
TOPOLOGICAL PROPERTIES AND QUANTUM ENTANGLEMENT
FEATURES OF GRAPHENE WITH VACANCIES

YUVAL ABULAFIA, AMIT GOFT, NADAV ORION, ALON STRUGATSKY AND ERIC AKKERMANS

PHYSICS DEPARTMENT, TECHNION – ISRAEL INSTITUTE OF TECHNOLOGY

REFERENCES

[1] M. M. Ugeda, I. Brihuega, F. Guinea, and J. M. Gómez-Rodríguez. Phys. Rev. Lett.,
104:096804, March 2010.

[2] C. Dutreix, H. González-Herrero H., I. Brihuega, M. I. Katsnelson, C. Chapelier, and V. T.
Renard. Nature, 574:219–222, Oct. 2019.

[3] Jeffrey C. Y. Teo and C. L. Kane. Phys. Rev. B, 82:115120, Sept 2010.

[4] Alexei Kitaev. In AIP Conference Proceedings, volume 1134, pages 22–30, 2009.

[5] Andreas P Schnyder, Shinsei Ryu, Akira Furusaki, and Andreas W. W. Ludwig. In AIP
Conference Proceedings, volume 1134, pages 10–21. AIP, 2009.

[6] William K. Wootters. Physical Review Letters, 80(10):2245–2248, March 1998.

II. THE TENFOLD CLASSIFICATION

Class s Θ C S d = 0 1 2 3

A 0 0 0 0 Z 0 Z 0

AIII 1 0 0 1 0 Z 0 Z
AI 0 +1 0 0 Z 0 0 0

BDI 1 +1 +1 1 Z2 Z 0 0

D 2 0 +1 0 Z2 Z2 Z 0

DIII 3 -1 +1 1 0 Z2 Z2 Z
AII 4 -1 0 0 2Z 0 Z2 Z2

CII 5 -1 -1 1 0 2Z 0 Z2

C 6 0 -1 0 0 0 2Z 0

CI 7 +1 -1 1 0 0 0 2Z

1

The topological structure of the Hilbert space of
quadratic Hamiltonians of fermions (describing weakly
interacting systems) is based on two anti-unitary sym-
metries (Θ, C) and the (unitary) chiral symmetry (Π):

Time reversal

Θ = 0,±

Particle hole

C = 0,±

Chirality

Π = 0, 1

"±" conserves the symmetry
"0" breaks the symmetry

Dirac Hamiltonian representative

A Dirac Hamiltonian representative for each class can be de-
fined using Dirac matrices and k⃗, r⃗ dependent coefficients:

H = A⃗(k⃗, r⃗) · Γ⃗ + B⃗(k⃗, r⃗) · γ⃗

Γ⃗ = (Γ0, . . . ,Γp) , γ⃗ = (γ1, . . . , γq) , s = p− q mod 8

In this Clifford representation Γn and γm anti-commute:

{γn, γm} = {Γn,Γm} = δmn, {Γn, γm} = 0

Where A⃗(k⃗, r⃗) = A⃗(−k⃗, r⃗), B⃗(k⃗, r⃗) = −B⃗(−k⃗, r⃗).

Symmetry Relations

The symmetry relations are:

ΘH
(
k⃗, r⃗

)
Θ−1 = H

(
−k⃗, r⃗

)
CH

(
k⃗, r⃗

)
C−1 = −H

(
−k⃗, r⃗

)
ΠH

(
k⃗, r⃗

)
Π−1 = −H

(
k⃗, r⃗

)
For Dirac Hamiltonians this translates into:

ΘΓ⃗Θ−1 = Γ⃗, Θγ⃗Θ−1 = −γ⃗

CΓ⃗C−1 = −Γ⃗, Cγ⃗C−1 = γ⃗

Spatial Dimension and Defects

Kitaev and Schnyder et al
extended the initial Altland-
Zirnbauer classification to higher
space dimension d. This is the
dimension of the Brilouin zone
T d. The presence of defects is
accounted for by introducing
δ = d − D, where D is the dimen-
sion of a sphere SD surrounding
the defect. The entries of the
tenfold classification depend on
the difference s− δ.

I. ABSTRACT
We consider topological and entanglement aspects of condensed mat-
ter systems, focusing on graphene with vacancies. Pristine (undoped)
graphene does not have specific topological properties. We have shown
that the removal of an atom (creating a vacancy) displays topological fea-
tures. These features (e.g. a finite winding number) are directly mea-
sureable on the dislocation pattern of STM pictures. A direct method to
calculate the winding number is presented. Other topological models are
discussed, e.g. Kekule model. Entanglement properties of two distin-
guishable spins are studied by means of concurrence, and its’ interplay
with topological features e.g. Berry phase. These features are contrasted
with intra-particle entanglement. Graphene with randomly distributed
vacancies displays a new type of transport characterized by β(g) = 0,
in contrast to other types of disorder e.g. adatoms. Here, the first order
(∝ 1/g) correction is considered.

VI. CONDUCTANCE β FUNCTION

Graphene is a 2d semi-metal, and as such the conductivity of pure
graphene is: σxx = 4e2/h.

Graphene with BDI-breaking
disorder becomes an insulator.
For a disorder that preserves
the BDI symmetries, the con-
ductivity remains constant and
unchanged, i.e. β(g) = 0.

A per-

turbative expansion for the conductivity g in the mesoscopic limit may
provide new physical insights for β(g) = 0.

IV. WAVEFRONT DISLOCATIONS

VACANCIES IN GRAPHENE

A vacancy is defined as the removal of a single neutral atom from the
lattice.

Measurement of 17nm × 17nm graphite sample after Ar+

ion irradiation

According to the tenfold classification, graphene with a vacancy remains
BDI. Since a vacancy is a point defect in 2d, D = 1 and δ = 2−1 = 1. This
system may have non-zero topological numbers.

Local density

STM (scanning tunneling microscope) measures local density:

ρ(r) =

∫
dE ρ(r, E) =

∫
dE

∑
n

|ψn(r)|2δ(E − En)

WAVEFRONT DISLOCATION

In graphene with a defect (vacancy or adatom), oscillations can be seen
in ρ(r). For graphene, the oscillation pattern contains dislocations: the
number of maxima lines going in and out of the defect is different. The
dislocation number is different for each defect type.

Graphene with adatom

Two dislocations

Graphene with vacancy

One dislocation

III. GRAPHENE
Graphene is a 2-dimensional honeycomb lat-
tice of Carbon atoms. It is bipartite with two
atoms in a unit cell, i.e. composed of two tri-
angular sublattices A and B. The tight bind-
ing Hamiltonian of graphene within the near-
est neighbors approximation:

H0 = −t
∑

i=0,1,2
R∈A

a†RbR+δi +H.c.

At low energyH0 admits a Dirac representation using 2×2 Pauli matrices
around each valley K and K ′.

H0

(
k⃗ = K⃗ + q⃗

)
= vF q⃗ · σ⃗, vF =

3

2
ta

Overall description using 2 pseudospins associated respectively to sub-
lattice (A, B) and valleys (K, K ′):

H0 = vF


0 0 qx − iqy 0
0 0 0 −qx − iqy

qx + iqy 0 0 0
0 −qx + iqy 0 0

 .

Equivalently H0 = vF (qxσx ⊗ σz + qyσy ⊗ I), in the basis
ψ =

(
ψK
A ψK′

A ψK
B ψK′

B

)T
SYMMETRY CLASS OF GRAPHENE

Graphene Hamiltonian is quadratic. In the Dirac representation we iden-
tify q = 0 and p = 1, which gives s = 1. Alternatively, we show that
graphene is BDI using its anti-unitary symmetries and chirality:

Θ = K, C = σxK, Π = σx

where K is the complex conjugate operator on the presented basis.

V. MODEL FOR GRAPHENE VACANCY

VACANCY POTENTIAL IN TIGHT BINDING MODEL

We model the vacancy by destroying the three bonds with the neighbour-
ing atoms. For a vacancy in located at R0, in sublattice A:

VA (r) = +t
[
a†R0

bR0
+ a†R0

bR0+δ1 + a†R0
bR0+δ2

]
+ h.c.

Vacancy potential is localized (not periodic), i.e. it will not be diagonal
in Fourier space aR = 1√

N

∑
k ake

−ik·R. In the low-energy limit, VA (r)

couples both k⃗ in the same valley (intravalley scattering) and k⃗ in different
valleys (intervalley scattering).

VACANCY POTENTIAL IN THE CONTINUUM

In the basis ψ =
(
ψK
A ψK′

A ψK
B ψK′

B

)T
, the vacancy potential con-

tains intervalley and intravalley terms, dependent on r⃗, the distance from
the vacancy. A generic form of such a potential is:

VVac = vF


0 0 h′ −iheiθ
0 0 ihe−iθ h′

h′ −iheiθ 0 0
ihe−iθ h′ 0 0


where h, h′ are real functions of the distance r from the vacancy and θ is
the angle of r⃗. A model for adatom also contains diagonal terms, which
break BDI.
This potential creates new states at zero energy called zero modes. These
states are localized near the vacancy, and as a result change the local den-
sity ρ(r⃗). We define: ρ(r⃗) = ρ0(r⃗)+f(r)∆ρ(θ), where ρ0 is the local density
of graphene.

Numerical solution of the
full model reproduces the
dislocation pattern. ∆ρ(θ)
displays a line pattern (called
wavefronts) which breaks
near the vacancy. The differ-
ence between the number of
line "entering" and "leaving"
is 1, which means a single
dislocation.

Our vacancy model is topologically equivalent to the well-known the
Kekule model, obtained by modulating the hopping term t. It is equiva-
lent to taking h′ = 0.

Numerical solution of the
Kekule model gives ex-
actly the same dislocation
pattern. The analogy also
shows that the non-trivial
topology in the vacancy
model comes from the in-
tervalley scattering.

VII. ENTANGLEMENT AND GEOMETRIC PHASE
The Dirac Hamiltonian model for graphene with a vacancy is analogous
to a two-qubit system. Is it possible to entangle the two pseudospins as-
sociated with the valley and sub-lattice? Is it related to the BDI topology?

Concurrence

Entanglement between two distinguishable qubits is measurable by the
concurrence, C ∈ [0, 1], defined for pure states by:

C (|ψ⟩) = |⟨ψ |Θ|ψ⟩| = |⟨ψ |(σy ⊗ σy)K|ψ⟩|

where Θ is the antiunitary time reversal operator for 2 spin-1/2 particles.

Geometric phase

When a pure state density matrix undergoes cyclic evolution, the state
may gather a gauge invariant phase, called the geometric or Berry phase.
It is given by:

γ = i

T∫
0

〈
ψ

∣∣∣∣ ddt
∣∣∣∣ |ψ〉 dt+ arg ⟨ψ (0) |ψ (T )⟩

GEOMETRIC PHASE FOR 2-QUBIT MODEL

A 2-qubit pure state can be described using 6 angles:

|ψ⟩ = cos
α

2
|+n̂1⟩ ⊗ |+n̂2⟩+ sin

α

2
eiβ |−n̂1⟩ ⊗ |−n̂2⟩

where n̂1,2 describe the Bloch vectors of qubit 1,2, and sinα = C (|ψ⟩),
α ∈ [0, π). The geometric phase of a general path in the Hilbert space is:

γ = −1

2

∮ √
1− C2 (dβ + cos θ1dφ1 + cos θ2dφ2)

This establishes a relation between the concurrence and a topological
property. We now show two examples.

Qubit 1 in a Magnetic Field

H = B⃗ · σ⃗ ⊗ I, B⃗ = BB̂

The evolution of any |ψ (t)⟩ is peri-
odic. For T = 2π/B, the geometric
phase is:

γ = 2π
√

1− C2B̂ · n̂1

Interactions Between Two Qubits

H = λσ⃗1 · σ⃗2
We choose |ψ (0)⟩ = cos α0

2 |+ẑ⟩ ⊗ |−ẑ⟩ +
sin α0

2 e
iβ0 |−ẑ⟩ ⊗ |+ẑ⟩ and for a single pe-

riod:
γ = πC (t = 0) cosβ0.

This is the half the solid angle of a circular
path in the sphere defined by α and β.


