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Abstract
We demonstrate the existence of a universal transition from
a continuous scale invariant phase to a discrete scale in-
variant phase for a class of one-dimensional quantum sys-
tems with anisotropic scaling symmetry between space and
time. These systems describe a Lifshitz scalar interacting
with a background potential. The transition occurs at a criti-
cal coupling λc corresponding to a strongly attractive poten-
tial.

1. Introduction
Classically scale invariant [1], the Hamiltonians

ĤS = p2/2m− λ/r2 , ĤD = γ0γjpj − λ/r , (1)

exhibit an abrupt transition in the spectrum at a critical
λ = λc. For λ < λc, the spectrum contains no bound states
close to E = 0, however, as λ goes above λc, an infinite
series of bound states appears. Moreover these states ar-
range themselves in an unanticipated geometric series ac-
cumulating at E = 0. The existence and geometric structure
of the energy levels do not rely on the details of the poten-
tial close to its source and is a signature of residual dis-
crete scale invariance. Thus, these Hamiltonians exhibit a
quantum phase transition at λc between a continuous scale
invariant (CSI) phase and a discrete scale invariant phase
(DSI). This transition has been associated with Berezinskii-
Kosterlitz-Thouless (BKT) transitions [2].
These different Hamiltonians (1) share a similar property -

the power law form of the corresponding potential matches
the order of the kinetic term. We demonstrated [3] that this
property is a sufficient ingredient for the existence of the
CSI to DSI transition by considering a generalised class of
one dimensional Hamiltonians

ĤN = (p2)N − λN
x2N

, (2)

where N is an integer and λN a real coupling.
Corresponding to (2) is the action of a complex scalar field
in (1 + 1)-dimensions:∫

dt

∫ ∞
x=x0

dx
i

2
(Ψ∗∂tΨ− c.c.) +

∣∣∣∂Nx Ψ
∣∣∣2 − λN

x2N
|Ψ|2 ,

where c.c. indicates the complex conjugate. This field
theory has manifest Lifshitz scaling symmetry, (t, x) 7→
(Λ2N t,Λx) when x0 → 0. The scaling exponent of Λ2 is
called the “dynamical exponent” and has value N in this
case.
The classical scaling symmetry of (2) implies that if there

is one negative energy bound state then there is an un-
bounded continuum. Thus, the Hamiltonian is non-self-
adjoint. To remedy this problem, the operator can be made
self-adjoint by applying boundary conditions on the ele-
ments of the Hilbert space through the procedure of self-
adjoint extension. Alternatively, a suitable cutoff regularisa-
tion at x0 > 0 can be chosen to ensure self-adjointness as
well as bound the spectrum from below by an intrinsic scale
leaving some approximate DSI at low energies. While both
these approaches are explored in our paper [3], here we
shall discuss only the cut-off approach.

2. Example: N = 1

The most general boundary condition consistent with the
Hamiltonian:

Ĥ1 = −d2
x + λ1/x

2 (3)

being self-adjoint on the space [x0,∞), x0 > 0 is

Ψ(x0) + ix0Ψ′(x0) = eiθ
(
Ψ(x0)− ix0Ψ′(x0)

)
, (4)

where θ is a free parameter. It is not hard to convince one-
self using the time dependent Schrödinger equation that
choosing this boundary condition sets the probability cur-
rent at x = x0 equal to zero. Additionally these boundary
conditions ensure that Ĥ1 is symmetric by setting the ma-
trix element Ĥ1−Ĥ

†
1 to zero. This is generally non-zero due

to boundary terms at x = x0.
The boundary condition (4) can be rewritten as

x0Ψ′(x0)

Ψ(x0)
= tan

(
θ

2

)
θ 6= ±π . (5)
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Figure 1: Flow of the bound state energy E against λ2 for a
cut-off position x0 = e−1 and boundary condition displayed.
For λ2 < λ2,c = 9/16 there is an isolated bound state. The
solid red line indicates an analytic lower bound on the neg-
ative energies. The dotted red line at λ2,c indicates where
the first pair of complex roots appears, above which we can
see the geometric tower abruptly appearing.

The cases of ±π correspond to Dirichlet and Neumann
conditions for the wavefunction at the cut-off and can be
thought of as limits. Taking small energies, ε = |E|1/2 �
x−1

0 , is equivalent to taking the cut-off to zero where for
N = 1 the wavefunction for λ1 > λ1,c = 1/4 has the form:

Ψ(x0) = Ã
(εx0

2

)1
2 |Γ (−iν1)|

1
2

cos

(
ν1 ln

(εx0

2

)
+
φ1

2

)
+O

3
2(x0) , (6)

eiφ1 =
Γ (−iν1)

Γ (iν1)
, ν1 =

√
λ1 −

1

4
, (7)

with Ã some normalisation constant.
Substituting (6) into (5) we find

tan

(
θ

2

)
=

√
λ1 −

1

2

cos
(
ν1 ln

(εx0
2

)
+ φ1+α

2

)
cos
(
ν1 ln

(εx0
2

)
+ φ1

2

) , (8)

eiα =
1
2 + iν1
1
2 − iν1

. (9)

Fixing θ we can numerically solve this equation for some E.
Taking this as a reference energy, the symmetry of the right
hand side ensures that E exp (−2πn/ν1) is also a solution
where n ∈ N is required for the approximation (6) to apply.
Hence, for N = 1 the cut-off regularisation gives approxi-
mate discrete scale invariance at low energies.

3. General N
For N > 1 the matrix element ĤN − Ĥ

†
N involves more

derivatives of the wavefunction than the N = 1 case. How-
ever, it can readily be diagonalised into an expression pro-
portional to:

~Φ+(x0)† · ~Ψ+(x0)− ~Φ−(x0)† · ~Ψ−(x0) (10)

where

xk−1
0 dk−1

x Ψ(x0) = Ψ+
k (x0) + Ψ−k (x0) ,

x2N−k
0 d2N−k

x Ψ(x0) = eiπ(k−1
2)
[
Ψ+
k (x0)− Ψ−k (x0)

]
.

The general boundary conditions at x = x0 that make ĤN
self-adjoint are

~Ψ+(x0) = UN~Ψ
−(x0) (11)

for some arbitrary unitary matrix: UN .
The general solution to the energy eigenvalue equation for
a decaying wavefunction at infinity with boundary conditions
given by (11) can be given analytically in terms of gener-
alised hypergeometric functions.
As an illustration of the appearance of the geometric tower
atN > 1, consider figs. 1 and 2. The former plots ε forN = 2
against λ2. It is plain that as soon as λ2 > 9/16 (the dotted
red line) there is a sudden transition from an isolated bound
state to a tower of states. Similarly fig. 2 plots the logarithm
of En/En+1 for N = 3 as a function of λ3 at low εx0. The
result, shown by the blue points in fig. 2, is a good match
with π/ν3 with ν3 defined by (??).
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Figure 2: A plot of lnEn/En+1 ∝ π/ν3 against lnλ3 for a
cut-off position x0 = e−1 and boundary condition displayed.
The solid red line indicates our analytic expression for π/ν3
while the blue dots are calculated by numerically determin-
ing the gradient of logEn/En+1 against n for several n cor-
responding to εx0 � 1. The red dotted line indicates the
critical λ3.

For general N , λN > λN,c and small enough energies we
argued [3] that one always finds DSI with the scaling de-
fined in (??) using a small ε expansion. Determining the
energy eigenstates analytically for arbitrary boundary con-
ditions is made difficult for N > 1 due to the presence of
multiple distinct complex roots in the small energy expan-
sion. However, one pair makes a contribution to the solu-
tion that decays more slowly as we consider small bound
state energies than any other and derive an approximation
in this limit.
To see this, note that the leading contributions to the gen-

eral decaying, negative energy, solution at εx0� 1 have the
form

Ψ(x) =

N∑
i=1

φ̃i

(
x

x0

)∆i

+ G N
1 φ̃N (εx0)2iνN

(
x

x0

)∆N+1

where εx0 only enters the leading term through a phase and
all other contributions to Oi from the φ̃i drop out as they
come with εx0 to a real positive power. The displayed terms
above are the relevant ones at low energies for solving (11).
Moreover these leading terms are invariant under the dis-
crete scaling transformation and thus we have DSI. As a
result, applying (11) will necessarily give the energy spec-
trum (??) for εx0� 1.
We can use our expression (??) for νN in terms of λN to

find:

En = −E0e
− NπnαN√

λN−λN,c
(
1 +O(λN − λN,c)

)
, (12)

characteristic of the BKT scaling, where all subleading
terms vanish for N = 1.
With the above considerations we can say that a CSI to DSI
transition is a generic feature of our models and universal in
that it is independent of the completion of the potential near
the origin. Thus, the Hamiltonian (2) need only be effective
for the consequences of DSI to be relevant.

Acknowledgements
The work of DB was supported in part by the Israel Sci-

ence Foundation under grant 504/13 and is currently sup-
ported by a key grant from the NSF of China with Grant
No: 11235010. This work was also supported by the Is-
rael Science Foundation Grant No. 924/09. DB would like
to thank the Technion and University of Haifa at Oranim for
their support.

References

[1] Roman W Jackiw. Diverse topics in theoretical and math-
ematical physics. World Scientific, 1995.

[2] David B. Kaplan, Jong-Wan Lee, Dam T. Son, and
Mikhail A. Stephanov. Conformality lost. Phys. Rev. D,
80:125005, Dec 2009.

[3] Daniel K. Brattan, Omrie Ovdat, and Eric Akkermans.
Scale anomaly of a Lifshitz scalar: a universal quantum
phase transition to discrete scale invariance. 2017.

Strings 2017, Israel. 26-30 June 2017.


