Technology

TOPOLOGICAL PROPERTIES AND QUANTUM ENTANGLEMENT FEATURES OF GRAPHENE WITH VACANCIES

Yuval Abulafia, Amit Goft, Nadav Orion, Alon Strugatsky and Eric Akkermans Physics Department, Technion - Israel Institute of Technology
excelling in science

V. Model for Graphene Vacancy

Vacancy Potential in Tight binding Model
We model the vacancy by destroying the three bonds with the neighbouring atoms. For a vacancy in located at R_{0}, in sublattice A :
$V_{A}(r)=+t\left[a_{R_{0}}^{\dagger} b_{R_{0}}+a_{R_{0}}^{\dagger} b_{R_{0}+\delta_{1}}+a_{R_{0}}^{\dagger} b_{R_{0}+\delta_{2}}\right]+$ h.c.
Vacancy potential is localized (not periodic), i.e. it will not be diagonal in Fourier space $a_{R}=\frac{1}{\sqrt{N}} \sum_{k} a_{k} e^{-i k \cdot R}$. In the low-energy limit, $V_{A}(r)$ couples both \vec{k} in the same valley (intravalley scattering) and \vec{k} in different valleys (intervalley scattering).

Vacancy Potential in the Continuum

In the basis $\psi=\left(\begin{array}{llll}\psi_{A}^{K} & \psi_{A}^{K^{\prime}} & \psi_{B}^{K} & \psi_{B}^{K^{\prime}}\end{array}\right)^{T}$, the vacancy potential contains intervalley and intravalley terms, dependent on \vec{r}, the distance from the vacancy. A generic form of such a potential is:

$$
V_{\mathrm{Vac}}=v_{F}\left(\begin{array}{cccc}
0 & 0 & h^{\prime} & -i h e^{i \theta} \\
0 & 0 & i h e^{-i \theta} & h^{\prime} \\
h^{\prime} & -i h e^{i \theta} & 0 & 0 \\
i h e^{-i \theta} & h^{\prime} & 0 & 0
\end{array}\right)
$$

where h, h^{\prime} are real functions of the distance r from the vacancy and θ is the angle of \vec{r}. A model for adatom also contains diagonal terms, which break BDI.
This potential creates new states at zero energy called zero modes. These states are localized near the vacancy, and as a result change the local density $\rho(\vec{r})$. We define: $\rho(\vec{r})=\rho_{0}(\vec{r})+f(r) \Delta \rho(\theta)$, where ρ_{0} is the local density

$$
\rho(r)=\int d E \rho(r, E)=\int d E \sum_{n}\left|\psi_{n}(r)\right|^{2} \delta\left(E-E_{n}\right)
$$

Wavefront Dislocation

In graphene with a defect (vacancy or adatom), oscillations can be seen in $\rho(r)$. For graphene, the oscillation pattern contains dislocations: the number of maxima lines going in and out of the defect is different. The dislocation number is different for each defect type.

of graphene.
Numerical solution of the full model reproduces the dislocation pattern. $\Delta \rho(\theta)$ displays a line pattern (called wavefronts) which breaks near the vacancy. The difference between the number of line "entering" and "leaving" is 1 , which means a single dislocation.
Our vacancy model is topologically equivalent to the well-known the Kekule model, obtained by modulating the hopping term t. It is equivalent to taking $h^{\prime}=0$.

VI. CONDUCTANCE β FUNCTION

Graphene is a 2 d semi-metal, and as such the conductivity of pure graphene is: $\sigma_{x x}=4 e^{2} / h$.

Graphene with BDI-breaking disorder becomes an insulator. For a disorder that preserves For a disorder that preserves
the BDI symmetries, the conductivity remains constant and unchanged, i.e. $\beta(g)=0$.

turbative expansion for the conductivity g in the mesoscopic limit may provide new physical insights for $\beta(g)=0$.

VII. Entanglement and Geometric Phase

The Dirac Hamiltonian model for graphene with a vacancy is analogous to a two-qubit system. Is it possible to entangle the two pseudospins associated with the valley and sub-lattice? Is it related to the BDI topology?

Concurrence

Entanglement between two distinguishable qubits is measurable by the concurrence, $C \in[0,1]$, defined for pure states by:
$C(|\psi\rangle)=|\langle\psi| \Theta| \psi\rangle\left|=\left|\langle\psi|\left(\sigma_{y} \otimes \sigma_{y}\right) \mathcal{K}\right| \psi\right\rangle \mid$
where Θ is the antiunitary time reversal operator for 2 spin- $1 / 2$ particles.

Geometric phase

When a pure state density matrix undergoes cyclic evolution, the state may gather a gauge invariant phase, called the geometric or Berry phase. It is given by

$$
\left.\gamma=i \int_{0}^{T}\langle\psi| \frac{\mathrm{d}}{\mathrm{~d} t}| | \psi\right\rangle d t+\arg \langle\psi(0) \mid \psi(T)\rangle
$$

Geometric Phase for 2-Qubit Model
A 2-qubit pure state can be described using 6 angles:
$|\psi\rangle=\cos \frac{\alpha}{2}\left|+\hat{n}_{1}\right\rangle \otimes\left|+\hat{n}_{2}\right\rangle+\sin \frac{\alpha}{2} e^{i \beta}\left|-\hat{n}_{1}\right\rangle \otimes\left|-\hat{n}_{2}\right\rangle$
where $\hat{n}_{1,2}$ describe the Bloch vectors of qubit 1,2, and $\sin \alpha=C(|\psi\rangle)$ $\alpha \in[0, \pi)$. The geometric phase of a general path in the Hilbert space is:
$\gamma=-\frac{1}{2} \oint \sqrt{1-C^{2}}\left(d \beta+\cos \theta_{1} d \varphi_{1}+\cos \theta_{2} d \varphi_{2}\right)$
This establishes a relation between the concurrence and a topological property. We now show two examples.

Qubit 1 in a Magnetic Field

$$
H=\vec{B} \cdot \vec{\sigma} \otimes I, \quad \vec{B}=B \hat{B}
$$ The evolution of any $|\psi(t)\rangle$ is periodic. For $T=2 \pi / B$, the geometric phase is:

$\gamma=2 \pi \sqrt{1-C^{2}} \hat{B} \cdot \hat{n}_{1}$

Interactions Between Two Qubits
$H=\lambda \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}$
We choose $|\psi(0)\rangle=\cos \frac{\alpha_{0}}{2}|+\hat{z}\rangle \otimes|-\hat{z}\rangle+$ $\sin \frac{\alpha_{0}}{2} e^{i \beta_{0}}|-\hat{z}\rangle \otimes|+\hat{z}\rangle$ and for a single period:

This is the half the solid angle of a circular path in the sphere defined by α and β.

REFERENCES

104:096804, March 2010 .

C. Dutreix, H. Gonzalez-Herrero H.,I. Brinuega, M.I.Katsnelson, C. Chapelier, and V. T.

Renard. Nature, 574:219-222, Oct. 2019
[3] Jeffrey C. Y. Teo and C. L. Kane. Phys. Rev. B, 82:115120, Sept 2010
[4] Alexei Kitaev. In AIP Conference Proceedings, volume 1134, pages 22-30, 2009
[5] Andreas P Schnyder, Shinsei Ryu, Akira Furusaki, and Andreas W. W. Ludwig. In AIP

