of type A (B). Hence the number of zero modes is, as shown previously:

NZM = |VA − VB| × 2, (2.33)

where the factor 2 comes from the additional degree of freedom of the spin. Since the

system is at half filling the ground state of the Hamiltonian is such that all the negative
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energy states and half the zero modes are filled. Thus, the ground state is degenerate

(see Fig. 2.3), and the degeneracy is:

(|VA − VB| × 2)!

(|VA − VB|!)2 (2.34)

Figure 2.3: Three examples of filling the energy levels in the ground state of H0 with 3
vacancies on the same sublattice, e.g., N = 10 sites, 3 vacancies leads to 7 spin 1/2
fermions at half filling. Example (2) is a state with maximal spin, and it is also the

ground state when a Hubbard interaction is added (Section 2.7).

2.6.2 Perturbation theory

Adding a small u� t Hubbard interaction

u
∑
x

nx↑nx↓, (2.35)

with u > 0, allows to treat the interaction perturbatively. From [Lieb, 1989] it is clear

that a finite lattice with |NA −NB| = |VA − VB| that is an even number, satisfies Lieb’s

theorem so that the total spin in the ground state is:

S =
|VA − VB|

2
. (2.36)

We claim that this result remains true for an infinite lattice as well. To show it, we wish

to find the ground state of the system using perturbation theory. Adding the interaction

(2.35), the degeneracy in equation (2.34) is lifted (at least partially). Consider the
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unitary transformation W from the position (x) to the energy representation:

|n1, σ1〉 ⊗ |n2, σ2〉 ⊗ · · · ⊗ |nk, σk〉 = W |x1, σ1〉 ⊗ |x2, σ2〉 ⊗ · · · ⊗ |xk, σk〉

=
∑

x1,x2,···xk

Wn1,n2,···nk,x1,x2,···xk |x1, σ1〉 ⊗ |x2, σ2〉 ⊗ · · · ⊗ |xk, σk〉 . (2.37)

It is important to note that:

W |0〉 = |0〉 , (2.38)

a relation that will prove useful later. We define creation and annihilation operators of

a spin σ particle in the energy level n,

c†nσ |0〉 = |n, σ〉 . (2.39)

The creation and annihilation operators transform as (see the derivation in (A.1)):

c†nσ = Wc†xσW
†, (2.40)

cnσ = WcxσW
†, (2.41)

which for practical purposes, we rewrite as

c†nσ =
∑
x

ψn (x) c†xσ , (2.42)

cnσ =
∑
x

ψ∗n (x) cxσ . (2.43)

These operators satisfy usual anti commutation relations (see the derivation in (A.4)

and (A.5))

{cnσ, c†mτ} = δnmδστ , (2.44)

{cnσ, cmτ} = 0. (2.45)

Thus, these operators are well behaved fermionic creation and annihilation operators.

The number operators are given by:

nnσ = c†nσcnσ = Wc†xσW
†WcxσW

† = Wc†xσcxσW
† = WnxσW

†, (2.46)

and can be written as:

nnσ =
∑
xx′

ψn (x)ψ∗n
(
x′
)
c†xσcx′σ . (2.47)
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The inverse transformation in equations (2.40) and (2.41) is given by:

c†xσ = W †c†nσW, (2.48)

cxσ = W †cnσW. (2.49)

The spin operators keep the same form under this transformation (see the derivation in

(A.6) and (A.7)).

Sz =
1

2

∑
n

(nn↑ − nn↓) . (2.50)

S+ =
(
S−
)†

=
∑
n

c†n↑cn↓. (2.51)

Since W is unitary, the symmetries of the Hubbard Hamiltonian remain, but can be

re-expressed using the new operators, namely

H0 =
∑
nσ

Enc
†
nσcnσ. (2.52)

Next, we show that under a σ3 transformation or particle-hole transformation H0

becomes −H0. Under a σ3 transformation in (2.15), we obtain:

c†nσ →Wσε (x) c†xσW
†
σ . (2.53)

We find that (see the derivation in (A.9)):

c†nσ → c†−nσ, (2.54)

cnσ → c−nσ. (2.55)

Under the transformation in (2.18), we have

c†nσ →WcxσW
† = cnσ, (2.56)

cnσ →Wc†xσW
† = c†nσ. (2.57)

Under the transformation in (2.15), we have

H0 →
∑
nσ

Enc
†
−nσc−nσ = −

∑
nσ

E−nc
†
−nσc−nσ = −

∑
nσ

Enc
†
nσcnσ = −H0. (2.58)
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Under the transformation in (2.18), we have

H0 →
∑
nσ

Encnσc
†
nσ =

∑
nσ

En

(
1− c†nσcnσ

)
= −H0 +

∑
nσ

En. (2.59)

Since for every En there exists E−n = −En, we obtain:∑
nσ

En = 0, (2.60)

so that H0 → −H0. The interaction term can then be rewritten as

U = u
∑
x

nx↑nx↓ = u
∑
x

W †nnx↑WW †nnx↓W

= u
∑
x

∑
nmlk

ψ∗n (x)ψ∗l (x)ψm (x)ψk (x) c†n↑cm↑c
†
l↓ck↓.

(2.61)

We note that this term conserves separately the number of spin up and spin down

particles.

2.7 First order perturbation theory

To first order in perturbation theory we need to diagonalize the interaction term within

the sub-space of the ground states. Then within this sub-space we obtain an effective

Hamiltonian that takes into account only the zero modes. We introduce new notations

n<, k<, which denote states with En, Ek < 0 and α, β, γ, δ denotes the zero modes. We

use the fact that we are in a subspace in which the negative energy levels are always

occupied, so that

U = u
∑
x

nx↑nx↓ = u
∑
x

∑
n<k<

|ψn (x)|2 |ψk (x)|2

+ u
∑
x

∑
n<αβ

|ψn (x)|2 ψ∗α (x)ψβ (x)
(
c†α↑cβ↑ + c†α↓cβ↓

)
+ u

∑
x

∑
αβγδ

ψ∗α (x)ψ∗β (x)ψγ (x)ψδ (x) c†α↑cβ↑c
†
γ↓cδ↓.

(2.62)

Note that the first term is constant and give the same contribution to all states while

the other terms get a contribution only from the zero modes and hence exist because

such zero modes exist on a bipartite lattice. Using the previous symmetries we can

write an effective Hamiltonian (see the derivation in (A.15)):

Heff =
u

2
N̂ +

u

2

∑
αβσ

Tαβc
†
ασcβσ + u

∑
αβγδ

Vαβγδc
†
α↑cβ↑c

†
γ↓cδ↓, (2.63)
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where
N̂ =

∑
α

(nα↑ + nα↓) ,

Tαβ = −
∑
x

∑
γ

|ψγ (x)|2 ψ∗α (x)ψβ (x) ,

Vαβγδ =
∑
x

ψ∗α (x)ψβ (x)ψ∗γ (x)ψδ (x) ,

(2.64)

with the symmetries:

Tαβ = T ∗βα,

Vγβαδ = Vαβγδ,

Vαδγβ = Vαβγδ,

Vβαδγ = V ∗αβγδ.

(2.65)

We also note that

Tαβ = −
∑
γ

Vαβγγ
∑
α

Tαα = −
∑
α,γ

Vααγγ , (2.66)

so that for a given number of vacancies and a given number of particles the energies

can be written in terms of tensor elements of Vαβγδ. We look for a maximal spin state,

i.e. S = |VA−VB |
2 which we denote |ψ〉. Since all |ψ〉s are degenerate, we can look for

a state with all spins up and distributed on different zero modes (see example (2) in

Fig. 2.3). This state satisfies:

2

u
Heff |ψ〉 =

N̂ −∑
α,β

Vααββ

 |ψ〉 = (|VA − VB|+ Tr (T )) |ψ〉 . (2.67)

Namely, a maximal spin state is an eigenstate of the effective Hamiltonian Heff. We

now add and subtract the maximal spin state energy:

2

u
Heff = N̂ +

∑
αβσ

Tαβc
†
ασcβσ + 2

∑
αβγδ

Vαβγδc
†
α↑cβ↑c

†
γ↓cδ↓

+ (|VA − VB|+ Tr (T ))− (|VA − VB|+ Tr (T ))

≡ H ′ + (|VA − VB|+ Tr (T )) ,

(2.68)

so that in order to show that a maximal spin state is the ground state, we need to show

that H ′ is positive semidefinite. We recall that a positive semidefinite operator is real

and with non-negative eigenvalues. The ground state for such an operator has at least

zero energy. If we find an eigenstate of a positive semidefinite operator with zero energy

than it must be a ground state of that operator. For N = |VA − VB| we have:

H ′ =
∑
αβσ

Tαβc
†
ασcβσ + 2

∑
αβγδ

Vαβγδc
†
α↑cβ↑c

†
γ↓cδ↓ − Tr (T ) . (2.69)
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Next, we define:

Aσ (x) =
∑
α

ψα (x) cασ

A†σ (x) =
∑
α

ψ∗α (x) c†ασ

C (x) =
∑
α

|ψα (x)|2 .

(2.70)

Note that:
{Aσ (x), A†τ (x)} =

∑
α,β

ψα (x)ψ∗β (x) {cασ, c†βτ}

=
∑
α,β

ψα (x)ψ∗β (x) δαβδστ

=
∑
α

|ψα (x)|2 δστ

= C (x) δστ ,

(2.71)

so that:

C (x) = Aσ (x)A†σ (x) +A†σ (x)Aσ (x) . (2.72)

Inserting these relations into (2.69) and using equation (2.64), we deduce:

H ′ =
∑
x

(
A†

↑ (x)A↑ (x)A†
↓ (x)A↓ (x) +A↑ (x)A†

↑ (x)A↓ (x)A†
↓ (x)

)
. (2.73)

Each term is clearly positive semidefinite so that H ′ is also positive semidefinite. Note

that by definition:

A↑ (x) =
∑
α

ψα (x) cα↑ =
∑
x′

(∑
α

ψα (x)ψ∗α
(
x′
))

cx′↑. (2.74)

Hence, we conclude that to first order in perturbation theory in u/t, the ground state

of the Hubbard Hamiltonian is non degenerate and it has a maximal spin. This result is

very similar to Lieb’s theorem (2.36). For example, in Fig. 2.3 example (2) is the true

ground state of the system. The calculation we performed above using perturbation

theory is very subtle for an infinite lattice. For a gap-less system it is difficult to define

a zero mode subspace. Farther-more, there could be a quantum phase transition even

for a small u, e.g., in a square lattice. However, we claim that the zero mode subspace

is protected by the topology of the lattice and will be the only source for the spin in the

ground state even for a gap less system. Another way to understand the validity of our

result is to consider a translation invariant system as showed by [Mielke, 1993]. In that

case the second term in 2.62 is constant and we obtain an effective Hubbard model in a

subspace in which all the negative energy states are doubly occupied. The lowest energy

state is degenerate |VA − VB| times. [Mielke, 1993] has shown that for such Hubbard

model the ground state is the one with maximal spin and it is non-degenerate, exactly

as we obtained. Furthermore, the contribution to the total spin comes only from the
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zero modes and so is the spin density. We see that by creating vacancies we can modify

the spin of the ground state and obtain a ferromagnetic state if the number of vacancies

is large enough. [Shen et al., 1994] defines the correlation function

m(0) =
1

Nsites

〈
S+S−

〉
=

1

Nsites

〈(∑
x

S+
x

)(∑
x

S−x

)〉
. (2.75)

By definition S+S− is a positive semidefinite operator. Note that
〈
S+
i S
−
j

〉
is positive

(negative) if the ground state is symmetric (antisymmetric) with respect to i and j, i.e.,

the interaction between sites i and j is ferromagnetic (antiferromagnetic). This implies

that if m(0) is positive the system displays ferromagnetic long range order. Duplicating

the calculation of [Shen et al., 1994] we obtain for a maximal spin state

m(0) =
1

4

(
VA
Nsites

− VB
Nsites

)2

Nsites +O (1) . (2.76)

The quantity
(

VA
Nsites

− VB
Nsites

)2
could be finite implying m(0) ∝ Nsites and hence is

extensive. We find that this system shows ferromagnetic long range order. If the number

of vacancies is small there will not be long range order in the system, but there will still

be long range correlation between distant vacancies.

2.8 Graphene as an example of a Hubbard model on a

bipartite lattice - effect of vacancies

Graphene is faithfully described by a honeycomb lattice. In the tight binding approx-

imation and nearest neighbor interaction, the physics of graphene is well accounted

by a Hubbard model on a bipartite lattice. Recently theoretical ([Ovdat et al., 2018])

and experimental ([Ugeda et al., 2010]) work showed that upon creating vacancies, zero

modes show up and are spatially localized on the vacancy sites (See Figs. 2.4 and 2.5).

Furthermore a local fractional charge is also formed around the vacancy (see Fig. 2.6).

From our results, we find that a spin also shows up and it localized around the vacancies

(see Fig. 2.7).

2.9 Entangled spin states

We found that the total spin in the ground state is S = |VA−VB |
2 , and it has the expected

2S + 1 degeneracy. While the states |↑↑ · · · ↑〉 , |↓↓ · · · ↓〉 are separable states, the other

states are entangled. Therefore the more vacancies we create, the more entangled states

we can obtain.

In the example of graphene, this result implies that we can create spin entangled

states on spatially distant vacancies (see Fig. 2.8).
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Figure 2.4: A spatially localized zero mode on a vacancy in graphene. The blue dots
represent the strength of the square of the wave function of the zero modes (taken from

[Ovdat et al., 2018]).

2.10 Connection to topology

We have found that the total spin in the ground state is S = |VA−VB |
2 . Recall that

|VA − VB| is also the number of zero modes of H0 and it is also the index of the

Hamiltonian (equation (2.33)).

Therefore, the total spin in the ground state appears to be only a function of the

number of vacancies, i.e., it is a property of the bipartite nature of the lattice and

not its exact structure. We expect the spin to remain the same for a deformed yet

bipartite lattice. In that sense the spin of the ground state is topologically protected.

If the ground state is spin entangled, this property is expected to be protected by the

topological nature of the zero modes. Another way to understand this statement is to

consider the charge density at the ground state.

ρ(x) =
∑
n

|ψn(x)|2︸ ︷︷ ︸
with vacancies

−
∑
n

|ψn(x)|2︸ ︷︷ ︸
no vacancies

. (2.77)

The total charage is Q =
∫
dxρ(x) = 1

2IndexH, where the last equality is true for

Graphene as shown by [Ovdat et al., 2018] The Z component of spin density is

Sz(x) =
1

2
(
∑
n↑
|ψn(x)|2 −

∑
n↓
|ψn(x)|2) ∝ ρ(x)↑ − ρ(x)↓. (2.78)

The total Z component of the spin is

Sz =

∫
dxSz(x) ∝ Q↑ −Q↓ ∝ IndexH↑ − IndexH↓. (2.79)
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Figure 2.5: Measurement of the local density of states as a function of voltage (that can
be converted to spectral energy) with and without vacancy. The sharp peak at zero

energy (Fermi energy) corresponds to the expected zero mode localized on the vacancy
(taken from [Ugeda et al., 2010], the figure was altered from the original).

A fully ploarized state has

S = |Sz| ∝ IndexH↑ or IndexH↓. (2.80)

SU(2) invariance of the spin implies that the spin in the ground state is only a function

of the Index of the Hamiltonian for any polarization. The Index of the Hamiltonian is

a topologically protected quantity and therefore so is the total spin. Graphene, thus

appears to be a reliable setup to build and manipulate entangled spin states. Preliminary

theoretical [Ovdat et al., 2018] and experimental [Mao et al., 2016] works give support

to this proposal. Their work shows that the creation of vacancies results in localized

zero modes on the vacancy sites.
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Figure 2.6: An example with two types of vacancies, each color (green or purple)
represent a vacancy on a different sublattice. There are two green vacancies and one
purple vacancy. A local fractional charge, which is proportional to zero mode wave

function squared, (blue dots) is formed around the type of vacancies whose number is
larger, in this case the green vacancies.

Figure 2.7: A spatially localized spin (blue dots) is formed around the vacancy. The
red arrow represents the total spin in the z direction, which in this example is up.
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Figure 2.8: An example of a spin entangled state in graphene. The blue dots and red
arrows are defined as in Fig. 2.7. In this example the total spin is S = 1 (from equation

(2.36)), since there are two green vacancies and zero purple vacancies. Thus an
entangled state |ψ〉 = 1√

2
(|↑↓〉+ |↓↑〉) of two electrons on two distant vacancies can be

created.
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Chapter 3

Conclusion and open questions

for fututre work

Bipartite lattices show simple yet very general properties. Their spectrum is symmetric

and they have zero modes. We focused on the Hubbard model defined on a bipartite

lattice. Following Lieb’s theorem (2.30) for the spin of the ground state, we aimed to

find the spin of the ground state for a bipartite lattice with a finite number of vacancies.

In Chapter 2 we discussed the properties and symmetries of the Hubbard model on a

bipartite lattice with vacancies and used them to show that within perturbation theory,

the spin of the ground state (2.36) is consistent with Lieb’s theorem. We generalized

this result for the case of vacancies and we were able to determine that the total spin

and its spatial distribution are dependant only on the zero modes. We found that the

spin spatial distribution is set by the subset of zero modes, and we gave a plausible

argument for the existence of a topologically protected spin entangled states.

In a recent work [Ovdat et al., 2018] it has been shown that in graphene zero modes

are spatially localized. We used that result to show how to build entangled spin states

of electrons localized on distant vacancies.

Some questions remain unanswered. It is still an open question whether the total

spin in the ground state is only a function of the number of vacancies to first order in

perturbation theory, or is there some property that makes it generally true. We claim

that the spin of the ground state is a topological feature of this system and therefore our

result should hold to all orders in perturbation theory in u, but a proof is still required.

We also plan to perform numerical calculation to support our claims. Another open

problem is to understand how to create and manipulate the entanglement. Being able to

control spatially remote entangled spins could prove useful in various applications such

as quantum information. Moreover, the relevance of topological protection is reminiscent

of similar features in other setups such as majorana fermions.
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Appendix A

Appendix

A.1 Creation and annihilation operators transformations

A.1.1 Base transformation

The creation and annihilation operators transform as:

c†nk+1σk+1
|n1, σ1〉 ⊗ |n2, σ2〉 ⊗ · · · ⊗ |nk, σk〉

= |n1, σ1〉 ⊗ |n2, σ2〉 ⊗ · · · ⊗ |nk, σk〉 ⊗ |nk+1, σk+1〉

= W |x1, σ1〉 ⊗ |x2, σ2〉 ⊗ · · · ⊗ |xk, σk〉 ⊗ |xk+1, σk+1〉

= Wc†xk+1σk+1
|x1, σ1〉 ⊗ |x2, σ2〉 ⊗ · · · ⊗ |xk, σk〉

= Wc†xk+1σk+1
W † |n1, σ1〉 ⊗ |n2, σ2〉 ⊗ · · · ⊗ |nk, σk〉 .

(A.1)

We conclude that:

c†nσ = Wc†xσW
†, (A.2)

cnσ = WcxσW
†. (A.3)

These operators satisfy:

{cnxσ, c
†
nyτ} = {WcxσW

†,Wc†yσW
†}

= WcxσW
†Wc†yσW

† +Wc†yσW
†WcxσW

†

= Wcxσc
†
yσW

† +Wc†yσcxσW
†

= W{cxσ, c†yτ}W †

= δxyδστWW †

= δnxnyδστ ,

(A.4)
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{cnxσ, cnyτ} = {WcxσW
†,WcyσW

†}

= W{cxσ, cyτ}W †

= 0.

(A.5)

A.1.2 Spin operators

The spin operators transform as:

Sz =
1

2

∑
x

(nx↑ − nx↓)

=
1

2

∑
x

(
W †nnx↑W −W †nnx,↓W

)
=

1

2

∑
x

W † (nnx↑ − nnx↓)W

=
1

2

∑
x

∑
nxn′

x

W †x,nx
(nnx↑ − nnx↓)Wn′

x,x

=
1

2

∑
nxn′

x

(nnx↑ − nnx↓) δnx,n′
x

=
1

2

∑
nx

(nnx↑ − nnx↓)

=
1

2

∑
n

(nn↑ − nn↓) .

(A.6)

Similarly

S+ =
(
S−
)†

=
∑
n

c†n↑cn↓. (A.7)

A.1.3 Symmetries

Under σ3 transformation (2.15) we have:

c†nσ →Wσε (x) c†xσW
†
σ . (A.8)

To see what this operator is, we apply it on some state:

Wε (x) c†xσW
† |n1, σ1〉 ⊗ |n2, σ2〉 ⊗ · · · ⊗ |nk, σk〉

= Wε (x) c†xσ |x1, σ1〉 ⊗ |x2, σ2〉 ⊗ · · · ⊗ |xk, σk〉

= Wε (x) |x1, σ1〉 ⊗ |x2, σ2〉 ⊗ · · · ⊗ |xk, σk〉 ⊗ |x, σ〉

= |n1, σ1〉 ⊗ |n2, σ2〉 ⊗ · · · ⊗ |nk, σk〉Wε (x) |x, σ〉

= |n1, σ1〉 ⊗ |n2, σ2〉 ⊗ · · · ⊗ |nk, σk〉
∑
x

〈x, σ|n, σ〉 ε (x) |x, σ〉

= |n1, σ1〉 ⊗ |n2, σ2〉 ⊗ · · · ⊗ |nk, σk〉 ⊗ σ3 |n, σ〉

= |n1, σ1〉 ⊗ |n2, σ2〉 ⊗ · · · ⊗ |nk, σk〉 ⊗ |−n, σ〉 .

(A.9)
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We conclude that:

c†nσ → c†−nσ, (A.10)

cnσ → c−nσ. (A.11)

A.2 The effective Hamiltonian

We obtain an effective Hamiltonian from equation (2.62). For the second term we can

use the fact that
δxx =

∑
i

|ψi (x)|2 , (A.12)

where i runs over all states. Since the unperturbed Hamiltonian has a symmetry of

positive and negative energy’s this can be written as

δxx = 2
∑
n<

|ψn (x)|2 +
∑
α

|ψα (x)|2 . (A.13)

Therefore we get: ∑
n<

|ψn (x)|2 =
δxx −

∑
α |ψα (x)|2

2
. (A.14)

Effectively we can write:

Heff = u
∑
x

∑
αβ

δxx −
∑

γ |ψγ (x)|2

2
ψ∗α (x)ψβ (x)

(
c†α↑cβ↑ + c†α↓cβ↓

)
+ u

∑
x

∑
αβγδ

ψ∗α (x)ψβ (x)ψ∗γ (x)ψδ (x) c†α↑cβ↑c
†
γ↓cδ↓

=
u

2
N +

u

2

∑
αβσ

Tαβc
†
ασcβσ + u

∑
αβγδ

Vαβγδc
†
α↑cβ↑c

†
γ↓cδ↓,

(A.15)

where
N =

∑
α

(nα↑ + nα↓)

Tαβ = −
∑
x

∑
γ

|ψγ (x)|2 ψ∗α (x)ψβ (x)

Vαβγδ =
∑
x

ψ∗α (x)ψβ (x)ψ∗γ (x)ψδ (x) .

(A.16)
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Plugging equations (2.64) , (2.70) and (2.71) into equation (2.69) we get:

H ′ =
∑
αβσ

Tαβc
†
ασcβσ + 2

∑
αβγδ

Vαβγδc
†
α↑cβ↑c

†
γ↓cδ↓ − Tr (T )

=
∑
x

−∑
αβγσ

|ψγ (x)|2 ψ∗α (x)ψβ (x) c†ασcβσ


+
∑
x

2
∑
αβγδ

ψ∗α (x)ψβ (x)ψ∗γ (x)ψδ (x) c†α↑cβ↑c
†
γ↓cδ↓


+
∑
x

∑
αβ

|ψα (x)|2 |ψβ (x)|2


=
∑
x

(
−C (x)

∑
σ

A†σ (x)Aσ (x) + 2A†↑ (x)A↑ (x)A†↓ (x)A↓ (x) + C2 (x)

)
=
∑
x

(
−C (x)

(
A†↑ (x)A↑ (x) +A†↓ (x)A↓ (x)

))
+
∑
x

(
2A†↑ (x)A↑ (x)A†↓ (x)A↓ (x) + C2 (x)

)
.

(A.17)

In the first term we use:

C (x) = A↓ (x)A†↓ (x) +A†↓ (x)A↓ (x) , (A.18)

in the second term we use:

C (x) = A↑ (x)A†↑ (x) +A†↑ (x)A↑ (x) , (A.19)

and in the last term we use one of each, so that we can write:

H ′ =
∑
x

(
−C (x)

(
A†↑ (x)A↑ (x) +A†↓ (x)A↓ (x)

))
+
∑
x

(
2A†↑ (x)A↑ (x)A†↓ (x)A↓ (x) + C2 (x)

)
= −

∑
x

(
A↓ (x)A†↓ (x)A†↑ (x)A↑ (x) +A†↓ (x)A↓ (x)A†↑ (x)A↑ (x)

)
−
∑
x

(
A↑ (x)A†↑ (x)A†↓ (x)A↓ (x) +A†↑ (x)A↑ (x)A†↓ (x)A↓ (x)

)
+
∑
x

(
2A†↑ (x)A↑ (x)A†↓ (x)A↓ (x)

)
+
∑
x

((
A↑ (x)A†↑ (x) +A†↑ (x)A↑ (x)

)(
A↓ (x)A†↓ (x) +A†↓ (x)A↓ (x)

))
=
∑
x

(
A†↑ (x)A↑ (x)A†↓ (x)A↓ (x) +A↑ (x)A†↑ (x)A↓ (x)A†↓ (x)

)

(A.20)
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אחד המרוחקים החסרים האטומים של במיקום הנמצאים ספינים של שזורים מצבים

הפתוחות מהשאלות אחת תעלומה. בגדר עדיין הינן מהשאלות חלק מרחבית. מהשני

החסרים האטומים מספר של פונקציה רק הוא היסוד במצב הכולל הספין האם היא

להיות הזו התוצאה את המחייבת תכונה ישנה האם או הפרעות, בתורת ראשון בסדר

המערכת של טופולוגית תכונה הוא היסוד במצב הספין כי מניחים אנו במדויק. נכונה

באינטראקציית הפרעות בתורת סדר בכל נכונה להיות צריכה שלנו התוצאה ולכן הזו

ולהשפיע לייצר ניתן כיצד הינה נוספת פתוחה בעיה ההוכחה. חסרה עדיין אך האברד,

להיות יכולה מהשני אחד המרוחקים שזורים בספינים לשלוט היכולת השזירות. על

של הרלוונטיות בנוסף קוונטית. באינפורמציה למשל שונים, בתחומים שימושית מאוד

מיורנה. פרמיוני כגון נוספות, במערכות דומות תכונות מזכירה טופולוגית הגנה

ii



תקציר

חצי, ספין בעלי פרמיונים של היסוד במצב הכולל הספין של למחקר מוקדשת זו תזה

חסרים. בודדים אטומים עם חלקיים דו סריגים על המוגדר האברד מודל באמצעות

מחובר אתר שכל כך ,Bו־ A סריגים תתי שני של ישר כסכום מוגדרים חלקיים דו סריגים

על חלקיקיים חד המילטוניאנים של הספקטרום השני. הסריג לתת השייכים לאתרים

מצבים לו להיות ויכולים ושליליות חיוביות אנרגיות של סימטריה בעל הינו כאלו סריגים

מספר של גודל מסדר להיות יכול אנרגיה אפס בעלי המצבים מספר אנרגיה. אפס עם

אתר של הסרה ידי על מוגדר חסר בודד אטום מקרוסקופי. כלומר בסריג, האתרים

חשובה תוצאה הסריג. של חלקי הדו במבנה לפגוע מבלי B או A סריג מתת אחד סריג

אינטראקציית עם האברד מודל של היסוד במצב הספין את קובעת (1989) ליב של

חסרים, בודדים אטומים ללא אתרים, של סופי מספר עם חלקיים דו סריגים על דחייה

האברד. אינטראקציית לכל

פרמיונים בין חלשה אינטראקצייה כלומר הפרעות, בתורת ראשון בסדר שימוש ידי על

למצב VBו־ VA חסרים בודדים אטומים של סופי מספר בנוכחות כי מצאנו אתר, באותו

אתרי במספר תלויה בלתי זו תוצאה .S = 1
2 |VA−VB| ידי על הנתון סופי ספין יש היסוד

ממצבים נובעת והיא שלו, המדויק במבנה או הסריג במימד אינסופי), או (סופי הסריג

לכך הגיוני הסבר מציגים אנו החסרים. הבודדים מהאטומים הנוצרים אנרגיה אפס בעלי

הסריגים מתתי אחד בכל האתרים מספר כאשר אינסופי חלקי דו סריג עם לעבוד שניתן

ליב של התוצאה את מכלילים ובכך מהם אחד בכל החסרים האטומים במספר מוחלף

מגדירים אנרגיה אפס בעלי המצבים חסרים. בודדים אטומים עם אינסופיים לסריגים

האברד. אינטראקציית תחת אינווריאנטי שנשאר המלא ההילברט למרחב מרחב תת

בספרות. נצפו שלא חלקיים דו סריגים של טופולוגיות מתכונות נובע זו תוצאה של החוזק

שלנו שהתוצאה מניחים אנו טופולוגית; מוגן היסוד במצב שהספין בכך משתמשים אנו

גרפן מעניינות. תכונות יש השזורים שלספינים וצופים הפרעות, לתורת מעבר גם נכונה

במסגרת דבש. חלת של במבנה המסודרים פחמן אטומי של מימדית דו מערכת הינו

הוא ולכן חלקי דו סריג הוא הגרפן סריג קרובים, שכנים בין אינטראקציות של קירוב

עבורם. מעניינים לשימושים בסיס להיות ויכול שהצגנו לרעיונות טבעית פלטפורמה מהווה

מספר בנוסף, מרחבית. ממוקמים בגרפן אנרגיה אפס בעלי המצבים כי התגלה לאחרונה

הגרפן את המתאר ההמילטוניאן של האינדקס הוא בגרפן אנרגיה אפס בעלי המצבים

וזינגר, עטיה של האינדקס משפט תנאי את מקיים זה אינדקס נמוכות. אנרגיות של בגבול

צפוי הוא גם בגרפן האברד מודל של היסוד במצב הספין ולכן טופולוגי, אינדקס הוא לכן

גרפן בעזרת לבנות שניתן להראות כדי זו בתוצאה משתמשים אנו טופולוגי. גודל להיות
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לפיזיקה. בפקולטה אקרמן אריק פרופסור של בהנחייתו בוצע המחקר

תודות

וכתיבת המחקר לאורך שלו התמיכה על אקרמן אריק פרופ׳ שלי למנחה להודות ברצוני

קבוצה פגישות הרבה ועבור שלי, העבודה על שלו המצוינות ההערות עבור שלי, התזה

צהריים. ארוחות בזמן מעניינות ושיחות מרתקות

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני
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