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IV. GEOMETRIC PHASE FOR THE 2-QUBIT MODEL

Using the Schmidt decomposition and fixing the gauge of the two qubits, one can write a general 2-qubit pure state as:

|ψ⟩ = cos
α

2
e−iβ/2 |n̂1, n̂2⟩+ sin

α

2
eiβ/2 |−n̂1,−n̂2⟩ ; (n̂i(θi, φi) · σ⃗) |±n̂i(θi, φi)⟩ = ± |±n̂i(θi, φi)⟩

1. Effective Spin Algebra

Renaming |⇑⟩ ≡ |n̂1⟩ ⊗ |n̂2⟩ and |⇓⟩ ≡ |−n̂1⟩ ⊗ |−n̂2⟩:

Σ̃x = |⇑⟩ ⟨⇓|+ |⇓⟩ ⟨⇑| , Σ̃y = −i |⇑⟩ ⟨⇓|+ i |⇓⟩ ⟨⇑|

Σ̃z = |⇑⟩ ⟨⇑| − |⇓⟩ ⟨⇓|[
Σ̃j , Σ̃k

]
= 2iεjkℓΣ̃ℓ.

Observable quantities:〈
σ⃗(1),(2)

〉
= n̂1,2

〈
Σ̃z

〉2

〈
Σ̃x

〉2

+
〈
Σ̃y

〉2

=

√
1−

〈
Σ̃z

〉2

= sinα = C

2. Rotation Representation

Represent |ψ⟩ with rotation matrices (adapted from [1]):

|ψ⟩ = R3 (α, β)R1 (θ1, φ1)R2 (θ2, φ2) |↑↑⟩

R1,2 = exp
(
−iφ1,2

2

(
σ(1),(2)
z

))
exp

(
−iθ1,2

2

(
σ(1),(2)
y

))
R3 = exp

(
−iβ

2
Σ̃z

)
exp

(
−iα

2
Σ̃y

)
where α, θ1,2 ∈ [0, π] and β, ϕ1,2 ∈ [0, 2π].
Alternatively, defining |⇑⟩ ≡ |00⟩ and |⇓⟩ ≡ |11⟩:

|ψ⟩ = R1 (θ1, φ1)R2 (θ2, φ2)R3 (α, β) |↑↑⟩

The resulting phase for a general time evolution is:

γ =
1

2

∮
P

√
1− C2 (dβ + cos θ1dφ1 + cos θ2dφ2)

I. ABSTRACT
We study the interplay between topology and quantum entan-
glement in condensed matter systems. We present results and
examples which establish this connection utilizing a toy-model
consisting of two qubits, where entanglement is measured by
the concurrence and topology shows up as a Berry (geometric)
phase. In IX we consider several cases in condensed matter
physics where our result might be applicable.

III. ENTANGLEMENT

XOR GAME

3 players: Alice, Bob and Charlie. Charlie sends a binary mes-
sages to Alice and Bob and they reply with binary messages:

Alice and Bob win if A+B mod 2 = x · y.
No A↔ B communication.

Classically: no strategy with a win rate of over 75%. However,
if A and B share two maximally entangled qubits: win rate

85%.

CONCURRENCE BETWEEN TWO QUBITS

C(|ψ⟩) = |⟨ψ|Θ|ψ⟩| ∈ [0, 1]

Measure of entanglement in two-qubit systems proposed by
Wootters [2]. Θ = (σy ⊗ σy)K is the antiunitary time reversal
symmetry operator on two spin-1/2 particles, K is the antiuni-
tary complex conjugation operator.

Basic Properties

Independent of measuring protocol.
One-to-one correspondence with entanglement entropy.

C(|↑↑⟩) = 0, C(
1√
2
(|↑↑⟩+ |↓↓⟩)) = 1

GENERALIZATIONS

Uhlmann [3] shows that the entanglement in general systems
are characterized by one or several “concurrences”, each based
on a different antiunitary symmetry. Specifically, such a con-
struction has been proposed for systems consisting of two spin-
1/2 fermions[4], based on the antiunitary particle-hole symme-
try P , instead of Θ.

II. TOPOLOGY (VIA GEOMETRIC PHASE)
When a pure state density matrix ρ(t) undergoes cyclic time
evolution, the state may gather a gauge invariant phase, the
geometric (Aharonov-Anandan [5]) phase.

A cyclic evolution with
period T is defined by:

ρ(t) : ρ(0) = ρ(T )

|ψ(T )⟩ = ei(γ+δ(T )) |ψ(0)⟩

δ(T ): dynamical phase. γ: gauge invariant geometric phase.

γ = i

∫ T

0

dt

〈
ψ(t)

∣∣∣∣ ddt
∣∣∣∣ψ(t)〉+ arg ⟨ψ (0) |ψ (T )⟩

If we parameterize the Hilbert space
|ψ(P (t))⟩ so P (0) = P (T ), the second
term vanishes and we can integrate
over the parameter space instead of
time:

γ = i

∮
P

⟨ψ |d|ψ⟩

EXAMPLE: SPIN-1/2 (QUBIT) IN A MAGNETIC FIELD

Consider a a spin-1/2 particle in a constant magnetic field:

|ψ1(0)⟩ =cos
θ

2
e−iϕ/2 |↑⟩

+sin
θ

2
eiϕ/2 |↓⟩

H1 = Bẑ · σ⃗

|ψ1(t)⟩ is cyclic with
T1 = 2π/B:

γ1 = π cos θ

V. TWO QUBITS IN A MAGNETIC FIELD

Consider a general 2-qubit state evolving under H2 = Bσz ⊗ I :

|ψ2 (t)⟩ = R1 (θ1, φ1 + 2Bt)R2 (θ2, φ2)R3 (α, β) |↑↑⟩

|ψ2 (t)⟩ is periodic: T = 2π/B:

γ2 = π
√

1− C2 cos θ1

This phase is gathered by the
motion of the first qubit in its’
Bloch sphere.

As the initial state is isotropic our result is true for any B̂ direc-
tion:

γ3 = π
√

1− C2B̂ · n̂1

VI. INTERACTIONS BETWEEN QUBITS

The exchange Hamiltonian is H4 = λσ⃗(1) · σ⃗(2). For simplicity,
we choose

|ψ4(t = 0)⟩ = cos
α

2
e−iβ/2 |↑↓⟩+ sin

α

2
eiβ/2 |↓↑⟩

Using the effective SU(2) with |⇑⟩ ≡
|↑↓⟩ and |⇓⟩ ≡ |↓↑⟩:

H4 = 2λΣ̃x+λ (|↑↑⟩ ⟨↑↑|+ |↓↓⟩ ⟨↓↓|)

An effective magnetic field in the x̂
direction. The phase for a single pe-
riod T4 = π/λ is:

γ4 = π sinα cosβ = πC(t = 0) cosβ

VII. INCOMMENSURATE PERIODS
Consider a system with both a magnetic field and an exchange
interaction: H5 = H2 +H4.
Choosing |ψ5(t = 0)⟩ = cos α

2 e
−iβ/2 |↑↓⟩ + sin α

2 e
iβ/2 |↓↑⟩, time

evolution is periodic with T5 = 2π/
√
B2 + 4λ2. The resulting

phase for a single period is:

γ5 = 2π sinα

(
2λ√

B2 + 4λ2
cosβ +

B√
B2 + 4λ2

)
Never trivial when B/λ /∈ Q for α ̸= 0, π.

VIII. GENERALIZATIONS
Our result motivates a generalization to systems of a qubit in-
teracting with a spin-N particle (C2 ⊗ CN Hilbert spaces). For
example, consider C2 ⊗ C3, a qubit and a three-level system.
The Schmidt decomposition allows to write any state |ϕ⟩ as:

|ϕ⟩ = cos
α

2
|n̂1,+m̂2⟩+ sin

α

2
eiβ |−n̂1,−m̂2⟩

where the spin-1 states |±m̂2⟩ are defined following a nested-
sphere parameterization [6]. It is now possible to use the effec-
tive SU(2) to characterize a general time evolution.

IX. ENTANGLEMENT OF TOPOLOGICAL MODES IN CONDENSED MATTER

Beenakker et al [7]

Play a XOR game in condensed matter:

Qubit ↔ Topological edge states

Interactions ↔ Tunnel junction

Shot Noise ↔ Spin measurements

Alice and Bob "speak" at the junction, and then
measured separately.
In the QHE example [7], Wootters concurrence for
distinguishable qubits is used, but does it mea-
sure entanglement in this system?

Geometric phase is a specific case of topological invariants. Can our results capture topological condensed matter systems?

New topological phenomena arising from interactions?
Can interactions between two topological systems bring forth new invariants and edge states?

Entanglement of indistinguishable electrons in distinguishable states?
What is the correct definition of entanglement for these systems? What protocol should be used to measure it?


